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We apply the so-called ““synthetic” nonequilibrium molecular-dynamics method to the calculation
of the self-diffusion constant of a Lennard-Jones fluid at a number density of 0.85/0 and a tem-
perature of 1.08c/kp (where € and o are the energy and length parameters of the potential and kp is
the Boltzmann constant). By comparing with the Green-Kubo calculation for the same state of the
system and for the same number of particles, N, we find the latter calculation to yield more precise
values of the self-diffusion constant for a given number of molecular-dynamics time steps. Even at
small values of the diffusion current, a nontrivial time is needed for the nonequilibrium calculation
to reach the steady state. For larger values of the driving force, the steady-state flow appears to be-
come unstable and evidence of a secondary flow pattern is presented. The presence of these instabil-
ities acts as a limit to the range of the driving force for which the steady-state method can be ap-
plied. With increasing N the range of stable values of the diffusion current density decreases. For
the Green-Kubo calculations, the N dependence of the self-diffusion constant is found to be
anomalous for N =108, with the 1/N dependence only exhibited for at least 500 particles. The
nonequilibrium results, while approximately independent of N for 108 and 500 particles, are found
to have a similar anomalous N dependence when we extend the calculations to 1372 particles, there-
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by bringing the Green-Kubo and nonequilibrium results into agreement in the large-system limit.

I. INTRODUCTION

The evaluation of transport coefficients for dense
fluids, beyond the level of approximate theory, relies on
the use of the numerical methods of Monte Carlo and
molecular dynamics (MD). In particular, the molecular-
dynamics method has been applied to the transport coeffi-
cient calculation nearly from its inception.! Early calcu-
lations of transport coefficients were based, for the most
part, on the Green-Kubo theory,>* whereby any transport
coefficient p is obtained from an appropriate time-
correlation function p,(t), through

p=c, [Tdtp,n, (1

in which p,(¢) is an appropriate time-correlation function,
viz.,

pult)=tlimp,(¢;N) ,
pult;N)=(J,(0), (D)),

in which tlim denotes the thermodynamic limit of large
system size, the ( ) denote an average over an equilibrium
ensemble, and the microscopic current J, () is a known
function of the phase x™(¢)=(+™(#),0™(¢)) (in which r¥
and v" are the position and velocity vectors of the N par-
ticles in the system, respectively, in' dN-dimensional
space, the dimensionality d here being either 2 or 3), and
cy is a constant. The Green-Kubo method depends on the
evaluation of the microscopic current at a time ¢ subse-
quent to an initial time O by the application of the
molecular-dynamics method to generate an N-particle tra-
jectory x™(¢), with the ensemble average being either re-
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placed by a time average' over “time origins” equally
spaced (in time) along the trajectory, or evaluated by a
combination of Monte Carlo and molecular-dynamics
averaging,* using a number of trajectories whose initial
phases are selected by Monte Carlo from an equilibrium
ensemble. ’

One of the most important results from the application
of these ideas to the calculation of transport coefficients
was the discovery of the slow decay of time-correlation
functions, which has been termed the ‘“long-time tail.”
For self-diffusion, it was found that at long times®>~’

pp(t)~ap(t/ty) =22, 3)

at least for hard “‘spheres” of dimension d (=2 or 3) at
fluid densities. - The result Eq. (3) has been obtained
theoretically as well.®°

One consequence of this slow decay is that the full
values of the transport coefficients obtained through Eq.
(1) are achieved rather more slowly than predicted, say, by
the Boltzmann-Enskog theory. Furthermore, because of
this need to include contributions to the integral in Eq. (1)
out to large times, to obtain precise values for p it is
necessary either to compute to rather late times ¢ or to in-
clude the long-time contribution theoretically. If numeri-
cal calculation is used at long times, then it is found that
finite-system effects become relatively large for values of ¢
greater than the time needed for an acoustic wave to
traverse the system. This effect arises from the propaga-
tion of the microscopic fluctuations in the hydrodynamic
variables throughout the length of the system.’ Thus, the
numerical study of long times necessitates the study of
large systems. Based strictly on numerical evaluation,
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without the benefit of the theoretical results for long-time
tails, then, the precise evaluation of transport coefficients
can be difficult.

This difficulty is at least partially responsible for the
invention of a second path to numerical evaluation of
transport coefficients. Early versions of nonequilibrium
molecular dynamics sought to mimic laboratory experi-
ment,'°~ 12 using the computer to impose nonequilibrium
boundary conditions on a system of N interacting parti-
cles. By driving the system to a stationary (or at least ap-
proximately stationary) flow, one hopes to evaluate the
transport coefficient as an appropriate ratio of flux to gra-
dient, much in the manner of laboratory experiment. - Be-
cause one obtains nonequilibrium through the use of
boundary conditions, these methods are referred to as
“boundary-driven” NEMD (nonequilibrium MD). One
attractive feature of such calculations is the possibility of
studying the nonequilibrium system in great detail, both
with respect to spatial and temporal effects. Unfortunate-
ly, whether of necessity or of convenience, the driving
forces in such calculations were very large, when com-
pared with those which are found in the laboratory. A
twofold effect of the excessive magnitude of the driving
forces were (1) the need to extract energy from the system
such that a steady state will be achieved, and (2) the obser-
vation of a significant dependence of the transport coeffi-
cient on the gradient of the appropriate intensive variable
which characterizes the transport process under study. A
third effect, which is not so commonly recognized, is the
slow approach to the steady state which is particularly
important when the gradients are large.

The principal problem recognized at the outset in the
application of boundary-driven NEMD arises from the
inevitable inhomogeneity of such systems whereby. the
thermodynamic state changes throughout the system.
While thermodynamic inhomogeneity is, of course, in-
herent in experiments on transport processes, the differ-
ence between the NEMD and actual experiment is one of
scale. In a spatial region sufficiently small compared to
the magnitude of the gradients that one can sensibly de-
fine a thermodynamic state, there might typically be very
few particles, far fewer than the number of particles typi-
cally used in molecular dynamics. As a result, one fre-
quently is forced to deal with difficult problems of data
analysis arising from the sensitivity of the calculated
transport coefficient to the spatial scale over which state
variables and currents are defined.

More recently, a “synthetic” approach to NEMD has
been devised,'®>!* the aim of which is to deal with a homo-
geneous nonequilibrium system through the addition of
homogeneous external forces. Using an approach based in
part on the linear-response approach to the Green-Kubo
formulas, it has been possible to obtain external forces ap-
propriate to any of a variety of transport effects which
lead to a nonequilibrium current without the attendant
gradient, the current instead being driven by the external
forces. Moreover, by the inclusion of additional external
forces to cool the system homogeneously, one has a sys-
tem which would be expected to approach (with time) a
steady state. One calculates the current as a function of
the magnitude of the driving force to obtain a nonequi-

librium transport coefficient. By considering the limit of
vanishing external force, one expects to recover the true
(long-wavelength, small gradient) transport coefficient. It
has been widely suggested'>!6 that these synthetic NEMD
calculations are vastly superior in calculational efficiency
to previous methods because of (1) an apparent improve-
ment in the statistical properties of the observation of the
steady-state current and (2) the suppression of the large N
dependence of the boundary-driven methods through the
homogeneity of the system. Furthermore, it is widely be-
lieved that the N dependence of these NEMD methods is
vastly improved compared to the Green-Kubo method.
Indeed, it is commonly assumed that the transport coeffi-
cients obtained in these calculations for as few as 108 par-
ticles are essentially equal to the infinite-system values.

An additional question raised by these synthetic
NEMD methods concerns their significance away from
equilibrium. One might reasonably ask whether these cal-
culations are meaningful at values of the driving force for
which the observed hydrodynamic currents are no longer
in the linear-law (i.e., the so-called “Newtonian”) regime.
As far as we are aware, there is no theoretical arguments
to connect, for example, the dependence of the mutual dif-
fusion coefficient on the diffusion current in a synthetic
NEMD calculation with that for a laboratory experiment
in which one would typically have control of certain
boundary conditions.

It is our purpose here to examine the claims of the syn-
thetic method by comparing it with the supposedly “out-
of-date” Green-Kubo method for the case of self-
diffusion. Because of the simplicity of the self-diffusion
process, it would seem to be a reasonable first test for the
method. Moreover, because there are no non-Newtonian
effects associated with self-diffusion,!” it provides a test
for the NEMD method away from equilibrium for a case
for which a great deal is known.

Inasmuch as very extensive studies of self-diffusion
have been made for the hard-sphere potential,” it would
appear most natural to make such a comparison for hard
spheres. Nonetheless the external forces introduced in
the NEMD cause the particle trajectories to no longer fol-
low straight lines between collisions and the computation-
al advantage normally associated with the hard-sphere po-
tential is thereby lost. Therefore, we use a Lennard-Jones
potential, truncated at a finite range as described in Sec.
II. Also in Sec. II, we detail the nature of our system and
give the expressions for the diffusion forces as well as the
forces which maintain the temperature in the nonequi-
librium system. In Sec. III, we describe some details of
our numerical methods, both for the Green-Kubo calcula-
tion and for the NEMD calculation. In Sec. IV we dis-
cuss the results, leaving their interpretation to a final Sec.
V.

II. MOLECULAR DYNAMICS OF SELF-DIFFUSION

A. Dynamical system

We consider an equimolar, two-component system of N
particles, each of mass m, interacting through a pairwise-
additive potential u(r), subject to the usual periodic
boundary conditions. The Newtonian equations of
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motion are
m-x-i =in ’
my;=F, , (4)
mEi :in >

in which F; is the force on particle i arising from the
N —1 other particles (as well as the “image” particles in
periodic boundary conditions).

For the interparticle potential, we use the Lennard-
Jones potential, truncated via a cubic “spline,” suggested
by Holian and Evans,'® which vanishes at the cutoff dis-
tance r,, with vanishing first and second derivatives,

o(r), r<r,
w(r)=a(r —ryp P 4+b(r—ry,)>, r.<r <rm (5)
0, r,<r

where ¢(r) is the Lennard-Jones (LJ) potential,
12 6
g g

r

o(r)=4e

The parameter 7, is defined to be the point of maximum
attraction,

)1/60. (6)

of the LJ potential. The parameters a, b, and r,, of the
cubic spline are defined by requiring that u(r) and its
first and second derivatives be continuous at 7., whence

re—rny =3¢0/2¢1 s
a=¢/(r,—ry), (7)
=—¢1/3r.—rpy ),

in which ¢, is the nth derivative of the LJ potential ¢(7),
atr=r,.

26
re=(5"

B. Green-Kubo method

The Green-Kubo formula, Egs. (1) and (2), for the self-
diffusion constant requires

Ip(t)=u,(1),
u(t)=v;(t)—v,

N
V=Y v;/N
i=1

CD:"]' ’

(8)

in which i denotes the index of any particle. The calcula-
tion of D by the Green-Kubo method has been detailed
for hard spheres and disks,%’ and we follow a very similar
approach here. The ensemble average to be evaluated, Eq.
(2), is estimated using the Monte Carlo (MC) method, now
in the canonical ensemble rather than the microcanonical
ensemble employed 1n the hard-sphere study. The
Metropohs technique'’ yields a sequence of P configura-
tions {rp ;p=12,. P}. A corresponding sequence of
N-particle velocities {vp ; p=12,...,P} are chosen ran-
domly from the Maxwell- Boltzmann distribution using

the Box-Muller method.?° We use molecular dynamics to
generate from each such phase point a trajectory {x,fv (1);
0<t<ts}, in which ¢/ is some fixed final time, chosen to
be much larger than the values of ¢ of interest.

A time average of any two-point function of interest,

CH(;n)=f(xNm)gxNr+1) ,
is obtained by averaging over a sequence of Q ‘“time ori-
gins” {t;; 9=12,...,0},

H,()= zf(x,fvu NgxNt,+1)

in which the ¢, are equispaced over (0,z,),

t,=(q—1)t;/Q .

We obtain averages and statistical uncertainties from the
P values of ﬁp( t).

In the current calculations, as distinguished from the
earlier hard-sphere calculations,” the MC sequence xlfv
differs from the normal Metropolis random walk in that
the MC configuration rIfVH is obtained by the usual se-
quence of tr1a1 displacements startmg from r, N tr) rather
than from 7, N(0). Because energy lS conserved dynamlcal-
ly, the probabilities of the states x, N(0) and Xp (tf) are the
same in the canonical ensemble, so that this change does
not appear to affect the validity of the Metropolis method
(although a detailed proof is not given here).

Our Green-Kubo calculations will concentrate on the
integral of the velocity autocorrelation function,

t
D(t;N)= fo ds pp(s;N)

=(u,;(0)AR (1)) ,
)
R,~(t)=r,-(t)—Vt )

in which AR;(#)=R;(¢)—R;(0) is the displacement of the

ith particle in the center-of-mass frame of reference.

C. Nonequilibrium molecular-dynamics method

For the NEMD calculation, a number of different
methods have been proposed. The synthetic method has
been described for self-diffusion by Evans et al.,'>!* and
applied to the Lennard-Jones potential. Here we imple-
ment the constant-diffusion-current variant (i.e., the so-
called “Gaussian algorithm”) of it. The particles, previ-
ously regarded as identical; are now assigned a color label
¢; which will have significance only for the NEMD calcu-
lations; for i even, ¢;=1 and for i odd, ¢;=—1. While
we could equally well consider cases of varying concentra-
tions of the two species, our interest centers on the self-
diffusion process, so that effects arising from the differ-
ences in the number of particles of each species will not be
important and a symmetric specification of the system
therefore seems rather natural. The equations of motion
are now written in the non-Newtonian form,!>1*

mx;=Fyg—Agc; ,
—Fyx—)‘smyi ’ (10)

m'z',- =Fz,-——-7\,smé,~ N
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in which the constraint of fixed (i.e., time-independent)
diffusion current,

N
ID= Ecivxi, (11
i=1
yields the driving force
N
2 CiFy
i=1

ha="T— (12)

The constraint of fixed transverse kinetic energy,
e 2, .2
E,=72m(vy,~+vz,~) ’ (13)
i=1

yields the “thermostat” parameter

N
—;_ 2 (vyiFyi+Uzini)
i=1

As= E, . (14)

It is possible to fix the total kinetic energy of the system
using a modification of these equations, but we have not
done so in this study.

The values of the diffusion current I, and the trans-
verse kinetic energy E,, for a trajectory are determined by
their initial values. To impose specified values of these

" parameters we have simply modified the initial’ velocities
v; produced by the Monte Carlo procedure (as described
above for the Green-Kubo calculation) by calculating new
velocities,

Vi =Vxi+8; ,
vy =alvy, —0,) , (15)

Vi =alv; —7;) ,

with
Si=(CiID-2Li)/N ,
N/2
Ly= 3 vy »
j=1
N/2 (16)
Lyiy1= 23 vxpj—1>
=1
2NkpT [ N -1
==L | 3 (v +u) =N (55 +5))

i=1

The total linear momentum is readily seen to vanish for
the primed velocities. Further, it should be noted the total
linear momentum remains a constant of the motion in the
presence of the external forces, although the total energy
now fluctuates in time.

It should also be observed that the equilibrium
molecular-dynamics calculation trajectory is not simply
the NEMD trajectory with the I set at zero. Indeed, in
ordinary molecular dynamics both the diffusion current
and the transverse kinetic energy fluctuate in time about
their equilibrium values. While the Green-Kubo calcula-
tion can be done using the constrained equations. of
motion, for the most part we chose the more conventional

method.

The principal aim in imposing the constraint of fixed
kinetic energy in the nonequilibrium calculation is to per-
mit the system to achieve a steady state at long times.
There is no proof that a steady flow will, in fact, be
achieved, but from the hydrodynamic point of view, one
would certainly expect that it would.

To calculate the self-diffusion constant using the
NEMD method, we follow Evans et al. 13,14 {6 obtain two
distinct values of D,

(N —1DkgTI}

= , 17
4 NZ(Pd >ne
N —1)kpTI3
Ds=__(_~.2__)__3___0_ , (18)
N*(P; ) ne

in which ( ),. denotes the long-time (assumed) steady-
state time average, and the power functions (viz., power
expended on the system by the external forces) are given
by

Pd =}"dID ’
P,=—2\,E, .

(19)

Values of D for several values of the diffusion current
I, were reported by Evans et al.'>!* for the LJ potential
(differing from ours in the absence of the cubic spline),
both for the “Gaussian” method, as described here, and
the “Hamiltonian” method. Only small differences be-
tween the two sets of results were visible. Because these
authors did not report the statistical precision of their re-
sults and because their calculations were not extensive,
only a rather superficial comparison with the Green-Kubo
results of Levesque and Verlet,?! was possible. Our prin-
ciple aim here is to extend these calculations in such a
way that questions of validity and merit can be unequivo-
cally decided.

III. NUMERICAL TECHNIQUES

In this section, we describe the calculations performed
both for the equilibrium and nonequilibrium methods. In
addition to defining the reduced variables which are used
to define the calculations and the results, we also describe
the statistical treatment of the data.

A. Reduced variables

The state of the system is described through the re-
duced density, temperature, and diffusion current density,

A=No/V,
T=kpT/e, (20)
Tp=a3m/e)\ Iy /V ,

which correspond to our choice of m, o, and ¢,
to=0Vm /e, 1

for our units of mass, length, and time, respectively. In
general, we denote reduced variables by the use of an
overhanging caret, but the reader is forewarned to distin-
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guish the symbol €, (a =x, y, or z) which we use for the
unit vector in the direction of the a axis.

B. Finite-difference method

A number of finite-difference methods for integrating
the equations of motion have been reviewed by Berne and
Harp.”? We have used the Verlet?® central-difference
technique, in which the (reduced) position of particle i,
determined at integral time steps, and the (reduced) veloci-
ty of particle i, determined at half time steps, are given by
the relations

R, 1=Ry,+hl;, 1,2, (22)
Uini12=8n_12+hGiy , (23)

where the total force is

Gin=Fp—c8(Ra)y— (8,8, + 05,8 R,),  (24)
(where A denotes the time step, €, is the unit vector along
the a axis, and the n subscripts on, for example, fl, 1,
and G specify the time-step index). This method was dis-
cussed by Berne and Harp,?? and was chosen here because
of its simplicity and the favorable experience reported by
Holian and Evans!® as well as others. )

In Eq. (24) the /I-\?i‘,, depends only on the positions ﬁnN ,
so that for our Green-Kubo calculations, in which the A’s
vanish, Eqgs. (22)—(24) provide an explicit determination
of the finite-difference trajectory. For the NEMD equa-
tions of motion, the “driving” term A4 is also dependent
only on the positions, as is seen from Eq. (12), but the
thermostat terms depend on u.Y; the latter quantity is only
computed at half time steps, as seen from Eq. (23). In or-
der to compute A consistently, we substitute Eq. (23) for
; , 1 1,2 into the central-difference approximation,

U, =12+ 0,_12)/2. (25)

Combining with Egs. (24) and (14), we can solve for the
finite-difference approximation for A;:

Re)n =8, /(1—hg, /2)
A,+hB, /2
&n= PN ~ ;
C,+hA,+h’B,/4

N P o~
A,= 2 (ﬁyi,n-—l/ZFyi,n +uzi,n—l/2in,n) » (26)

i=1

N 2 52
B,= E (Fyi,n+in,n) s

i=1

Y A2 2
Co=2 @ yin_1p+8zn_172) -

i=1

Il

Using this expression for /)\»s, the desired conservation of
the transverse Kkinetic energy is achieved to reasonably
high precision, viz., to about two parts in 10° in the
present calculations.

C. Calculation of Green-Kubo diffusion constant

We present our results for the diffusion constant in re-

duced units,
D=(m/e)"’D /o . @7

In the Green-Kubo calculations, we base our results on
the “time-dependent” diffusion constant, Eq. (9), which
yields the reduced quantity

DFEN)=(64,(0)AR (7)) . \ (28)

There is, of course, some difficulty in deciding how large
7 should be taken in order that D(7;N) has essentially at-
tained the limiting value,

D(N)= lim D(T;N) . , (29)
t— o0
In the present calculations, we evaluate D(7*;N) with 7*
chosen sufficiently large that the velocity autocorrelation
function is in reasonable agreement with the theoretical
long-time tail, Eq. (3), for ¢ ~7 *t,, at least for sufficiently
large values of N. We then combine the extrapolated,

ﬁ(?*):lvlim DGE%N),

with the theoretical long-time tail contribution to obtain
our final estimate for D.

The statistical treatment of the time-correlation func-
tion data has been discussed in some detail for the hard-
sphere and hard-disk calculations®’ and is not repeated
here. Since we are for the most part simply concerned
with the evaluation of ﬁ(?;N ), we can use standard sta-
tistical methods to treat the sequence of values of the
time-averaged quantity, with one value provided by each
of the trajectories. The only complication in the present
calculations occurs in certain instances in which the first
configuration selected by our Monte Carlo procedure has
not moved sufficiently far from the face-centered-cubic
lattice which is used as the initial configuration for each
realization. In such instances we have simply discarded
the observations for the first trajectory. In no instance
did the solidlike configuration persist beyond the first tra-
jectory.

D. NEMD calculations

1. Diffusion constant

In the NEMD calculations, one expects that, even
though the diffusion current is fixed at the outset, a non-
trivial transient should be presented as the system ap-
proaches a steady state. It is well known that the long-
wavelength components of the hydrodynamic variables
will decay quite slowly. Typically this slow decay makes
it necessary to wait some time before the observations will
characterize the steady state. In our program, therefore,
observations are not made for the first I' times steps of
the trajectory, although in some cases a value I'=0 is
used. At succeeding time steps, the quantities f’s and f’d
are computed as well as a number of other quantities, in-
cluding the kinetic and potential energies; other quantities
are computed at less frequent intervals, as described
below. All the observed quantities are then ‘“coarse
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grained” over 1000 time-step intervals, e.g.,

~ . 1000j N
Pyi=(15) 2 P,(ih) ,

i=1000(j —1)+1

and the coarse-grained observations PdJ saved for subse-
quent statistical analysis. At the time of data reduction, if
a transient is still seen, further observations can be omit-
ted; we report the total number of time steps © which are
ignored in averaging our values of the power functions
and thence the reported values of D.

Because our 1000-step coarse-graining interval is small
compared to macroscopic times, successive values of the
observations are correlated, reflecting the slow decay of
fluctuations in the system. In order to obtain quantities
which appear to be normally distributed (enabling the ap-
plication of the standard statistical estimates of precision),
these values are usually further coarse grained; therefore,
we report the overall number Q of coarse-graining time
steps used in computing the average values of P; and P,
and their associated statistical precision. We choose Q
sufficiently large that the individual values appear un-
correlated. The suitability of ( can be judged by applying
a number of the standard tests?* for a normal distribution.
Here we routinely compute the mean-square successive ra-
tio, the skew, the excess, as well as several of the “runs”
tests to ascertain that Q is sufficiently large.

In Fig. 1 we illustrate these points by presenting the
“control chart” for the coarse-grained average of the re-
duced P, for a NEMD calculatlon for 500 particles for
the state T=1.08, A=0. 85, J =0.03. The time step
h=0.002 is typical of those reported below. In this case,
I" is O so that the results for the entire trajectory are in-
cluded in the figure. The values in the figure represent
averages ﬁdj over successive 1000-step intervals, plotted
against the “index” j of the observation, simply labeled
“observation.” The presence of an initial transient is
strongly indicated. After roughly five time intervals, it

“would appear that a steady state has been achieved, so
that we take ©=5000. The similar plot for the tempera-
ture of the system (obtained from the total kinetic energy)
supports this conclusion. - The coarse-graining interval
0 =1000 used in this figure might appear to be sufficient
so that successive values of the dependent variable are un-
correlated. This conclusion is contradicted by application
of the statistical tests for the points having index greater

70 T [ E— LE— T

60

50 H
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o
I
|

0 10 20 30 40 50 60
observation

FIG. 1. Control chart for the reduced power function P; ob-
served in a NEMD calculation of the self-diffusion constant for
a system of N=500 particles at a reduced diffusion current
.7X=0.03, a reduced temperature ?:1.08, and a reduced num-
ber density 7=0.85, showing the decay of a transient as the sys-
tem approaches an apparent steady state of constant diffusion
current. The abscissa is the sequence number of the observa-
tions, each of which consists of a coarse-grained average over a
1000 time-step interval. The points are connected with a solid
line as a guide to the sequence of the observations. The solid
horizontal line marks the mean of the displayed data and the
dashed lines mark one standard deviation of the population
above and below the mean.

than 5 in the figure. We require a coarse-graining interval
Q) =5000 to suppress the serial correlation of these data.

2. Correlation functions

In addition to the statistical tests, we also make an at-
tempt to observe large hydrodynamic fluctuations by cal-
culating the structure factors, viz., the Fourier com-
ponents of the pair correlation functions, '

gap(s,8y)=ng'ng! <2 S>> 8(r,——s,)8(Lv+rJ—s2)> , : (30)

v iEC, ]ECB

in which the v sum denotes a sum over all triples of
signed integers, L denotes the length of the system which
is taken to be cubic, the subscripts a and 3 range over in-
dices, 0 and 1, of the two “species,” C, is the set of odd

particle indices, C, is the set of even particle indices, and
the prime on the j sum indicates that the term j =1 is to
be excluded for v=(0,0,0). Because the system is homo-
geneous, g,g is a function only of s=s;—s,. Therefore,
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writing the Fourier transform,
Sepk)=V1 [ , dsexp(2mik-s/L)gqp(0,8) 31)
(in which k is a three-vector of signed integers), we obtain

saﬂ(k)=N;‘N51< DN exp[277'ik-(r,-—-rj)/L]> .

ieC,jECy
(32)

While in general S,g is not isotropic in k, for the equi-
librium system, it is expected to be nearly isotropic except
for very small systems, i.e., values of N, and additionally
independent of the species labels. For the nonequilibrium
case, we expect a dependence on direction to be important,
even for large system sizes. For this reason we compute
the six quantities

S\Bk)=S5(ke,) , (33)

for a =x,y,z and a=0, $=0,1. Fluctuations in these
quantities, especially the long-wavelength components
(e.g., k=1), are expected to decay quite slowly, inasmuch
as these represent two-particle density fluctuations. When
coarse grained over a sufficiently large number ; of time
steps, these values should also be distributed approximate-
ly normally and the presence of transients should then be
indicated by a residual dependence on the time.

Of particular interest is a closely related quantity, the
color density,

Fy =ﬂ_2<nkn——k >ne s

ng=v-1 desexp(Zfrk-s/L)n(ys) , (34)

N
n(s)=3 3 ¢;8(Lv+r;—s) .

v i=1

For the (equilibrium) N-V-T ensemble, it is readily found
that, to order 1/N,

FEY=1/N,
but, in general, we obtain, using Egs. (32) and (33),

1(2
Fio=> —IV—I-SSX(k)—SE)"l’(k) : (35)
It is expected that the magnitude of these quantities
should not differ greatly from their equilibrium value, ex-
cept when the structure of the fluid changes dramatically
as, for example, at the onset of a secondary flow when the
homogeneous flow becomes unstable. In particular, we

compute the average of the transverse components,
F(kK)=(F +F;)/2, (36)
'y z

for the longest wavelengths which the system can contain,
viz., k=1.

A control chart for S§ (1) is given in Fig. 2 for a 500-
particle system at the same density, temperature, and
current density as in Fig. 1. In this case, however, the ob-
servations are not made at each time step but at every
twentieth step; the individual points in Fig. 2 represent
averages over 50 observations spaced at 20 time-step inter-
vals. This presents quite a different picture of the ap-
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FIG. 2. Control chart for the static structure factor S (k)
for k=1 for an NEMD calculation similar to that of Fig. 1,
showing the existence of large, slowly decaying fluctuations as
well as a strongly coherent time dependence. See Fig. 1 for de-
tails.

proach to the steady state from Fig. 1. One might, for ex-
ample, easily conclude that the first 70000 time steps for
this system represent the approach to steady conditions
and that the fluctuations themselves are much longer
lived; a choice of ;=20000 might seem reasonable.
However, when we analyze the Fig. 2 data in this way, we
are left with very few coarse-grained observations; as a re-
sult it is difficult to conclude with much confidence
whether the system has actually reached the steady state
with respect to S&(1).

The fact that the two-particle distributions exhibit
long-lived fluctuations, as seen here, does not require that
our calculation of averages for the power functions (and
hence for the diffusion constant) be delayed until such
long times. Indeed, we would naturally expect that
higher-order distribution functions will approach steady-
state values more slowly than low-order distributions.
Thus, we use the control charts and the associated statisti-
cal tests as previously described to judge when P, for ex-
ample, appears to have reached the steady state, to a large
measure independently of the behavior displayed in the
control charts for the S ﬁ,",;

IV. RESULTS

We have made rather extensive calculations for a single
state point, namely, the same state treated by Evans
et al.,’® T=1.08, 7=0.85, for systems of 108, 500, and
1372 particles. One calculation for N=864 has also been
made, for reasons which will become apparent. Our po-
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tential energy differs from that of Evans et al. for separa-
tions greater than the crossover r., Eq. (6), because of our
use of the cubic spline for r, <7 <r,,. A graphical com-
parison of the spline with the full LJ potential was given
by Holian and Evans.!®* Our value of the cutoff distance
is 7, ~1.740, compared with 2.50 used by Evans et al.
As we shall show, there appears to be no readily discerni-
ble effect of these differences.

A. Green-Kubo results

In Table I, we list the relevant parameters and results
for the four Green-Kubo calculations, including the time-
origin spacing o (in time steps) and the greatest number 6
of time steps for which the time-correlation functions are
computed. The values of the self-diffusion constant listed
in the table are the values of D(6h ;N), which do not in-
clude the contributions associated with the long-time tail
of the VACF. This can be seen from Fig. 3 which shows
the reduced autocorrelation function (VACF),

PoFN)=(m /&) u;(0)u(toF) )

as a function of time at relatively late times, i.e., beyond
the known, negative, minimum of the function,?! for
N=108, 500, and 1372. Thus, the values of D(6h;N)
given in the table include contributions only a little
beyond the point at which the VACF has become positive,
at which point the long-time tail might be expected to be-
gin.

We observe that the values of D (6% ;N), given in Table
I show the existence of an anomalous dependence on the
number of particles for N=108, in that the expected ap-
proach to the infinite-system limit as a function linear in
1/N is not evidenced at N=108. Instead, this contribu-
tion to the diffusion constant (as a function of N) has a
maximum between N=108 and 1372. Similarly the
compressibility factor,

Zy(n,T)=pV /NkyT ,

also tabulated in the table, exhibits a maximum. The
equations of state of the hard-disk?® and the hard-sphere?®
fluids are known to have similar anomalies in their N
dependence at high fluid densities. For transport proper-
ties, Hoover et al.?” presented Green-Kubo results for the
shear viscosity of the Lennard-Jones fluid at 7=0.8442
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FIG. 3. Reduced velocity autocorrelation function in the N-
V-T ensemble as a function of reduced time (units ¢,) for the
Lennard-Jones fluid at a reduced number density #=0.85 and a
reduced temperature 7'=1.08, for systems of 108 (circles), 500
(squares), and 1372 (triangles) particles. The dashed curve is the
theoretical prediction for the long-time tail for the velocity auto-
correlation function. The dotted curves join the points and are

~added as a guide to the eye.

and ?=0.7, based on calculations from a number of dif-
ferent sources, indicating a possible minimum in the
viscosity coefficient between N= 108 and N=500.

While the source of the upturn in the viscosity with de-
creasing N has not been discussed (indeed, it appears to be
viewed with suspicion by many workers), for the present
case of self-diffusion, it is clear that the anomaly arises at
early times for which we find the VACF for the three dif-
ferent system sizes can be brought into approximate coin-
cidence by applying an appropriate scaling of the time.

TABLE I. Parameters and results for the Green-Kubo calculations of the self-diffusion constant for the Lennard-Jones fluid in the

N-V-T ensemble at a reduced density 7#=0.85 and reduced temperature

T=1.08. N is the number of particles, P is the number of

trajectories, & is the integration time step, #; is the final time for each trajectory, w is the time steps per time origin, 6 is the max-
imum number of time steps for which time-correlation functions are computed, N, is the total number of time steps, v is the number
of degrees of freedom for the averages, pV/NkyT is the compressibility factor, D is the reduced self-diffusion constant, and vg is a
normalized statistical error estimate. The statistical uncertainties (given in parentheses relative to the last digit of the mean) are one

standard deviation.

N 4 h/to te/h [ 0 N, v pV/NkgT D(6h /t;N) 10%*,
108 22 0.0020 8000 2 826 176 000 21 4.155(105) 0.0438(18) 7.6
500 28 0.0020 8000 2 826 224000 27 4.579(058) 0.0524(07) 3.3
864 5 0.0020 8000 4 828 40000 3 4.320(043) 0.0512(11) 21
1372 27 0.0020 8000 4 828 216000 24 4.355(023) 0.0516(03) 1.7
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The time constant for N=>500 is the largest of the three.
Thus, we believe that the anomalous collision rate, which
reflects the anomalous equation of state, is also the cause
of the anomalous diffusion constant.

In order to demonstrate the long-time contributions to
the VACF, we also plot in Fig. 3 the long-time tail, Eq.
(3), in which the theoretical coefficient is given by®°

ap=(2/3nBm)[4m(D +n/nm)ty] 3%, (39)

in which 7 is the shear viscosity coefficient. The evalua-
tion shown in the figure is based on using the Levesque-
Verlet?! value D=0.054 and the Levesque et al.?® value
7)=4.0. Evidently, the theoretical long-time tail fits onto
the N=1372 VACEF rather well. Integration of theoreti-
cal tail from ¢/ty=0h=1.656 to infinite time yields the
tail contribution ﬁtail =0.0028.

For comparison with our values of 13, we recall the

value D=0.054+0.003 reported by Levesque and Verlet?!
for 864 particles, obtained by a Green-Kubo calculation in
the molecular-dynamics ensemble. Because of the rela-
tively large value of N, we expect any ensemble differ-
ences to lie well within the rather large statistical uncer-
tainty. On the face of it, that value would appear to be in
reasonable agreement with ours. Nonetheless, the details
of their calculation are not entirely clear, and, in Fig. 3,
the velocity autocorrelation function is distinctly negative
at the longest time for which those authors discuss that
function, viz., 7=0.55; see Fig. 3. On that basis, we
would agree with Evans et al.!® that the Levesque-Verlet
value is an overestimate of the long-time limit. However,
since Levesque and Verlet do not actually state what
values of the time were used in obtaining their reported
values of the diffusion constant, it is not possible to assess
whether the apparent agreement might be to some extent
fortuitous. :

To complete the Green-Kubo calculation of the self-
diffusion constant, we extrapolate our N=500, 874, and
1372 results for D(6h ,IN) using least squares (weighted by
the inverse of the variances of the three points, Table I) to
get an infinite-system estimate D(6k)=0.0511+0.0006.
We add to this the long-time tail contribution, obtaining
Dk =0.0539+0.0006.

B. Nonequilibrium molecular-dynamics results

The systems studied by NEMD are listed in Table II.
The tabulated values of the diffusion constant include
values both from the “driving” term, Eq. (17), labeled ﬁd,
and from the thermostat, Eq. (18), labeled ﬁs. We ob-
serve that the former provide a somewhat more precise es-
timate for D at small values of the diffusion current den-
sity.

i,t should be noted from Table II that rather large
values of © were used in the data analysis for the larger
values of .7,‘ in order to eliminate what appear to be long-
lived transients, as discussed in Sec. III. For the most
part, a coarse-graining interval Q of about 5000 to 15000
time step was used. For small ./I\x, somewhat larger values
of Q were needed to eliminate the strong serial correla-

tions. Indeed, it is by no means certain that a true steady
state, rather than an oscillatory motion, underlies the ob-
servations. There would appear to be no way to prove nu-
merically the existence of a low-level oscillation in the
presence of slowly damped, random fluctuations. We
have therefore been content to use these large coarse-

graining intervals in treating the small jx data.

1. Dependence of D on J,

The results for ﬁd are plotted as a function of .7,‘ in
Fig. 4, which also includes the Green-Kubo values at
.7X=O. For comparison, we have also included in Fig. 4
three of the “Gaussian algorithm” results of Evans et al.
(for N=108) read from the figure in Ref. 13, assuming
that the abscissa in that figure should contain the product
of the number of particles and the current density J, in
place of the current I. Because the Evans et al. calcula-
tions extended to only 15000 time steps, the uncertainties
in their results are presumably somewhat larger than ours,
but we have made no attempt to assign them values. The
apparent agreement with our results confirms that the ef-
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FIG. 4. Reduced diffusion constant D as a function of the re-
duced diffusion current density J, as determined by the synthet-
ic NEMD method (open symbols) for systems of 108 (circles),
500 (squares), and 1372 (triangles) Lennard-Jones particles, at a
reduced density 7=0.85 and a reduced temperature T=1.08.
The three points (inverted triangles) are taken from Ref. 13
(EH). Green-Kubo values (solid symbols), plotted at .7, =0,
were determined both in this study (for 108, 500, and 1372 parti-
cles) and earlier, by Levesque and Verlet (LV) for N=2864 (dia-
mond). The solid curves are the regression curves, Eq. (40), for
the 108- and 500-particles NEMD results. The dotted lines con-
nect successive points with increasing J. for each value of N
only as a guide to the eye.
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TABLE II. Parameters and results for the nonequilibrium molecular-dynamics calculation of the self-diffusion constant of the
Lennard-Jones fluid at a reduced density #=0.85 and reduced temperature 7=1.08. N is the number of particles, ?x is the reduced
diffusion-current density, & is the integration time step, and I', ©, and Q specify the coarse graining used to obtain the steady-state

diffusion constants, D;, Eq. (18), and Dj, Eq. (17). N, is the total number of time steps taken for the trajectory, v is the number of
degrees of freedom in the steady-state averages of the diffusion constants. The statistical uncertainties (given in parentheses relative

to the last digit of the mean) are one standard deviation.

N 7, h/to r <) Q N, v D, Dy

108 0.01 0.0020 6000 6000 17000 346000 19 0.0576(278) 0.0523(065)
0.02 0.0020 6000 6000 23000 466000 - 19 0.0475(043) 0.0479(018)
"0.03 0.0020 6000 6000 5000 56000 9 0.0481(111) 0.0478(056)
0.03 0.0020 6000 6000 10000 256 000 24 0.0453(036) 0.0448(022)
0.04 0.0020 6000 6000 5000 156000 29 0.0471(041) 0.0481(018)
0.05 0.0020 6000 6000 10000 156 000 14 0.0469(020) 0.0473(020)
0.06 0.0020 6000 6000 5000 206 000 39 0.0469(018) 0.0472(013)
0.07 0.0020 6000 6000 5000 236000 45 0.0493(014) 0.0493(010)
0.08 0.0020 6000 11000 5000 101000 17 0.0492(016) 0.0490(012)
0.09 0.0020 6000 16000 5000 156000 27 0.0489(014) 0.0490(012)
0.10 0.0020 0 10000 10000 170000 15 0.0528(016) 0.0529(014)
0.12 0.0020 6000 31000 10000 151000 11 0.0554(014) 0.0556(015)
0.14 0.0020 6000 6000 5000 86000 15 0.0529(015) 0.0530(015)
0.20 0.0020 6000 36000 5000 106000 13 0.0660(021) 0.0648(018)
0.30 0.0020 6000 26000 5000 56000 5 0.0739(033) 0.0742(034)

500 0.01 0.0020 0 5000 10000 125000 5 0.0470(200) 0.0496(035)
0.02 0.0020 2000 12000 20000 152000 6 0.0511(022) 0.0509(009)
0.03 0.0015 0 5000 - 5000 60000 10 0.0446(036) 0.0465(017)
0.03 0.0020 2000 7000 10000 167000 15 0.0495(016) 0.0494(011)
0.05 0.0015 6000 16 000 15000 106000 5 0.0551(018) 0.0545(015)
0.07 0.0015 6000 31000 5000 106000 24 0.0600(024) 0.0603(011)
0.08 0.0020 0 5000 10000 45000 3 0.0572(020) 0.0572(011)
0.09 0.0015 6000 33000 5000 86000 10 0.0580(008) 0.0580(010)
0.10 0.0015 6000 6000 15000 156000 9 0.0564(010) 0.0564(009)
0.10 0.0015 6000 6000 1000 16000 9 0.0557(038) 0.0567(020)
0.11 0.0015 6000 26000 5000 116000 17 0.0605(016) 0.0605(015)
0.12 0.0020 0 25000 10000 105 000 7 0.0690(020) 0.0691(021)
0.15 0.0015 6000 26000 5000 56000 9 0.0745(020) 0.0745(015)
0.20 0.0015 6000 31000 5000 56000 4 0.0840(022) 0.0837(022)

1372 0.02 0.0020 0 7000 10000 77000 6 0.0523(031) 0.0502(013)
0.03 0.0020 0 8000 8000 72 000 7 0.0544(030) 0.0544(014)
0.05 0.0020 0 6000 9000 51000 4 0.0525(019) 0.0523(009)
0.07 0.0020 0 15000 5000 65000 9 0.0596(010) 0.0594(006)

fects of both the flow transients and differences in in-
teraction potentials on the calculation of the diffusion
constant are small.

In considering the data in Fig. 4, one feature seems to
stand out particularly: With increasing jx, there are in-
tervals for which the dependence of f)d on ./I\x changes
rather abruptly. For N=500 especially, a rather sharp
dip is seen to the right of ?X =0.07. (Other instances of
similar “structure” can be seen in the figure, but for
N=108 these are of marginal statistical significance.)
One might suppose this behavior to reflect structural
changes in the fluid, induced by the driving force, remin-
iscent of the shear-induced ordering transition seen in the
dense hard-sphere fluid,?® as well as related phenomena
seen in the soft-sphere fluid.3® We have, therefore, com-
puted the (transverse) Fourier components of the color
density fluctuations, Eq. (36), in order to look for the on-

\

set of a secondary flow in the system. In Fig. 5, we plot
the F(1) for each of the system sizes as a function of the
diffusion current jx. For N=108, this function seems to
increase gradually and smoothly from the equilibrium
value, Eq. (35), within its large statistical uncertainties, at
least up to jx =0.14. While the pair correlation function
in the direction transverse to the diffusion current evi-
dently becomes increasingly unequal between the “like”
and “unlike” particles, no sharp change in structure can
be seen.

Unfortunately, the N=500 runs did not include the cal-
culation of the structure factor for every value of jx S0
that the interpretation of Fig. 5 is hampered somewhat by
the lack of detail. However, by virtue of the smaller error
bars for this case, we identify a rather sharp increase in
F(1) between J,=0.08 and 0.12. Indeed, at J,=0.08,
F(1) is double its equilibrium value. There would appear
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FIG. 5. Transverse, k=1, wave-number component of the
mean fluctuation F(1), Eq. (36), of the ‘“color” density as a func-
tion of the reduced diffusion current 7, for NEMD calculations
for 108 (circles), 500 (squares), and 1372 (triangles) Lennard-
Jones particles at a reduced number density 7=0.85 and a re-
duced temperature T=1.08. The equilibrium fluctuations are
equal to 1/N, and given by the horizontal broken lines. The er-
ror bars represent one standard deviation. The values of F(1)

have increased significantly at the largest values of the current
plotted, indicating the possible presence of a secondary flow.

to be some suggestion that the homogeneous steady flow
might have gone over into some sort of secondary flow in-
volving a nonuniform color density. A definitive resolu-
tion of this possibility must await a more detailed study of
the flow. For N=1372, similar observations apply, with
a marked increase in F(1) seen between jx =0.05 and 0.07.
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2. Extrapolation to .?x =0

A second observation suggested by Fig. 4, especially for
N=108, is that the slope of the D(J, ) function vanishes
as J, approaches zero. This behavior is consistent with
the expectation that the diffusion constant should be an
even function of the diffusion current; a change of sign of
J, must leave D unaffected. However, it contrasts with
the work of Evans et al.,'> who used a linear fit to extra-

polate to jx=0. In the absence of evidence, either

‘theoretical or numerical, to suggest some sort of singulari-

ty in this function, we see little justification for including
a linear term in the fit and we have not done so.

To obtain a zero-diffusion-current value for the dif-
fusion constant, we make a linear least-squares fit, weight-
ed by the reciprocal of the square of the standard devia-
tion s (fx,N ), as reported in Table II,

DT ;N)=Do(N)+D,(N)T? (40)

including the data up a number of different values of the

maximum J % guided somewhat by the results in Fig. 5.
In Table III we list the results of the fits, for the three sys-

tem sizes, for several different values of J ¥. The table in-
cludes approximate values for the goodness-of-fit parame-
ter X2 evaluated as

[Dy(J,,N)—D (T, N)T?
s:JT.,N)

XATEN= 3

J.<J¥

(41)

in which D is the least-squares fit, listed in Table III.
Except for N=500, J ¥=0.2, and N=1372, 7 *=0.07 the
values of X? are not exceptional. For N=108, the choice
of 7 3 does not greatly affect the values of D,. For all
three system sizes, we therefore use the second table entry
as the NEMD result of choice.

We observe that the N=108 and 500 NEMD values are
in reasonable statistical agreement, both between them-
selves and with the jx=0 extrapolation of the Evans
et al.,’® data given by Evans and Morriss,?! viz.,
D =0.045+0.0025. This result supports to a certain ex-
tent the contention that the NEMD method yields a

TABLE III. Results for the least-squares fit of the NEMD calculations of the self-diffusion constant

for the reduced temperature and density 7=1.08, 7=0.85 to the form, Eq. (40). N is the number of

particles, J ¥ is the largest value of the diffusion current density included in the fit, Dy and D, are the
regression coefficients, with one standard deviation uncertainties, v is the number of degrees of freedom,
X2 is the approximate goodness-of-fit parameter, Eq. (41), N, is the total number of time steps for the

. . . . . . . a
runs used in the regression analysis, and v, is a normalized standard deviation for D,.

N J: Do D, v x? N, 10%v,
108 0.30 0.0473(05) 0.36(03) 13 17.8 2704000 8.5
108 0.20 0.0466(06) 0.45(15) 12 11:6 2 648 000 9.4
108 0.12 0.0459(08) 0.60(12) 10- 72 2411000 12.8
500 0.20 0.0504(05) 0.91(05) 11 69.4 1336000 5.6
500 0.07 0.0484(07) 2.38(29) 4 9.8 716000 6.2
1372 0.07 0.0495(10) 1.94(25) 2 10.7 265000 5.0
1372 0.05 0.0517(13) 0.35(69) 1 4.6 200000 5.8
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smaller N dependence than the Green-Kubo method, a
matter to which we shall return below.

C. Relative efficiency of NEMD
and Green-Kubo calculations

One of our goals was to evaluate the relative efficiency
of the NEMD and the Green-Kubo calculations, both for
a given value of N and in the thermodynamic limit. To
set a numerical basis for comparison, we compute a “nor-
malized” variance of the distribution from which the two
methods obtain estimates of the diffusion constant, based
on a fixed number of time steps in the molecular dynam-
ics. In Tables I and III we give the number of time steps
N, which contribute to the final values of D, along with
the expected standard deviation v for a calculation of 10°
time steps. In both cases, we obtain vy by multiplying the
standard deviation by the square root of 10~°N,. We ob-
serve that the ratio of standard deviations for the NEMD
calculation to the Green-Kubo calculation varies from 1.1
to more than 2.0. In making this comparison, we are
aware, of course, that the precise values obtained for v,
for the NEMD calculations are somewhat dependent on
the extent of the calculations made at the various values
of J,, but effects of this kind are very small. In particu-
lar, the NEMD error estimates are not inflated by the in-
clusion of the small J, results, even though the latter tend
to require larger numbers of time steps to achieve a fixed
degree of precision.

The significance of the differences in v, between the
Green-Kubo and the NEMD methods is a little difficult
to assess. For the numbers of degrees of freedom v, for
Tables I and III, the standard F test?* for comparing vari-
ances finds the N=108 variance ratio of 1.3 (NEMD to
Green-Kubo, using the 7 ¥=0.3 value from Table III) to
be significant only at (roughly) the 70 percent level. The
N=500 ratio (using the J ¥*=0.07 value from Table III)
of 5.4 is significant at about the 99.5 percent level (even
though the NEMD result contains only 4 degrees of free-
dom). For N=1372, the ratio of 11.4 (based on
7 x=0.05) is significant well above the 99.5 percent level.
Moreover, were we to inflate the degrees of freedom for
the NEMD calculations to include those of the underlying
calculations from Table II, the level of significance for
these ratios would be even higher. If, on the other hand,
we use the larger values for 7 ¥ for N=500 and 1372, the
ratios remain large and quite significant. Clearly, our re-
sults show the Green-Kubo calculations to be advanta-
geous, particularly for the larger system sizes for which
the results for large J, cannot be used in the estimation of
D because of the presence of the changing functional
form of ﬁ(jx,N ). In this connection, we point out that, if
we limit the range of .7x in the least-squares fit for
N=108, as in the third line of Table III, the normalized
error increases dramatically. It appears, therefore, that
the NEMD calculation loses much of its power to evalu-
ate ﬁo as the range of the current is limited.

D. Comparison of Green-Kubo and NEMD
self-diffusion constants: N dependence

We noted above that the NEMD method seems to yield
values of the transport coefficient which, on the basis of
the 108- and 500-particle results, might be interpreted as
independent of N. The extent to which this is true can be
seen graphically in Fig. 6 in which all of the values for the
self-diffusion constant at jx =0 are plotted as a function
of 1/N, including the Evans-Morriss extrapolation.31 If
we were to ignore the N=1372 NEMD point, one would
conclude that the N=108 and 500 imply an infinite-
system result (D =0.0489+0.0009) which would be in
clear conflict with the Green-Kubo results. The latter are
shown by the dash-dot line in the figure, which is the
least-squares fit for D(oh ,N), discussed above. Inclusion
of the long-time tail contribution yields the point marked
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FIG. 6. Reduced diffusion constant D from Green-Kubo
(filled symbols) and from NEMD calculations (open symbols) as
a function of the reciprocal of the number of particles N. The
errors bars represent one standard deviation. The values at
N=108 have been displaced slightly either to the left or the
right in order to facilitate distinguishing the points. The circles
and triangles are results from the present study, the squares are
earlier results, including the Green-Kubo result of Levesque and
Verlet for the molecular-dynamics ( N- V- E- P) ensemble and the
NEMD result (EH) of Evans et al. The Green-Kubo results are
the values of D(6/;N) and do not include the long-time tail (for
times beyond 6h). The dash-dotted line shows the least-squares
fit for the N-V-T ensemble data for N >500. The diamond
symbol at 1/N=0 marks the complete N-¥V-T ensemble resuit,
including the theoretical long-time tail. The dashed line is the
least-squares fit of the three NEMD data points (open circles)
determined in the present work. The dotted line is the least-
squares fit to the N-V-T-J ensemble Green-Kubo results (solid
triangles).
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by a diamond in the figure. While it is possible that
N=3500 is not sufficiently large for the (Green-Kubo)
1/ N extrapolation to be valid, this seems unlikely in view
of hard-sphere equation of state study?® in which N=500
clearly was in the 1/N regime. Moreover, the N=_864 re-
sult, while not nearly as precise as the other values, is also
consistent with this view.

A more likely explanation of the discrepancy between
the Green-Kubo and NEMD results is provided by the
N=1372 NEMD point which suggests, despite its large
error bar, that the N dependence of the NEMD calcula-
tion becomes stronger at large N, and is in the opposite
direction to that of the Green-Kubo results. A least
squares fit of all three NEMD values yields
D =0.0498+0.0008, shown by the dashed line in Fig. 6.
This result continues to disagree with the Green-Kubo
value. On the other hand, extrapolation of the values for
the two larger systems yields D =0.0536+0.0021 which is
in agreement with the Green-Kubo value. It seems likely,
then, that the 108-particle NEMD system is also
anomalous with respect to N dependence, but the effect is
smaller than for the N-V-T ensemble Green-Kubo calcu-
lation.

~ E.. Green-Kubo results for N-V-T-J ensemble

To shed further light on this subject, we have also per-
formed an additional set of Green-Kubo calculations, but
using an ensemble more closely tied to the NEMD calcu-
lations. We define the N-V-T-J ensemble to have fixed
values of both the diffusion current J, =0 and the trans-
verse kinetic energy E,, just as in the NEMD calculations.
The y and z components of diffusion current as well as
the x component of kinetic energy fluctuate as in the
canonical ensemble.

Dynamically, we use the NEMD equations of motion
so that J, and E, remain fixed. Because of the A; term in
the equations of motion, the Liouville theorem does not
hold for the system. Nonetheless, the calculations were
done using the NEMD equations of motion in the expec-
tation that the NEMD calculations might approach them
in the limit of vanishing diffusion current. We have not
proved this and present the results as an interesting
sidelight.

Calculations in this ensemble are entirely analogous to
those in the canonical ensemble. Now, however, in order
to set the initial value of the diffusion current to zero, we
subject the x components of the Monte Carlo velocities
produced by the Box-Muller method to a rotation about
the origin onto the J, =0 hyperplane, viz.,

, Li+L, L,—L,
Ux,2i +1 =——‘7-2—va,21'+1— va,zuz ’

. Li—L, L,+L,
vx,2i='—‘/_§Z'_vx,2i—l+_'_‘/Tvx,2i ) (42)

L2=L3+L%,

in which the L; are given in Eq. (16). The y and z com-
ponents of velocity are projected onto the surface of fixed
transverse energy.

The results of these calculations are shown in Table IV
and Fig. 6. We note that the N dependence of the dif-
fusion constant is opposite in sign to that in the N-V-T
ensemble. While the compressibility factor does not ap-
pear to be monotonic in N, the 108-particle value does not
lie nearly so far from the line formed by the 500- and
1372-particle values as was the case for the canonical en-
semble. Similarly, the 108-particle diffusion constant is
not nearly so far out of line with the larger system results.
Moreover, the values of the D(6h,N) are quite consistent
with the (J, =0) extrapolated NEMD results. Because of
the relatively high precision of the values of D(6h,N) for
this ensemble, especially for N=1372, the value of D ob-
tained by extrapolating the values for all three systems to
the thermodynamic limit, viz., D(oh )=0.0513+0.0004
(shown by the dotted line in Fig. 6), now agrees with the
N-V-T ensemble Green-Kubo value. The extrapolation of
the N=500 and 1372 results, D(6h)=0.0526+0.0008,
while somewhat larger than the N-V-T ensemble result,
nevertheless remains in statistical agreement.

We conclude, therefore, that the N dependence of the
NEMD calculation is no less than that of the Green-Kubo
method. Moreover, it appears that N=108 is too small a
value, at least at the present high density, to permit a 1/N
extrapolation, just as it is with the Green-Kubo method
(at least in the N-V-T ensemble). Perhaps most interest-
ing is the difficulty one encounters in finding the correct
N dependence of the NEMD results. This arises because
the dependence of D on the diffusion current becomes in-
creasingly complicated as J, increases, perhaps because
the homogeneous flow becomes unstable, and the value of
J. at which this complication arises decreases with in-
creasing N. Thus, the range of useful values of the dif-
fusion current for the NEMD calculations becomes limit-
ed to such small values that the statistical uncertainties
far exceed those for the Green-Kubo method.

V. DISCUSSION

We would like to stress the following points in connec-
tion with the calculations reported here.

TABLE IV. Parameters and results for the Green-Kubo calculations of the self-diffusion constant
for the Lennard-Jones fluid in the N-V-T-J ensemble at a reduced density 7#=0.85 and reduced tem-

perature 7'=1.08. See Table I for symbols.

N P h/to te/h @ 6 N, pV/NksT — D(6h/te;N)  10%,

108 26 00020 8000 2 826 208000  4.308(13) 0.0457(06) 2.7

500 10 0.0020 8000 2 826 80000  4.393(17) 0.0495(04) 1.1
1372 6 00020 8000 4 828 48000  4.366(20) 0.0515(05) 1.1




(i) As discussed in part in the introduction, the goal of
NEMD is the study of nonequilibrium processes, both in
the so-called linear limit, in which the hydrodynamic
currents are linear in the gradients, as well as far from
equilibrium. While our critique has been limited to the
use of NEMD in the first of these areas, viz., the evalua-
tion of the Fick’s law self-diffusion constant, it is
worthwhile to realize that self-diffusion provides a partic-
ularly important test for the “far from equilibrium” appli-
cations as well. In particular, because the self-diffusion
current is linear in the concentration gradient irrespective
of the magnitude of the gradient, a NEMD method gen-
erally suitable for self-diffusion should retain this proper-
ty.
In the present synthetic NEMD algorithm, there.is no
concentration gradient. Nonetheless, in order to correctly
account for self-diffusion, the diffusion constant should
be independent of the diffusion current. Evidently, the
present NEMD method does not meet this criterion.

(ii) Within the context set out in the introduction, viz.,
the comparison of the Green-Kubo method with synthetic
NEMD method in the evaluation of linear transport coef-
ficients, our calculations have demonstrated rather unam-
biguously the superiority of Green-Kubo, at least within
the limitations of the present NEMD calculations, viz.,
the use of the Gaussian algorithm (rather than, say, con-
stant driving force) with the thermostat applied to only
the transverse velocity components (rather than all three
components of velocity). It seems unlikely that simple
variations of the method would materially affect the re-
sults. The reasons for the superiority of the Green-Kubo
method are of considerable interest in assessing future
developments in this field.

(iii) The present NEMD method fails to effectively pro-
vide the correct dependence of the diffusion constant on
the size of the system. Indeed, at first sight, we seemed to
find a transport coefficient which is independent of N,
just as reported in the literature. Only when we extended
our calculations to sufficiently high accuracy were we able
to see that the assumption of N independence yielded re-
sults in conflict with the Green-Kubo results. It was then
necessary to extend the NEMD calculations to N=1372
in order to resolve the disagreement and find the correct
dependence on N. i

(iv) Because the statistical uncertainties are typically
large in the numerical calculation of transport coefficients
and because the N dependence of transport coefficients is
not particularly large, the conclusion reached in previous
studies, viz., that NEMD calculations have small N
dependence but agree with Green-Kubo calculations, is
understandable. The present choice of self-diffusion,
rather than shear viscosity or thermal conductivity, as a
test case, permits the precision of the calculations to be
improved considerably.

(v) The difficulty in obtaining the correct N dependence
for NEMD calculations is largely psychological rather
than real. For example, one does not do NEMD calcula-
tions at values of the current sensibly smaller than those
used here because the signal-to-noise ratio becomes too
small. Indeed, for N=108, the variance of the diffusion
constant for the Green-Kubo method is smaller than for
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the NEMD method for J, below about 0.05. If the prac-
titioner is forced (by other circumstances) to do calcula-
tions at much smaller values of the current, the realization
that the Green-Kubo method is more “efficient” would
normally dissuade the investigation of these small
currents.

(vi) In the present calculations, the circumstance which
forces the investigation of small currents is the apparent
presence of hydrodynamic instabilities in the homogene-
ous fixed-current diffusive flow. In our calculations, we
have certainly not established the existence of secondary
flows, even though our calculations of the color density
fluctuations strongly suggest it. Moreover, to simply pre-
tend that the flow remains homogeneous leads to even
more serious disagreement with the Green-Kubo results.
Because the supposed instability arises at smaller values of
.7x as N increases, for N as small as 1372 the largest
“stable” value of the reduced current is at most only 0.05.
Calculations for smaller values of the current for this sys-
tem size are found to be much more expensive in comput-
er time than the Green-Kubo calculations.

While one would certainly expect the detailed behavior
we have reported here to be peculiar to the self-diffusion
problem, there is every reason to believe the conclusions to
have general applicability for any transport property. The
fact that shear viscosity has apparently been treated suc-
cessfully through NEMD probably reflects the lack of a
truly critical comparison between Green-Kubo and
NEMD, arising at least in part from the generally larger
statistical uncertainties for viscosity compared to self-
diffusion for equal amounts of computing effort. More-
over, at least in one case,”’ there exist evidence for

- disagreement between Green-Kubo and NEMD which has

not, to our knowledge, been satisfactorily explained. We
note, however, that the present NEMD method for self-
diffusion seems not to truly reflect the self-diffusion pro-
cess. In particular, the Green-Kubo calculation takes ad-
vantage of the fact that a single-phase-space trajectory
provides N distinct (but not necessarily independent) mea-
sures of the self-diffusion time-correlation functions. It is
by no means evident that the current NEMD algorithm
similarly reflects the nature of self-diffusion. As a result,
we believe it to be entirely possible that the large statisti-
cal advantage we see here for the Green-Kubo method
might well be special to self-diffusion.

(viii) The reader should notice the highly significant im-
provement in the precision of the values of the self-
diffusion constant for the N-V-T-J ensemble, using the
NEMD equations of motion, over the N- V-T ensemble, as
shown by a comparison of the values of v, in Tables I and
IV. The N-V-T ensemble appears to be a particularly
poor choice with respect to these calculations; the so-
called molecular-dynamics ensemble (the microcanonical
ensemble, but with fixed total momentum) is typically a
better choice because of the absence of fluctuations in the
center of mass velocity. Nonetheless, we believe it unlike-
ly the molecular-dynamics ensemble would yield such a
large statistical improvement. Rather, the non-
Hamiltonian terms in the equations of motion (leading to
conservation of transverse kinetic energy and diffusion
current) would appear more likely to be the source of the
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improvement. In addition to an understanding of why
this is so, a justification for this variant of the Green-
Kubo method would most certainly be of value.
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