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We apply our quantum theory of multiwave mixing to the generation of squeezed states of light
via three- and four-wave mixing in cavities and in propagation. We compare the cavity predictions
to the experimental results of Slusher et al. [Phys. Rev. Lett. 55, 2409 {1985)],finding reasonably
good agreement. The squeezing found there is due to the fact that the number operators are driven
by resonance fluorescence, which nearly vanishes for the large detunings chosen, while the combina-
tion tone operators are driven by relatively large source terms. We give a physical discussion as to
why the spectral quantities outside the cavity are given by those inside multiplied by the cavity
linewidth. We have found analytic formulas for the variances for arbitrary propagation distances,
detunings, and pump intensities. We derive these formulas both from the density operator and from
the Langevin methods. To obtain significant squeezing, the propagation distances must be large
compared with the resonant Beer's law length.

I. INTRODUCTION

Since the early days of quantum mechanics, the quanti-
zation of the electromagnetic field has been a subject of
interest among both theorists and experimentalists. Al-
though it is well known that such a description is neces-
sary to account completely for such phenomena as spon-
taneous emission and the Lamb shift, only comparatively
recently has attention focused on the purely quantum
properties of the radiation, independent of a medium.
This was first realized with the prediction of photon anti-
bunching in resonance fluorescence by Carmichael and
Walls, ' Cohen- Tannoudji, and Kimble and Mandel and
its subsequent verification in the experiments of Mandel
et al.

More recently another purely quantum property of light
has received a large amount of interest —that of squeezed
states of light. A squeezed state of the electromagnetic
field occurs when the quantum fluctuations in some quad-
rature phase of the electric field are reduced below the
average minimum variance permitted by the uncertainty
principle. Reduction of the noise in one quadrature must
be simultaneously accompanied by an increase of noise in
the orthogonal quadrature since the product of canonical-
ly conjugate variances must satisfy the uncertainty
minimum. Due to the dependence of squeezing on the
phase of the electric field, squeezed states have been
predicted to occur in phase-sensitive processes, such as
parametric amplification, second-harmonic generation,
and four-wave mixing. ' The first successful genera-
tion of squeezed states has been reported by Slusher
et al." using nondegenerate four-wave mixing. Recently
three other groups have also succeeded in producing
squeezed states. The work of Shelby et al. ' using three-
wave mixing in an optical fiber, Maeda et al. ' by means
of nondegenerate forward four-wave mixing with a sodi-
um vapor cell, and Kimble et al. ' employing parametric
amplification in a nonlinear, nonresonant crystal, who
have reported observing squeezing up to 60%. The signi-

ficant work of these four experimental groups has con-
vincingly demonstrated the reality of squeezing.

This eighth paper in our series on the quantum theory
of multiwave mixing applies the theory to the generation
of squeezed states by four-wave mixing inside and outside
of cavities. Preliminary results were presented in two
letters. ' ' Our theory considers the interaction between
one or two strong classical waves and one or two weak
quantum waves in two-level media. In the first three pa-
pers' ' we presented two separate derivations of the
theory including averages over inhomogeneous broaden-
ing, spatial hole burning, and Gaussian beams. We then
applied our theory in the next three papers to the problem
of resonance fluorescence in a cavity, the two-photon
two-level model, ' and the effects of quantum noise on
modulation spectroscopy. Some of the main results
from this work showed how coupling between the vacuum
modes alters the spontaneous emission spectrum from a
two-level system in a cavity, derived the first analytic ex-
pression for the resonance fluorescence spectrum from a
two-photon two-level media interacting with a strong
pump, including the effects of the dynamic Stark shifts,
and finally presented a quantum limit to frequency-
modulated spectroscopy. The seventh paper in the series
demonstrated how the theory could be converted into the
equivalent quantum Langevin picture. This is useful in
that it connects our results to other methods.

Squeezing is a quantum property of the radiation and a
proper theoretical description must include quantization
of the fields being squeezed. The theory we have
developed is thus appropriate to study squeezed states
generated by three- and four-wave mixing. Because our
theory provides a uniform description of resonance
fluorescence, saturation spectroscopy, and the semiclassi-
cal and quantum theory of three- and four-wave mixing,
it is clear that the squeezing we consider has an intricate
dependence upon all of these seemingly disparate phenom-
ena. In this paper we show how these features of quan-
tum multiwave mixing affect squeezing.
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Reid and Walls have recently generalized their quan-
tum theory of degenerate four-wave mixing to include
nondegeneracy. ' Although their approach is quite dif-
ferent from ours, they have shown that their final expres-
sions are in complete agreement with ours, and with the
conclusions of paper VII in our series. Some of the re-
sults of this paper have also been presented in their work,
but such redundancy serves to reenforce the foundations
of the theory.

Section II summarizes the basic multiwave mixing
equations. Section III applies the theory to squeezing in-
side and outside of cavities and includes a derivation of
the spectral formulas commonly used. Section IV special-
izes to the fourth-order approximation, which agrees well
with the experiments of Slusher et aI." Section V treats
squeezed states generated in propagation.
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FIG. 1. Spectrum of the modes used in this paper relative to
the atomic resonance.

II. SUMMARY OF BASIC EQUATIONS

This section summarizes the theory developed in Refs.
17 and 18 that forms the basis for this paper. We consid-
er three modes of the electromagnetic field with frequen-
cies vi, v2, and v3 that are arbitrarily detuned (consistent
with the rotating-wave approximation) from the atomic
resonance cu. v& and v3 are placed symmetrically on oppo-
site sides of v2, that is, v3 ——v2+ ( v2 —vi ) as depicted in
Fig. 1. In radians per second our Hamiltonian in the
frame rotating at v2 is

A =(co v2)cr, ——b(a iai —aia3)

+[7 iU2cr +go (ai Ui+aiU3)+H. c.] .

In this expression aj is the annihilation operator for the
jth field mode, U~. =UJ(r) is the corresponding spatial
mode factor, 5=vz —vi, g is the atom-field coupling con-
stant, and W2 ———P 8'2/2A, where P is atomic dipole
matrix element and 8'z is the amplitude of mode 2. The
rotating-wave approximation has been made and this
Hamiltonian is in an interaction picture rotating at the
strong-field frequency vz. The atomic spin-flip and
probability-difference matrices o and cr, are given by

1 0 t 0 1

0 —1 ' 0 02
(2)

We treat mode 2 classically and allow it to be arbitrari-
ly intense. Modes 1 and 3 are quantum fields treated only
to second order in amplitude, and cannot by themselves
saturate the atomic response. This is an important as-
sumption and limits the applicability of the theory. We
define an atom-field density operator p, ~ and obtain its
time dependence from the standard density operator equa-

tion of motion. In this work we consider the simple decay
scheme where the upper level 2 decays to the lower level
1. This gives a term

p» pz&

dt Pi2 pi&

—I p» —Xp2~ —:I (p) .P (3)

The equation of motion for the atom-field density opera-
tor is then

p, /= i [A—,p, I]+I (p, I) .

The upper-to-lower-level decay is described by the decay
constant I ( =1/Ti ), and the dipole decay described by
y (=1/T2). For pure spontaneous decay, @=I /2. We
calculate the reduced electric field density operator p
describing the time dependence of the two quantized
fields by taking the trace of p, I over the atomic states.
We assume all field amplitudes to vary little during atom-
ic decay times. This allows us to solve the atomic equa-
tions of motion in steady state and then to obtain the
slowly varying field density operator equation of motion

p = —A i(pa ia, —a i pa, ) —B,(a ia ip —a i pa i )

+Ci(a ia ip —a 3pa i )+D i(pa 3a i
—a i pa i)

+ [(1~3)+(adjoint)],
where 1~3 represents the same previous terms with 1 in-
terchanged with 3, and the coefficients A &, B&, C&, and
D& are given by

Ng N)
1+I,W, 2

I2W2
I2 M &i —&f(1+1 /ih)/2

2 2

1+I2W (&i+&3)2
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Ng &1 I2W~ I w[(1+I2W2/2)&]+&2(1 —r/ 6)/2]'2
1+I,~ ~ (W, +&3)

(7)

Ci ———

Di ———

2T, P ~W &3*—&,(1 +1 /ib, )/2
2Ng W(

U& U3
1+I2W2

1+I,a —(W, +&3 )

1+I,W—(&&+ W3 )

Ng N, „,2T, W3W [(1+I2W2/2)&3 +&P(1—I /ih)/2]
1+I~, ' '

where following the notation of Ref. 17, the complex
Lorentzian denominators &„are given by

1

@+i(co v„) '—

the dimensionless Lorentzian Wz is

of motion is given by

dt dt
(a&) = g ~

——(a~p) =g( n~ a~p
~

n )

=(2, B,—v/2Q —id, Q—) 8',

y'

y +(co—v2)
+ ( C, D) ) 8'3, — (10)

the dimensionless intensity I2 is

I2 4l ~21 TIT2

the dimensionless "population pulsation" term u is

r
I +iA

and % is the total number of interacting atoms.
The above equations apply both to propagation prob-

lems and to situations where the medium is placed inside
an optical cavity. In the latter case it is necessary to in-
clude a term accounting for cavity losses. Following the
analogy from laser theory we designate this as v/Q. As
pointed out by Reid and Walls, the amount of squeezing
is highly dependent on the detuning of the field modes
from the cavity modes. This is especially important when
the pump field v2 is highly detuned from the atomic reso-
nance co since then dispersion dominates absorption. We
define AD=02 —v2 to represent this detuning, where A2
is the passive-cavity mode frequency near vz. To include
these new terms in our theory we replace the B& coeffi-
cient in Eq. (5) by B, +v/2Q +id, Q As we sh. ow in Sec.
III, this recovers the correct semiclassical equations of
motion for the field amplitudes.

where 8'3 ——(a 3 ). Equation (10) is the semiclassical
coupled-mode equation of motion for the field amplitude
8'~ and is valid inside a laser cavity. We thus see that the
quantity B& —3

&
is the semiclassical complex absorption

coefficient of a weak probe wave in the presence of a
strong field, and that the C~ —D& term multiplying 8'3 is
the mode-coupling coefficient of phase conjugation and
modulation spectroscopy. Each of these coefficients can
be derived purely semiclassica11y.

Of interest for the calculation of squeezing are the
equations of motion for the number operator a &a &

and the
combination tone operator a]a3. These can be obtained in
the same manner as Eq. (10):

dt
&alai&=(al 1p&=P&n Ia~aipIn

=(3)+A ) B) B) —v/Q—)(a (—a) )

+(C, —D, )&..., &

+(C) D( )(a3a) )+A—)+A )

III. SQUEEZING INSIDE AND OUTSIDE
OF OPTICAL CAVITIES

d
dt

(a,a, ) =(a,a,p)

The equation of motion (5) for the field operator p and
the expressions for the coefficients 3

&
and D

&
are the

fundamental equations of our theory. We may use Eq. (5)
to obtain the equation of motion for any operator of the
quantized fields 1 and 3. This was also done in Ref. 17.
For example, the expectation value of the annihilation
operator (a& ) corresponds to the classical Fourier ampli-
tude for the electric field of mode 1, 8'&, and its equation

=g(n
~

a3,apron)

=(A )+33 B) B3 —v/Q ——2ib Q)—(a3a, )

+ (C~ D~ ) (a 3a3)—
+(C3 D3)(a ~a~ )+C~ +C3 (12)
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d] ———,(d +d ) and dx ———(d —d ) .
2

(14)

The variance of an operator is defined to be the expecta-
tion value of its square minus the square of its expectation
value, so the variance b,d

&
is

The equations of motion for (aia3) and (a]ai) are
given by interchanging the subscripts 1 and 3 in Eq. (11)
and taking the complex conjugate of Eq. (12). In free
space, no build up of photon number occurs, and
d(n] ) Idt =A]+A]. Thus we interpret A]+A] as the
spectrum of resonance fluorescence and the expression in
Eq. (5) plus its complex conjugate is identical to the ex-
pression first derived by Mollow. Similarly the inhomo-
geneous term of Eq. (12), C]+C3, is the source contribu-
tion for the quantum combination tone (a3a, ). As we
show, this quantity is responsible for squeezing.

The squeezed light results from a linear combination of
the sideband amplitudes a& and a3. Figure 2 depicts a
simplified diagram of the experimental configuration of
Slusher et al." The pump laser at frequency v2 is reflect-
ed off a mirror to form a standing wave through which
the atomic beam is passed. The vacuum cavity is servo-
locked to the sidemode frequencies v& and v3 and encloses
the interaction region. Quantum noise builds up in the
cavity that, due to the four-wave mixing process, develops
correlations between the sidemodes. To detect the squeez-
ing a homodyne detection scheme" may be used
wherein the sidemode fields exiting the cavity are mixed
with a local oscillator whose phase is at an angle 0 with
respect to the pump field v2. This homodyne detection
permits the direct measurement of the variance for any
relative phase shift 0. We average the quantum coeffi-
cients A~ to D3 over the spatial hole burning caused by
the pump field since this is believed to more closely corre-
spond to this experiment. Analytic expressions for these
averages are given in Ref. 19. The total amplitude d of
the squeezed field is thus given by

d =2 ' (aie' +a3e '
) (13)

From this operator we define two Hermitian operators d]
and d2 as

Ad] =(di) —(di)'. (15)

Classically, the correlations between the amplitudes fac-
tor and (a ]a ] ) = (a ] ) (a ] ) =

~

(a ] )
~

and so on. Sub-
stituting into Eq. (17), we find in this limit

and there is no squeezing when this factorization is valid.
From Eq. (17), squeezing occurs if 2

~
(a ]a 3 )

& (a]a] )+(a3a3). Physically, this means that the side-
band fields are more correlated with each other than with
themselves, and thus we seek a range of parameters to
enhance this coupling.

To calculate the variance we may use the quantum cou-
pled mode equations (ll) and (12) to solve for (a]a]),
etc. , and substitute this into Eq. (17). For the medium in-
side a cavity a steady state occurs and one sets the time
derivatives in Eqs. (11) and (12) equal to zero. The result-
ing equations may then be solved algebraically. We em-
ployed this procedure in our recent work on this subject. '

The steady-state solutions of Eqs. (11) and (12) are, from
Eqs. (9) and (10) of Ref. 15,

(a]a] )D=A][a3
~

a]+a3
~

—(a]+a3)X]X3+c.c.]2

+A3(ai+a3+c. c. )
~
Xi

~

+X] (C] +C3)[(a3+a3 )(a] +a3 ) X]X3

Substituting Eqs. (13) and (14) into Eq. (15) and noting
that (a] ) = (a3 ) = (a ]a3 ) =0 since we consider the side-
bands to arise from the vacuum, we have

bd] ———,+ —,[(a]a] )+(a3a3)+((a]a3)e ' +c.c.)],
(16)

where we have made use of the commutation relations
[a i,a ] ]= [a 3,a & ]= 1. Squeezing occurs whenever hd ]
drops below —,

' . The expectation values (a ]a ] ) and
(a&a3) are in fact the average number of photons in
modes 1 and 3, respectively, and consequently are never
negative. Thus for squeezing, the quantity in parentheses
in Eq. (16) must be negative. Maximum squeezing occurs
when (a]a3)e ' = —

~
(a]a3) ~, that is

bd] = —,+ —,'((a]a])+(a3a3) —2
~
(a]ai)

~

) . (17)

V2laser
local oscillator o.

phase
shift

+X]X3 ]+C.C.

( a,a, )D= —X,[X', X,—X,X,"

—(a3+a3 )(a] +a3 )](A ]+A ] )

+(a]+a] )[a] (a3+a3 )(C]+C3)

(19)

pUmp
beam atomic

beam 2
7

I/ +(1++3),

—X3(Xi Ci+Xi C3+c.c.)]

(20)

vc cLIUIYl cQvlty (signal/«I] jLI g«s )
V V~

balanced
detector

where the denominator D is

D =(a]+a] )(a3+a3)
~
a]+a3

~
'+(X]X3—X]X3 )

—[(a]+a] )X]X3(a]+a3)+(1~3)+c.c.], (21)

FICx. 2. Diagram for the experiment of Ref. 11. where the absorption coefficients (n = 1 or 3)
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a„=B„—A„+v/2Q +i 30, (22) W(5)= f e ' '(a(t)a(0))dt, (27)

the coupling coefficients

(23)

aXa —=aa, (24)

where )& denotes the direct product. Using formulas like
Eq. (10), we find the equation of motion for (a(t)) is
given by

+~=Cn —D~ ~

and where (a3a3 ) is given by Eq. (19) with 1 inter-
changed with 3.

It is well known from laser and optical bistability insta-
bility theories that due to sidemode gain the steady-state
solutions of Eqs. (19)—(21) may not be stable. The sta-
bility of these solutions may be found by calculating the
eigenvalues of the semiclassical drift matrix A [defined by
Eq. (26) below]; the solution is stable if the real parts of
each eigenvalue are positive. Another method to check
the stability (used by Reid and Walls ) is the Hurwitz
criteria, which is discussed by Haken. In the figures we
present, the solutions have been shown to be stable.

As noted in a series of papers by Collett and Walls '

and Reid and Walls, ' ' a detector outside the cavity sees
a non-5-function spectrum around the cavity mode fre-
quencies due to the time-varying fluctuations of the
modes about their steady-state values. Steady-state values
like Eqs. (19) and (20) are the inverse Fourier transforms
of the corresponding spectral quantities for the time t =0;
that is, they are integrals over the spectra quantities. In
contrast, a narrow-band detector might measure peak
values larger than these average values. Furthermore, as
noted by Collett and Gardiner, in passing from inside a
cavity to outside, a spectral quantity must be multiplied
by the cavity linewidth. References 10, 25, and 31 use
these facts, but give no derivation of the spectral formulas
they use and Ref. 32 gives a very complicated derivation
about the cavity-linewidth factor. To clarify these impor-
tant results and to define our notation, we give such a
derivation. The spectral formulas result from a generali-
zation of the classical derivation given by Lax, and the
cavity linewidth factor follows heuristically from reser-
voir theory considerations.

Specifically, we define a vector a =(ai, a&,a3,a3) and
from this we obtain the matrix

where a(0) means that a is evaluated at a time sufficient
for steady state to occur. %'e determine the equation of
motion for (a(t)a(0)) with the help of the quantum re-
gression theorem. According to this theorem, a two-time
average like (a i(t)ai(0)) obeys the same equation of
motion as the single time average like (a i ). For the gen-
eral two-time average matrix, the quantum regression
theorem is

—(a(t)a(0)) = —A(a(t)a(0)) .
d
dt

The formal solution to Eq. (28), for t & 0, is

(a(t)a(0) ) =e '(a(0)a(0) ),
where e ' is defined from its power series. Similarly

(2&)

(a(0)a(t)) =(a(0)a(0))e (30)

Breaking Eq. (27) into two time domains 0~ no and
—oo ~0, and using stationarity in the latter, we find

W(5)= f e ' '(a(t)a(0))dt
0

+ f e ' '(a(0)a( —t))dt . (31)

Substituting Eqs. (29) and (30) into Eq. (31) and changing
—t~t in the second integral yields

X(5)=f e ' 'e '(aa)dr+ f e' '(aa)e 'dt

=(A+i5) '(aa)+ (aa)(A i5)— (32)

where (aa) = (a(0)a(0)) and where +i5 is multiplied by
the identity matrix. Equation (32) was first derived by
Lax in his famous papers on classical and quantum
noise. (aa) is given by the steady-state solution of the
quantum coupled mode equations and is presented in Eqs.
(19)—(21) above. We could determine M(5) by making
the matrix (aa) from these solutions and carrying out
the matrix multiplications in Eq. (32), but here we use an
alternative, and this leads to the expression used in Refs.
25 and 31.

The equation of motion for (aa) describing its transi-
tion to steady-state may be found by expressing Eqs. (11)
and (12) in matrix form. We find

d (u(r) ) = —A(a(t) ),
dt

where the drift matrix A is

(aa) = —A(aa) —(aa)A +D,
dt

where D is the diffusion matrix

(33)

0 0

0 0

A)+A)
D=

C) +C3

C)+C3
0 0

0

C] +C3 A3+A 3

0

Ci +C3
A3+A3

(34)

To obtain the low-frequency spectra of the various
mode correlations, we need to calculate the Fourier
transform of the corresponding two-time correlations.
We thus define the spectral matrix

Equation (33) is a matrix form of the generalized Einstein
relation that we used in paper VII (Ref. 23) in our series
to calculate the diffusion coefficients for the quantum
Langevin equations from our theory. In steady state this
becomes
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D= A(aa) + (aa) A

=(A+i5)(aa) + (aa)( A —i5) . (35)

M(5) = ( A+ i5) 'D( A —i 5) (37)

which with 6 replaced by co is identical to the expression
in Refs. 25 and 31. We note that the derivation of Eq.
(37) follows from the equation of motion of the reduced
density operator p, Eq. (5), and does not require the use of
Langevin equations.

Equation. (37) yields the spectral density for the com-
ponents (aiai ), (aia3), etc. , inside the cavity. It is still
necessary to calculate the corresponding spectral density

Multiplying on the left by (A+i5) ' and on the right by
( A i—5)

( A+i5) 'D(A i—5) '=(aa)(A i5—)

+(A+i5) '(aa) . (36)

The right-hand side (rhs) of Eq. (36) is precisely the same
as the rhs of Eq. (32), so

outside the cavity. To do this we must multiply by the
density of states &(Q2) outside the cavity. Furthermore,
the amount passed is proportional to the square of cou-
pling constant g between a field mode inside the cavity
and those outside. Hence we expect that the spectral
quantity outside is given by

W,„,(5)=2irg &(A2)W(5) .

Louisell and Walker showed that the damping constant
of a simple harmonic oscillator coupled to a bath of sim-
ple harmonic oscillators with density of states &(Q2) is
given by 2vrg N(Q3). In the present case, this damping
constant is the cavity linewidth v/Q, i.e.,

It is straightforward to calculate the components of
W(5) directly from Eqs. (27), (34), and (37). We find

12

13

(a3 i5)(a—3 +i5)A i + l Xi
l

A3+(a3 +i5)Xi (Ci+C3)+c.c.

l
(ai+i 5 )(a3 +i 5) XiX3—

l

(a3+i5)X3(Ai+A i )+(ai i5)X—i(A3+A3 )+(a; i5)(a—3+i5)(Ci+C3)+XiX3
(ai+&5)(a3+i5) +1+3

(39)

~di = 4+ 4
—(~iv+~34 —2

I ~i31) .
1 1 v

(41)

IV. FOURTH-ORDER EXPRESSIONS;
COMPARISON TO EXPERIMENT

By substituting Eqs. (38)—(40) into Eq. (41) and letting
5=0, we calculate the squeezing variance b,d i as a func-
tion of the pump intensity I2, the detuning of the pump
from the atomic resonance co —vq, the detuning of the
sidebands from the pump 6, the atomic lifetimes T~ and
T2, the cavity detuning AQ and linewidth v/Q, and the
cooperativity parameter

NNg
(42)

y(v/Q)

In this section we investigate the dependence of the
amount of squeezing on these parameters. In the follow-
ing discussion, however, we assume pure radiative decay,
T2 ——2T&, and that the cavity detuning is adjusted to com-

W3„——Wi2(1~3) .

Equations (38)—(40) are identical to those obtained by
Reid and Walls, Eq. (34b), if we let 5=0. As discussed
in Ref. 25, the best squeezing occurs at the sidemode cavi-
ty resonance 6=0, and in that limit, from the expression
for the variance from Eq. (17),

pensate for the nonlinear dispersion at the pump frequen-
cy, i.e.,

2CW2 b, 2hA=
2Q 1+I,W, y

(43)

Ng &iI2 yl &2
Ai —— 2W2+4 iA

Thus the more important quantity A &+A ~ is

Ng I2W2 2Wi mIAi+Ai —— (1—I /2y)+ 5(h)4 y

(44)

(45)

where Wi is the same as W2 with v, replacing vz. The 5
function in Eq (45) is the. well-known elastic, or Rayleigh,
contribution to the resonance fluorescence spectrum. We
see that to this order, for pure radiative decay (I =2y),

The expressions for the quantum coefficients
through D3 are complex and are not easily interpreted. In
the experiment of Slusher et al. ,

" although the pump
field intensity is quite high (1803 times the saturation in-
tensity), the pump is sufficiently detuned from the atomic
resonance (303 times the homogeneous linewidth) so that
the experiment is in a low saturation regime. This means
that Eqs. (6)—(9) may be expanded in a power series in the
intensity I2, and only the lowest order need be retained.
For the A

~ coefficient, we have
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Ng '~ i~21'~~2
4ih

(46)

the inelastic part of 31+21 is zero. The C1 coefficient
can also be expanded, and to lowest order in I2 Eq. (8) be-
comes

1 1 v C1+C3
Ad 1 4 2 Q a&a3

(54)

elements and the variance, Eqs. (38)—(41), and so this
simplifies to

and thus C1+C3 is

Xg I2
Cf + C3 — Xru, u, u3+

2

7rI. (b, ', —y')
5(h)

where we have dropped the terms W&2 and &34 from Eq.
(54). Because P'&2 and &34 are real and positive, Eq. (54)
tends to overestimate the squeezing. Inserting Eqs. (50),
(52), and (53) into Eq. (54), we obtain

(47)

In this limit the semiclassical quantities B1—3 1 and

71——C1 —D1 are given by

B, —A) Ng &——, t 1 I2[W—2+yw (M, +&3)/2]J,
(48)

1 v ~zI X
Ad1 ————2C-

Q Ia,a2a, l

1+i 2Cyh
1 2

2Cyh

(55)

and

(49)

Note that unlike all of the other expressions, the absorp-
tion coefficient contribution B

~
—A

~
does not vanish for

I2 equal to zero. Hence the constant Ng W& is the lead-
ing term.

For the parameters of the Slusher experiment, it is pos-
sible to simplify these expressions even further. For that
case, 51, A2, A3, and 6 are much larger than y or I, so
the complex Lorentzians W„and population pulsation
factor ~ become pure imaginary and

Ng I2yI
C1+C3 ——C1 —D1 ———i (50)

2616263

and

We now examine our theoretical predictions for the
variance given by Eq. (41) using the complete expressions
of Eqs. (38)—(40) for the parameters of Slusher's experi-
ment. On the same graph we also plot the corresponding
curve from Eq. (55). In the recent work by Reid and
Walls, they present numerous figures such as this, and
we refer the reader to that paper for more examples. We
are mainly concerned here with our predictions for
Slusher's experiment, and we attempt not to duplicate too
many of their curves.

Figure 3 depicts the squeezing variance Ad1 versus the
pump-signal frequency difference (v2 —v&) Tz for
I2 ——1800, C =750, and Az ———300Tz '. The solid curve
is the full expression from Eq. (41) and the dotted curve is
the approximate expression from Eq. (55). The vertical
line shows where Slusher's experiment was performed at
6=84T2 '. We see from Fig. 3 that we predict a variance
of about 0.18 for this experiment, yielding squeezing of
about 21%. This agrees reasonabIy wel1 with the reported

B1—A1 ———i%g /51 .

In this limit u~ and a3 of Eq. (22) are given by

V 1
a1 —— 1+i 2Cy

2Q

(51)

(52)
0.25

and

V 1
e3 —— 1+i 2Cy

2Q
(53)

where we have chosen b,Q to be given by Eq. (43) for
small I2. Although Eqs. (50)—(53) for C& +C3, X&, and
A1 —B1 are considerably simpler than their complete ex-
pressions, the expression for the variance given by Eq. (41)
is still rather complicated. Let us consider the various
magnitudes of these terms for the parameters of Slusher's
experiment. The intensity I2 in units of the resonant sa-
turation intensity is 1800, the detuning from atomic reso-
nance is —300@, and the pump-probe frequency differ-
ence 6 is 84y. Thus 61———216y and 63———384@. The
cavity cooperativity 2C is 1500. Using these numbers we
find, in units of v/2Q, that

I
a~ I

=1,
I
a3

I

=3.2, and
I&~ I

= I» I

=
I
C~+C3

I
=6X10 ' Thus abs«ption

coefficients dominate the expressions for the W matrix

l 1 1 1 t 1 I

-400 0 400
(vz-v

) )Tz

FIG. 3. Ad( vs (v2 —vI)T2 ——AT2 from Eq. (39) (solid curve)

and Eq. (52) (dotted curve). I2 ——1800, hz ———300T2, and
C =750. In this figure and in Fig. 4 the vertical line shows the
value used in the experiment of Ref. 11.
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0.25 for some interpretations of the parameter dependence of
the squeezing. For example, in Fig. 5 we plot Ad

&
versus

the detuning (co —vz)Tz 6——2T2 for pump-signal frequen-
cy differences 6 of 0, 40T~ ', and 84T2 . We see detun-
ing is always necessary for squeezing and that in general
optimum squeezing is obtained at a specific detuning de-
pending on the value of A. For 6=84Tz ', this optimum
value occurs at approximately +300T2, indicating
Slusher s detuning is at a good position for his experimen-
tal parameters. This is consistent with Eq. (55).

0
0 10000

FIG. 4. hd& vs I2 from Eq. (39) (solid curve) and Eq. (52)
{dotted curve). Other parameters the same as in Fig. 3.

LLj

Z'.

Ck'

O

40

'-Ron b
(~-v&) T&

FIG. 5. Variance Ad 1 vs (cu —vq)Tz ——62T2 from Eq. (39) for
AT~ ——0, 40, and 84. Other parameters as in Fig. 3.

observation of 10%, since we neglect the detrimental ef-
fects of phase jitter in the pump beam. " We predict im-
proved squeezing for smaller 5, but that in the region
around the degenerate limit where 6=0, the variance
again increases. We also see that the approximate dotted
curve agrees well with the exact expression for 6 greater
than 50 T2 ', except perhaps around the detuned Rabi
sidebands. For b, =84Tq ', we obtain hd~ ——0. 17, giving
an error of about 10%. For b &50Tz, the intensity
terms P'~2 and &34 become more relevant, and the ap-
proximations leading to Eq. (55) break down.

In Fig. 4 we plot hd& versus the pump intensity I2.
From Eq. (55), the dotted curve is simply a straight line.
In agreement with Eq. (55), the variance decreases with
increasing pump intensity, although not as rapidly as a
linear relationship. The physical reason for this is that
the sidebands are coupled to each other by means of the
pump field and the nonlinear two-level medium, and in-
creasing the pump field increases this coupling, as seen in
the expressions for g& and C~+C3. For higher intensi-
ties, our third-order relationships break down and again
&~2 and &34 become important in Eq. (41).

Although Eq. (55) is rather complicated, it still allows

V. SQUEEZINCx VIA PROPACrATION

~

bk
~

=Im(ap„)=- aoW2
1+I2 Y2 y

(56)

where for propagation we set ao ——cog /y. Examples of
this solution have been presented in Ref. 16. Here we give
additional examples.

In the experiment of Maeda et al. ,
' two nearly col-

linear pump beams are directed into a sodium vapor cell.
The pump beams are detuned from the atomic resonance
by 5 GHz, and so they lie somewhat outside the Doppler
width of about 2 6Hz. Each pump beam has an intensity
of about 1000 in units of the resonant saturation intensity.
Initially a probe field is sent through the medium, gen-
erating a conjugate field, and the direction of the probe
field is adjusted to maximize the signal of the conjugate

Sections III and IV treated squeezing in optical cavities.
In this section we apply our theory to study the generation
of squeezed states by three-wave mixing propagating in a
medium without a cavity. This applies to the experiment
of Bondurant et al. and the recently reported achieve-
ment of squeezing by Maeda et ah. ' Other authors have
treated this problem in the degenerate case. ' ' Fol-
lowing these papers, we obtain the propagation equations
of motion by letting z =ct in Eqs. (11) had (12) and drop
the cavity-dependent terms v/g and hA. An alternative
approach to this problem has been presented by Heid-
mann and Reynaud, who applied the Fresnel-Huygens
principle to the propagation of multimode fields in an op-
tically thin medium.

We have recently presented the solution to the quantum
coupled mode equations, Eqs. (11) and (12).' Because our
solution is valid for nongenerate, detuned fields and for
arbitrary propagation lengths, it is algebraically complex.
Appendix A gives a detailed derivation of the solution to
the differential equations of Eqs. (11) and (12). Appendix
B solves these equations from the corresponding quantum
Langevin equation picture, providing a check on our solu-
tions and yielding additional insight into the problem.

Instead of using the cavity formalism developed for Eq.
(41), we now use Eq. (17) to calculate the variance. We in-
sert Eqs. (A15) and (A16), along with the solution for
(a3a3 ) =n3, into Eq. (17). Just as in the cavity problem,
the pump field induces a nonlinear dispersion in the medi-
um reducing the squeezing. In this case we may compen-
sate for this effect by adjusting the phase mismatch of the
wave vectors hK r=(2K2 —K& —K3).r to cancel out this
dispersion. This corresponds to adjusting EQ, in the cavi-
ty problem. We thus let
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FIG. 6. Variance hd~ vs aoz for 6=11T2 ', Az ———1000
T2 ', and Iq ——2000.

FIG. 8. Variance Ad& vs I2 for 6=11T~ ', 30T2 ', and
80T2 ' and a~ = 10'. Other parameters the same as Fig. 6.
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FIG. 7. Variance Adl vs aoz for 6=11T2 ', 30T2 ', and
80T2 '. The other parameters are the same as Fig. 6.

field, i.e., until Eq. (56) is satisfied. The probe field is
then blocked; the signals now incident on the balanced
detector arise from the quantum multiwave mixing pro-
cesses in the medium. The detectors measure noise about
55 MHz from the pump field, making 6=11T2 ' in our
notation.

Figure 6 plots the variance of Eq. (17) versus aoz for
the above parameters. We see that the variance rapidly
drops below the vacuum level of 0.25 with increasing dis-
tance. The experiment of Ref. 13 reports squeezing of
about 3%. Allowing for detector losses, our theory
should predict about 9%%uo to be in agreement with this.
This occurs at a propagation distance of about 20000'~.
We note that significantly better squeezing may be
achieved if the propagation distance can be lengthened.
In Fig. 7 we show the variance versus e~ for the same pa-
rameters as Fig. 6 for the pump-probe detunings
6=11T2 ', 30T2 ', and 80T2 '. We note that in the first
two curves the variance drops to about 0.1 before increas-
ing again. The oscillatory behavior in the 6=80Tz
curve arises from the sinusoidal functions in the analytic
solution, indicating that a larger propagation distance is

required in this case to achieve a steady-state.
Finally, Fig. 8 shows the variance versus the pump in-

tensity I2 for the same pump-probe detunings. The prop-
agation distance aoz is 1)&10 and the other parameters
are the same as in Fig. 7. We note the similarity of these
curves plotted versus the pump intensity to those of Fig. 7
which are plotted versus the propagation distance. In
each case we see that the coupling between the sidemodes,
the source of squeezing, is best for long interaction dis-
tances and high pump intensities. As in the previous
curves for the medium in a cavity, there is an optimum
intensity for each pump-probe detuning.

VI. CONCLUSIONS

In conclusion we have applied our quantum theory of
multiwave mixing to the generation of squeezed states of
light via three- and four-wave mixing in cavities and in
propagation. We have specifically compared the cavity
predictions to the experimental results of Slusher et al."
finding reasonably good agreement. Our cavity discussion
uses the spectral matrix methods of Reid and Walls, and
we give derivations of the spectral formulas they use
based on the classical noise methods developed by Lax.
In particular, we note that the reason the spectral quanti-
ties outside the cavity are given by those inside multiplied
by the cavity linewidth is that this linewidth is, in fact,
the product of the outside density of states factor and the
square of the coupling constant between modes inside and
outside. One expects the inside spectral quantities to be
multiplied by the outside density of states in passing out-
side. This process enhances the squeezing predicted by
steady-state variances, which amount to averages of the
spectral variances over the cavity linewidth.

We have found analytic formulas for the variances for
arbitrary propagation distances, detunings, and pump in-
tensities. We derive these formulas both from the density
operator and from the Langevin methods. To obtain sig-
nificant squeezing, the propagation distances must be very
large compared to the resonant Beer's law length.

In analyzing the Slusher et al." experiments, we have
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found that the squeezing is accurately predicted by ap-
proximating our mixing formulas to lowest order in the
pump intensity. This results from choosing sufficiently
large detunings from line center. A second consequence
of these large detunings is that the multimode coefficients
A1, 81, C1, and D1 are nearly pure imaginary since they
represent the response of driven anharmonic oscillators
off resonance. This causes the source for the sidemode
number operators, namely the resonance fluorescence
31+21, to be small, since it is the real part of a nearly
pure imaginary number. In contrast, the source terms for
the combination tone operator is the complex quantity
C1+C3, which can have appreciable magnitude. This
leads to squeezing, since the combination tone expectation
values have larger magnitudes than those for the number
operators. On the other hand, the next paper in this
series studies the corresponding squeezing generated in
two-photon media and finds that even in the presence of
small two-photon resonance fluorescence, the number
operators can have substantial values due to coupling with
the combination tone terms.
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APPENDIX A: PROPAGATION SOLUTION
FROM THE DENSITY OPERATOR EQUATIONS

In this appendix we obtain the solution to the quantum
coupled mode equations using the equations found from
the reduced density operator equation of motion. In Ap-
pendix B we show how this solution may also be obtained
by using Langevin equations. The semiclassical coupled
mode equations are

d 8'1

dz

d 8'3

dz

1+1++1+3

= —a38'3+X38'],

(A 1)

(A2)

where E3(s) is the Laplace transform of 8'3(z), s is the
transform parameter, 8'1O and 8'3O are the initial condi-
tions of 8'1 and 8'3, respectively, and where

where, as in Eqs. (19)—(21) with v/Q =0, a]——8]—A]
and X]——C] D]. Equations —(Al) and (A2) may be easily
solved in any number of ways. For example, by taking
the Laplace transform of Eqs. (Al) and (A2) and solving
for the transform of 8'3{z), we have

(s +a] )@30+X38]0E3(s)=
(s —s] )(s —s2)

(a3 —a] )
2

+XIX3

1/2

(A5)

Taking the inverse Laplace transform of Eq. (A3) and the
similar equation for E] (s) yields

8'] (z) =F8'] (0) +X]68 3(0),
8 3(z) =W 8'3(0) +X368 ] (0 )

where

(A6)

=1 a3 —a1F =—w cosh(wz)+ sinh(wz)
W 2

6 =—sinh(wz)e
W

The H term is identical to F except that a1 and a3 are in-
terchanged.

The corresponding quantum-mechanical coupled mode
equations are, from Eqs. (11) and (12),

dn, d(a, a, )
(A8)

dz dz
= —a1n1++1m +A 1+c.c. ,

d(a]a3) = —a]m +X n]+3C +](1~3) .
dz dz

(A9)

1~3 represents the same previous terms with 1 inter-
changed with 3. The equations of motion for
n 3

= (a 3a 3 ) and m—:(a ]a 3 ) are found by replacing the
subscript 1 with 3 in Eq. (A8) and taking the complex
conjugate of Eq. (A9). It is possible to derive the homo-
geneous form (without the source terms A, +A*, and
C] +C3) of Eqs. (A8) and (A9) from the semiclassical
Eqs. (Al) and (A2). Multiplying both sides of Eq. (Al) by
8'1 and adding the complex conjugate, we obtain

d )fc(8']8'] ) = —a]8']8'] +X,8', 8'3+c.c.
dz

(A10)

Similarly, multiplying Eq. (Al) by 8'3 and Eq. (A2) by 8']
and adding, we have

d
dz

( 8 8 3 ) = —a ]
8'

] 8'
3 +X 8 3 8 3 + ( 1 3 ) . (A 1 1)

s~1—n 1O
———a 1~1+71M*+a1/s +c.c. (A12)

Equations (A10) and (A 1 1) are identical to the homogene-
ous form of Eqs. (A8) and (A9) if we identify 8']8'] with
n1 and 8'18'3 with m. Hence the solutions to the homo-
geneous Eqs. (A8) and (A9) are the appropriate products
of 8'](z) and 8'3(z) as given by Eqs. (A4) and (A5), pro-
vided we use for the initial conditions for n] and m,
8'] (0)8'](0) and 8'](0)8'3(0), respectively.

We use these homogeneous solutions to solve the inho-
mogeneous Eqs. (A8) and (A9). If we denote the Laplace
transform of n1 by ~1 and m by ~ and take the
transform of Eq. (A8), we obtain

and

1S, z= ——,(a3+a] )+W = —a+W (A4)
Note that by grouping terms with ~](s) and ~(s) on the
left-hand side (lhs), we are left with n, 0+(A]+A] )/s on
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the right-hand side. The lhs of the equation is identical
with the Laplace transform of the homogeneous equa-
tions. Thus the solution including the inhomogeneous
source terms is the same except that we replace n&p by
n]p+(A]+A] )Is, mp by mp+(C]+C3)/s, n3p by
n3p+(A3+A3 )Is, and mp by mp+(C] +C3 )Is.

The homogeneous solution of n] is

n ]g =(FS lp+~1 G +3p)(F 8'*]p+X]G $3p)

n]p+ I&]G
I

n3p+(X]FG*m*+c.c. ) .

(A13)

Substituting the expressions for F and G into Eq. (A13)
yields

(
Q

) sinh( wz) sinh( w *z)
2n ]],e

'+' '= n, p cosh( wz)cosh( w *z)+ "]p+41&]
I

n3p+ [2X](a3—a] )m *+c.c.] I41w
I

'

cosh( wz) sinh( w *z)
+ [(a3 —a] )n ]p+ 27]m ]+c.c.

2w
(A 14)

Because the Laplace transform of e" is 1/(s —c), we expand the hyperbolic functions into their exponential form and
find the Laplace transform of n ]~ to be

nip

4
1 1+

s —(w w b—) s—+w+w +b
1 1+ +

s —(w +w* b) s——(w —w* b)—
a3 —a]

I
"]p+4

I
X]

I
n3p+[2y](a3 —a] )m +c.c ]I

s —(w —w* b)—1 1X—
4 s —(w+w* b)— 1 1

s —(w —w b) s+—w+w +b
+

+ [(a3 —a] )n]p+2X]m *]

1 +C.C.
s+w+w*+b

1 1X—
4 s —(w+w' b)— +

s —(w —w b) s —(—w —w b)— (A15)

(w* —w —b)ze
ni ——

where b =a+a*. We follow the above prescription and replace n]p by n]p+(A] +A ] )/s, etc. This is then the Laplace
transform of ~](s). We see that the effect of the inhomogeneous source terms is to multiply the Laplace transform of
Eq. (A15) by 1/s. Since the inverse transform of 1/s(s —c) is (e"—1)/c, the solution for n](z) is (setting the initial
conditions n ]p, n 3p and m p equal to zero because that solution is already known)

e (w +w* —b)z
1 (w —w* —b)z e

—(w+w*+b)z

4 w+w* —b w —w' —b w* —w —b

+ I I
a3 —a]

I
(A]+A] )+417]1 (A3+A3 )+[2X](a3 ] )( ] + 3 )+c.c]J

1
X

16
I

w I'
(w+w* —b)z

w+w* —b

(w —w —b)ze

w —w —b

(w —w —b)ze
w* —w —b

—(w+w*+b)z

w+w*+b

+ [(a3 —a])(A]+A] )+2X](C] +C3 )]

1
X

8w*

(w+w* —b)ze
w+w' —b w+w'+b

(w —w* —b)z 1
(w* —w —b)z

1 e
—(w+w*+b)z+' . +'

w —w —b w* —w —b
+c.c. (A16)

Equation (A9) for m—:(a]a3 ) may be solved in a simi-
lar fashion. Equation (A16) may be written in a more
compact form by recombining the exponentials into hy-
perbolic and sinusoidal functions. After this algebraic
simplification, we find

n] ——(A, „+N, )q, +(A,„—N, )q, +N„q3 N2;q4, —
(A17)

I

m =(C+M])q]+(C —M])q2

+ (M]3 +M3] )q3 +i (M]3 —M3] )q4

where

C =(C] +C3)/2,

N]=(41w I') 'I la3 a]
I Al. +41+]1 A3.

+.[2Xi(a3 —a])C+c.c.]I,

(A18)
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Nq ——w '[(a3 —a] )A]„+2X]C]=N2„+iN&;,

M] =(4
~

]v
~

') '[ —
~

a3 a]
~

'C+4X]X3C

+2X3(a3 —a])A]„+2X](a]—a3)A3 ]

M]3 ——(2]v) '[ —(a3 —a] )C+2X3A] ]

3f3) Af ]3 with 1~3

q] ——[b —[u sinh(uz)+b cosh(uz)]e 'I l(b u)—,

q2 ——Ib+[v sin(vz) bco—s(uz)]e '] l(b +u ),
q3 ——

I u —[b sinh(uz) +u cosh( uz) ]e 'I /(b —u )

q4 ——[v [b sin—(uz)+ucos(uz)]e ']l(b +u ),
and where A]„——(A]+A ] )/2 and u +iv =2]v. To obtain
the solution for the mode 3 quantities, interchange the
subscripts 1 and 3 everywhere. Note that w (1~3)=]v".

Each quadratic equation may be readily factored and the
four eigenvalues are for A. ~ 2 ——a*+w* and F34——a+w
where a and w are given by Eys. (A4) and (A5). Defining
the eigenvector for A, ] as U] ——(U]],U]z, U]3, U]4), the
components may be found from

Ui (A —IA. ] ) =0 . (89)

A possible solution of Eq. (89) is U] ]
——1, U]4

=(a]—A, ])/X3, and U]z ——U]3 ——0. In a similar manner,
we may insert the other eigenvalues into Eq. (89) to ob-
tain the other eigenvectors. Our results are

A may be thought of as two separate 2)&2 matrices, and
the secular equation becomes

[(a]—A, )(a3 —A, ) —X]X3 ][(a]—A, )(a3 A ) X]X3]=0 .

(88)

APPENDIX B: PROPAGATION SOLUTION
FROM LANGEVIN EQUATIONS

da) = —a]a] +X]a3+F,(z)
dz

da3 = —a3a3+X3a ] +F3(z) .
dz

(81)

(82)

The noise operators obey the usual conditions under the
Markovian assumption that

In this Appendix we present another method to solve
the quantum coupled mode equations by beginning from
the appropriate Langevin equations. The Langevin equa-
tions in this case are given by Eqs. (A 1) and (A2) with the
appropriate noise operators F, (z) and F3(z):

CX] —X)

U2=

cx )
—k2

X3
(810)

U3 ——
cx )

—A, 3

X3

0

U4 ——
cx )

—A,4

X3

0

It is now possible to solve the quantum Langevin equa-
tions. We define the new variables p; and noise operators
G;(t) as

(F](z))=(F3(z))=0, (83) P;=a U;, G;=F (z)U;, (811)

(F (z])F (z]')) =D t 5(z —z'), where U is the matrix formed by the row vectors U;,
i = 1,4. For example, the equation of motion for p; is

(F (]z)F (3z')) =D, , li(z —z') . dP; = —A,;P;+G;(z),
dz

(812)

In Ref. 23 we showed by using the generalized Einstein
relation and Eq. (5) that the diffusion coefficient of Eqs.
(84) and (85) are simply the inhomogeneous source terms
of our quantum coupled mode equations, so

D y =Ai+Ai and D. ..=C~+C3 ~ (86)

Defining the vector a =(a],a],]23,a3) as before, we may
write Eqs. (Bl) and (82) as

dc = —Aa+F(z),
dz

(87)

where F =(F„F„F3,F3) and the matrix A is the same
as in Eq. (25) with v/Q =AQ =0.

We solve Eq. (87) by first determining the eigenvectors
of A. As one can see from Eq. (25), the 4&4 matrix for

P;(z)=P;(0)e ' + f e ' G;(z')dz' . (813)

In terms of the p; variables, the annihilation operators a]
and a3 are

and

(P]—Pz)(a] —a3 )+2w'(P]+P2)
a~ ——

4w*
(814)

X3(pp —p] )
a3 =

2w
(815)

From Eq. (814) the expression for (a ]a] ) is given by

Using the integrating factor exp( —A, ;z) the solution to Eq.
(812) is

(p+p )+ , (p+p )—CX )
—CX3

4w

a& —a3
t]]& Pyle, '

~Bi+Be~ )—4w*
(816)
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We see from Eq. (816) we need expressions for &P&P~ &, &PtP2&, &PzP, &, and &PzP2&. We outline here the calculation for
&P&P& &; the others are similar. The initial condition term in Eq. (813) reproduces the semiclassical results, so we drop
that term. VVe then have

(P|P&)=(I dz'G, (z')e ' I dz "G,(z")e '

)
.

From Eq. (811),we obtain
2

& G&(z')Gt(z") & =&F&(z')F&(z")&+ „&F,(z')F3(z") &+ „&F~(z')F3(z")&+ &F3(z')F3(z") &

+1 ~1

X3 X3 X3

(817)

(3)+&) )+ „(C)+C3 )+ (C)+C3)+
X3 X3

2

(A, +23 ) 5(z' —z"),
X3

(8 I 8)

where we have used Eqs. (84)—(86).

a~ —a3 —2w
&P&Pi&= &)+

2X3

Carrying out the integration in Eq. (817) and substituting Eq. (818), we have

+1 Q3 —2w e
—(b+w+w )z

23+ (C, +C3)+c.c.
2X3 b+w+w*

(819)

where b =a+a*. In a similar manner we solve for the other bilinear products of the eigenvectors, and
2

cz& —a3 +2w a~ —cz3+ 2w —(S —w —w )z

(C, +C3)+c.c.
2X3 2X3 b —w —w*

(820)

and

(a~ —a3 +2w" )(a~ —a3 —2w) A )
—cx3 —2w

&P,13, & = (A, +23 )+
4I&3I' 2X3

Ct~ —O, 3 +2W ~ e
—(b+w —w )z+, (Ct +C3 )

273 b+w —w'

(Ct+C3)

(821)

(822)

It is a straightforward although tedious task to substitute Eqs. (819)—(822) into (816) to obtain the expression for
&a,a, &=n&. When —this is done, we recover the previous solution for n, in Appendix A, Eq. (A17) and those following.
From the Langevin approach adopted here, we see that the functions q, (z) and q~(z) following (Alg) result from com-
binations of &PtP& & and &@32&,while the functions q2(z) and q&(z) arise from &I3,/32& and &PQ, &.
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