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Dielectronic-recombination rates for some ions of the lithium isoelectronic sequence
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The total dielectronic-recombination rates for Ne +, Ar' +, Fe +, and Kr +, all members of the
lithium isoelectronic sequence, are computed in the nonrelativistic, single-configuration, LS-
coupling, frozen-core, corona model approximation. Comparison is made with other calculations,
and differences are noted and analyzed. Analytic formulas for interpolating the total dielectronic-
recombination rates for other members of the lithium isoelectronic sequence are given.

I. INTRODUCTION

Dielectronic recombination is a most significant recom-
bination process for ions in hot plasmas at low and high
densities. Because of its dominance in the low-density re-
gime, dielectronic recombination is the most important
recombination mechanism for heavy-ion impurities in the
contained, high-temperature plasmas used in magnetic
fusion-energy research. It has a significant impact on the
ionization balance, the impurity transport, and the energy
loss by the plasma through the line spectra of the impuri-
ty ions. ' Similar considerations apply in certain astro-
physical plasmas.

The work reported in this paper consists of a series of
calculations of the dielectronic recombination rates of ini-
tial ions which are members of the lithium isoelectronic
sequence. The final, recombined, ions are, of course,
members of the beryllium isoelectronic sequence. Envi-
ronmental effects are ignored, i.e., the ions are treated as
isolated with the effects of external fields and the plasma
density ignored.

The atomic model and the corresponding calculational
techniques are described in Secs. II and III. Section IV
contains the results computed using the model and tech-
niques described in Secs. II and III and contains compar-
isons with other detailed calculations. Comparison with
the results of the Burgess-Merts analytic formula, ' a dis-
cussion of the scaling properties of dielectronic-
recombination rate coefficients, and a parametrization of
the current results are presented in Sec. V. The region of
accuracy of the atomic model is discussed and conclusions
are made in Sec. VI.

II. ATOMIC MODEL

When the autoionizing resonances of an ion contained
in a plasma are narrow and isolated from each other, the
dielectronic-recombination rate coefficients of the ion, un-

perturbed by external fields or the plasma density, from
some initial continuum state

~

iE) through a particular
autoionizing state

~
j) into a particular bound state

~
k)

can be computed from the following equation:
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1s 3s, 1s 3p, 1s 3d

ls 4s, ls 4p, ls 4d, ls 4j" . (4)

The core structures ls2s and 1s2s2p are not considered
in this study. The plasma conditions under which these
states must be included are noted in Sec. VI. The wave
functions associated with the core configurations of Eqs.
(2)—(4) are computed using a self-consistent-field (SCF)
Hartree-Fock computer code based upon the representa-
tion of the orbitals of the core wave function as a series of
analytic Slater-type orbitals. ' The configuration-
averaged approximation is sufficient for the generation of
these wave functions. A Hartree-Fock equation is solved
for each bound and autoionizing Rydberg orbital of in-
terest with the Hartree-Fock exchange interaction approx-
imated by a local-exchange term based upon the Hartree-
plus-statistical-exchange (HX) method of Cowan. ' This
approximate Schrodinger equation for a Rydberg orbital

%fork of the U. S. Cxovermnent
Not subject to U. S. copyright2122

4n'r'ao A, (j;i EJ )A„(j;k) . rr
2Z'~'g, . g A. (j;i 'Ei )+ g A„(j;k')

k'
(1)

The autoionization rate from the autoionizing state
~
j)

into the continuum state
~
iE~ ) is denoted by A, (j;iEJ),

and the radiative rate from the autoionizing state
~ j ) into

the bound state
~
k) is denoted by A„(j;k). The energy

of the autoionizing state
i j ) with respect to the first ioni-

zation limit of the recombined ion is cz, and ao is the
Bohr radius. The quantity g; is the statistical weight of
the initial unrecombined ion state (without consideration
of the continuum orbital). The units of the temperature
of the plasma electrons, T, and of the autoionization ener-

gy are rydbergs. A Maxwellian distribution of the energy
of the plasma electrons has been assumed. The "total"
rate of dielectronic recombination is obtained by summing
over all possible initial continuum, intermediate autoioniz-
ing, and bound final states.

The continuum orbitals and the autoionizing and bound
Rydberg orbitals are computed in the frozen-core
Hartree-Fock approximation. For the case of the lithium
isoelectronic sequence, which is considered in this study,
the configurations of the core structures are

1s 2s, 1s 2p, (2)
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with principal quantum number n, angular momentum I,
and energy c.„I has the form

d' 1(l + 1) + Vd —e„i P„i(r)=0,
dr r

(5)

where the potential term Vd is defined by the following:

2z + g (N& —5++ 5g ) Yp(n; 1;,n; 1;!r)2

I

—0.6 p'+0 5/(. n —I)
24

p

1/3

with the altered electron density p' given by

p'= gN (P„ i )

l

The quantity Yp(nl, nl Ir) is defined in the usual manner,

Yp(nl, nl Ir) = I dr'r'[P„I(r')]

+r f dr'r' '[P„i(r')] (8)

The Rydberg orbitals are computed in a center-of-gravity
approximation, also.

The continuum orbital is computed in a configuration-
averaged, distorted-wave approximation with the
Hsrtree-Pock exchange interaction replaced with a spheri-
cally averaged version of the semiclassical exchange intro-
duced by Riley and Truhlar. " The Schro*dinger equation
for the continuum orbital has the form

d' 1(1+1)+ + V, —E P,I(r) =0,
r2 r2

(9)

where the potential term is given by

V, (r) = — +—g N; Yp(n; I;,n; l; Ir)2z 2
r r

—0.5 —gN; Yp(n;l;, n;I;Ir)—2 2z

2—0.5 —g N; Yp(n;1;, n; I; Ir)
r

2 1/2
2z —c +4a 2 (10)

with the local electron charge density defined by

a = gN;[P„i(r)]
l

The differential equations for the bound orbitals, Eq. (5),
and for the continuum orbitals, Eq. (9), are solved using
the Kutta 5 method' with the energy iteration deter-
mined by the Ridley method. ' The Kutta 5 method and
the Ridley method are very stable and well suited to un-
monitored production computations, though the Ridley
method is slightly slower than other available methods, '

and the Kutta 5 requires more computer memory storage
than the widely used Numerov method. ' '

The angular momentum coupling scheme used in this

model is the usual LS coupling of the Russell-Saunders
analysis. ' The subshells are assigned a rank according to
the equation

s =n(n —1)/2+I +1 . (12)

The total orbital and spin angular momenta of the two
subshells with the lowest rank (smallest s's) are coupled
together, and the resultant orbital and spin angular mo-
menta are coupled to the totals of the next-higher sub-
shell, etc. Eventually, when all subshells have been con-
sidered, the total orbital and spin angular momenta of the
multiplets of interest have been generated. While the ra-
dial orbitals for the Rydberg and continuum electrons are
computed in the average configuration approximation, the
total wave function is constructed to be an antisymmetric
eigenfunction of the spin angular momentum and of the
orbital angular momentum.

The autoionizing rate is computed as the square of the
matrix element of the Coulomb interaction taken between
the continuum state and the autoionizing state,

(13)

The Coulomb matrix element itself is a summation of
Slater integrals, and is of the form

I
&j I»

'
I iE~ &

I

= X«R "(n, t, ,n, l„n, l„n4I4),
k

(14)

III. CALCULATIONS

The model of the atomic structure and the atomic pro-
cesses described above has been translated into a set of
computer codes designed for large-scale, unmonitored
production calculations. The ion (core) wave functions

where the Slater integral R (1,2,3,4) is defined in the usu-
al manner with each (n;1;) indicating one of the core,
Rydberg, or continuum orbitals, as is appropriate, and the
coefficients ck are the Slater coefficients arising from the
analysis of the angular momentum coupling. ' ' The ra-
diative transition rate A„(j;k) is computed as the usual
dipole transition rate. While forbidden radiative transi-
tions have not been considered as potential radiative sta-
bilizing transitions in this work, all possible autoionizing
transitions, nondipole as well as dipole allowed, are in-
cluded.

In summary, the atomic structure and collision process
used in the computations of the dielectronic recombina-
tion coefficients described here are modeled by isolated
and narrow autoionizing resonances, single configura-
tions, Russell-Saunders LS coupling, frozen atomic cores,
local exchange, and distorted waves. External fields and
the modifications of the atomic structure and of the
excited-state populations of the ion by collisions with oth-
er plasma constituents have not been considered. This
model should be quite adequate for the computation of
the rate coefficients for the dielectronic recombination of
heavy-ion impurities in the ionization stages which occur
in the interiors of tokamak plasmas and in many astro-
physical plasmas.
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are computed using either Weiss's code, which is an ex-
tension of Clementi's implementation of Roothaan's ana-
lytic SCF technique, or Froese-Fischer's numerical
Hartree-Fock code. ' Occasionally, the numerical wave
functions are fit to a series of analytic Slater-type orbi-
tals' when an analytic representation of the core wave
function is needed for special purposes. The differential
equations for the bound and continuum orbitals [Eqs.
(5)—(11)] are integrated by the Kutta 5 method' over a
logarithmic mesh until the step size reaches a specified
size, and then over a linear mesh until the potential term
becomes Coulombic. Appropriate inward and outward in-
tegration techniques are utilized in order to insure that the
integration method remains stable. The bound-orbital
solutions are matched, at the point where the potential be-
comes Coulombic, to Whittaker's representation of the
confluent hypergeometric function which is regular for
an infinite value of the argument. The continuum orbitals
are appropriately matched to a linear combination of the
regular and irregular Coulomb functions ' when the po-
tential becomes Coulombic.

The Russell-Saunders L,S-coupled total wave function
for every term of a specified configuration is determined
by the production codes through a combination of tables
based upon Slater's tabulations' and vector coupling
based upon the coupling scheme described in Sec. II. The
angular coefficients for both the autoionizing and radia-
tive matrix elements are determined by a computer code
which carriers out the Racah algebra' ' for the recou-
pling of these wave functions. The code is self-contained
computing all the necessary 3-j, 6-j, and 9-j symbols, and
using tables or computing all single- and two-particle
coefficients of fractional parentage. While the Fortran
language in which the code is written is not recursive, the
code maintains the internal stacks and pointers necessary
for an overall recursive structure. This type of code al-
lows a small program to rapidly carry out the evaluation
of the Slater coefficients for even very complex atomic
structures without requiring extensive analysis and deter-
mination of various quantities before the code is run. Pre-
vious calculations have shown that it is necessary to retain
all the Slater-Racah terms in the expression for the ampli-
tude for the autoionization process, i.e., retention of only
the dipole term [the k= 1 term of Eq. (14)] can lead to
large errors in the computation of autoionizing rates as
well as the incorrect omission of some strong autoionizing
transitions.

Autoionizing and radiative stabilizing rates are comput-
ed for each autoionizing state of every possible I.S sym-
metry arising from all the Rydberg orbitals built upon a
specified core state. These core states for the continuum
orbitals include not only the states of the ground configu-
ration of the initial ion which are necessary for the com-
putation of the radiationless capture rate of the plasma
electron, but, also, the excited core states, such as those
defined in Eqs. (3) and (4), which, when energy considera-
tions allow, give rise to autoionizing rates which must be
included in the radiative branching ratio appearing in the
dielectronic-recombination-coefficient expression of Eq.
(1). These rates can have a significant effect upon the
dielectronic-recombination coefficient of some atomic

&nr =— (15)

The last several quantum defects are used in a least-
squares fit to the following polynomial in the energy:

p(E) =go+ g p;e' . (16)

A linear fit is usually sufficient. The quantum defects are
well approximated by a simple polynomial because the
basic description of the atomic states used in these calcu-
lations is the single-configuration model. Configuration
interaction with other autoionizing or bound states which
would prevent the representation of the quantum defect
by a simple polynomial is discussed below. The configu-
ration interaction with the continuum as described origi-
nally by Fano' is the dielectronic-recombination process
discussed in this work.

A similar approach is used to fit the autoionizing am-
plitudes. The well-known v dependence upon the ef-
fective principal quantum number v of the Rydberg au-
toionizing orbital is removed from the autoionizing ampli-
tude, and the remainder is fit by the least-squares method

structures and lead to the resonance structures which ap-
pear in some electron-impact excitation and the ionization
cross sections. Doubly excited states which are below
the first ionization limit are included as bound, final
states for the radiative stabilization transitions and as con-
tinuum core states when the atomic structure and energy
considerations permit. Radiative stabilizing transitions of
autoionizing states in which the more excited (Rydberg)
electron makes the transition while the core electron
remains in its initial state are included. These transitions
occasionally dominate the recombination process for some
Rydberg series.

All the matrix elements for the autoionizing and radia-
tive rates computed as described above have a consistent
phase. They are stored and will be used when configura-
tion interaction and intermediate coupling are included in
the production codes. The wave functions are so easily
and quickly generated in the approximations described
above that they are not stored.

Rather than compute directly all the rates up to the
very high principal quantum numbers of the Rydberg or-
bitals which are necessary for the determination of coeffi-
cient of the total rate of dielectronic recombination of an
ion, the known asymptotic properties of the quantum de-
fect, of radiative transition rates, and of autoionizing tran-
sition rates have been exploited. Explicit integration of
the differential equations for the bound and continuum
orbitals [Eqs. (5)—(11)] and direct computation of the au-
toionizing and radiative rates are carried out for the lower
members of every Rydberg series based upon every core
state of the initial ion. The determination of the quantum
defects, the autoionizing rates, and the radiative rates for
higher states of each Rydberg series are carried out by ex-
trapolation. The quantum defects are computed from the
energy c.„~ determined in solving the bound-orbital
Schrodinger equation, Eq. (5), using the usual equation to
define the quantum defect,

2
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to a polynomial which is reciprocal in powers of v,

j ie, =c~vj '~ 1+ ga /vJ
l 1l m

(17)
Ion no n„

TABLE I. The principal quantum numbers for the lowest-
lying autoionizing states no and for the highest with directly
computed gates n„based upon the ion core 1s 2p P.

(vk/v, )'
J p

1 —(vk/vj )
(18)

generally, the cosine can be set to unity and the coeffi-
cients c& and y determined by a linear least-squares fit.
Inclusion of the cosine term necessitates a nonlinear
least-squares fit, and generally does not improve the accu-
racy for any particular Rydberg series, but does introduce
regularity in c ~ and y.

The coefficients for the rates of dielectronic recombina-
tion through the individual members of a particular Ryd-
berg series of autoionizing states are computed, starting
with the lowest and proceeding toward the higher states,
with a cumulative coefficient maintained. The computa-
tion of the coefficient of the total rate for the Rydberg
series is terminated when the relative change due to the
addition of the cumulative coefficient of ten members of
the series to the total coefficient is less than 0.0001.

The dielectronic-recombination rate coefficients for the
initial ions Ne +, Ar' +, Fe +, and Kr + of the lithium
isoelectronic sequence have been computed using the com-
putational methods described above. When the autoioniz-
ing Rydberg orbitals are based upon the core states
described in Eqs. (2)—(4), and when the appropriate angu-
lar momentum coupling is introduced, the autoionizing
states have the form

Is n; l nl 'L or 1s n; I nl L, (19)

where n; =2, 3, or 4. Similarly, the initial continuum
states have the form

and

1s 2scl 'I. or 1s 2scl L,

1s 2pc.l'L or 1s 2pcl L,

(20)

(21)

additional continuum states have the form,

1s n;l cl 'I, or 1s n;l;cl L, (22)

where n; =2, 3, or 4, and the bound final states have the
form

1s 2sn'l' 'L or 1s 2sn'l' L, (23)

The coefficients cz and a are determined by the least-
squares fit.

The extrapolation of the radiative transitions was ob-
tained by fitting the last several transitions of a series to a
formula introduced by Burgess and Seaton which they
based upon data generated by Bates and Damgaard us-
ing the Coulomb method,

2
~ 2 —y

(j ~

r ~k)=ci 3&
1—

vj vj

2
vk /vj

Q COS 7T vk —vj +X+ 2 CX

J1 —vk /v-

Ne+
Ar" +

Fe +
Kr33+

8

10
11
16

16
18
20
23

and

1s 2pn'1''I, or Is 2pn'l' L . (24)

It must be noted that some states of the form 1s 2pnl,
while doubly excited, are below the first ionization limit,
and, consequently, are not autoionizing. They are bound
states and can serve as the final states in radiative stabiliz-
ing transitions. Autoionizing and radiative stabilizing
rates are computed for each state of every possible LS
symmetry of the configurations summarized in Eqs.
(19)—(24) which satisfy the following criteria:

and

3 (n (12 and 0(l (8 for n; =3,4 (25)

no(n (n„and 0(l (8 for n; =2, (26)

where no and n„are defined in Table I. Generally, the
contribution to the total dielectronic recombination rate
coefficient by states with I & 8 is negligible.

For each ion approximately 20000 autoionizing rates
were directly computed. Approximately 10000 radiative
rates were directly computed. In the computation of the
coefficients of dielectronic recombination described above,
these directly computed rates were extrapolated to several
hundred thousand autoionizing and radiative stabilizing
rates for each ion.

IV. RESULTS AND COMPARISONS

The rate coefficients for the total dielectronic recom-
bination of Ne +, Ar' +, Fe +, and Kr + computed by
the Inethods described in Secs. II and III are tabulated in
Tables II—V and displayed in Figs. I—4. Results are
presented for the initial ion in either the ls 2s 5 state or
the ls 2p P state and for the primary radiative stabilizing
transitions having (b,n&0) and not having (b,n=0)
changes of principal quantum.

Comparison with rate coefficients computed by other
detailed methods are shown in Tables VI—IX. Compar-
ison with various versions of the Burgess-Merts analytic
formula are made in Sec. V. The data labeled "Summers"
in Tables VI—VIII were computed using the interpolation
formulas which Summers derived from his explicitly com-
puted data ' with the contribution by direct rad&ative
recombination removed. The data labeled "McLaughlin
and Hahn" for Ar' + in Table VII was taken from their
graphically presented data, and the data for Fe +
Table VIII was parabolically interpolated from their tabu-
lar data. The data labeled "Jacobs, Davis, Rogerson,
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and Blaha" for Ne + in Table VI was interpolated from
their tabular data. The data labeled "Jacobs, Davis,
Kepple, and Blaha" for Fe + in Table VIII was comput-
ed from the analytic fit provided by Woods, Shull, and
Sarazin ' to their tabular data with direct radiative
recombination contribution removed. A direct compar-
ison for some of the details of the present calculation with
those of McLaughlin and Hahn is made in Table IX.
This data was taken from their published work.

The detailed computation described in this paper has
some aspects similar to the McLaughlin and Hahn calcu-
lation of the total dielectronic-recombination rate coeffi-
cient for Fe +. They compute a set of autoionizing and
radiative rates as well as the radial orbitals in a
configuration-averaged scheme (the "angular-mo-
mentum-averaged" procedure), and determine an approxi-
mate dielectronic-recombination rate coefficient using
these rates. They note the most important recombination

paths, and recalculate the autoionizing and radiative rates
for these paths using an explicit LS angular momentum
coupling scheme. An average of the proportionality fac-
tors between the dielectronic-recombination rate coeffi-
cients computed for the same paths in the two approxima-
tions is determined. The total dielectronic-recombination
rate coefficient is computed by multiplying the total rate
coefficient computed using the averaged scheme by the
average proportionality factor. An additional factor
which attempts to approximate the effects of cascades is
also included, but for this isoelectronic sequence it is of
little consequence. McLaughlin and Hahn computed the
continuum orbitals by a distorted-wave technique and the
bound orbitals by a Hartree-Fock method. The autoioniz-
ing and radiative rates for the An =0 transitions were
determined by quantum-defect extrapolations. A slight
difference exists between the LS-coupling scheme used
here (described in Sec. II) and that employed by

Temperature
(keV)

Dielectronic-recombination
rate coefficient
(10 ' cm /sec)

1s2s S
An~0

1s22s ~S

An=0
s22p 'P
An~0

0.005
0.006
0.007
0.008
0.009
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

35.1

37.8
39.3
39.8
39.7
39.0
27.0
18.6
13.6
10.5
8.35
6.86
5.76
4.93
4.28
1.63
0.908
0.597
0.430
0.329
0.262
0.215
0.180
0.154
0.0550
0.0300
0.0195
0.0140
0.0106

0.0144
0.0320
0.0589
0.0951
0.802
1.75
2.55
3.07
3.35
3.46
3.46
3.40
3.29
2.09
1.39
0.999
0.759
0.601
0.491
0.411
0.350
0.303
0.114
0.0633
0.0415
0.0299
0.0228
0.0182
0.0149
0.0125
0.0107

0.0210
0.0692
0.158
0.286
0.449
0.639
3.12
5.73
7.61
8.64
9.06
9.10
8.91
8.59
8.22
4.90
3.19
2.27
1.71
1.35
1.10
0.917
0.780
0.674
0.252
0.139
0.0914
0.0658
0.0502
0.0400
0.0328
0.0275
0.0235

TABLE II. The dielectronic-recombination coefficient for
Ne + for initial ion states 1s 2s S and 1s 2p P and primary ra-
diative stabilizing transitions An =0 and An &0.

Temperature
(keV)

Dielectronic-recombination
rate coefficient
(10 ' cm /sec)

1s2s S
An&0

1s22p 2P

An~0
ls2s S
An=0

0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

45.7
38.0
30.6
24.9
20.7
17.5
15.0
13.0
11~ 5
4.63
2.63
1.75
1.27
0.974
0.778
0.639
0.538
0.461
0.165
0.0902
0.0587
0.0421
0.0320
0.0254
0.0208
0.0175
0.0149
0.00528

0.0403
0.299
0.736
1.22
1.71
2.22
2.74
3.26
3.77
6.98
7.27
6.63
5.85
5.12
4.49
3.97
3.53
3.16
1.39
0.813
0.548
0.401
0.309
0.248
0.205
0.173
0.148
0.0535
0.0293
0.0191
0.0137
0.0104

0.267
1.38
2.81
4.13
5 ~ 32
6.40
7.43
8.41
9.33

14.1

13.8
12.2
10.5
9.10
7.92
6.95
6.16
5.49
2.37
1.38
0.927
0.677
0.522
0.418
0.345
0.290
0.249
0.0899
0.0493
0.0321
0.0340
0.0175
0.0139
0.0114

TABLE III. The dielectronic-recombination coefficient for
Ar' + for initial ion states 1s 2s S and 1s 2p P and primary
radiative stabilizing transitions An=0 and b,n&0.
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TABLE IV. The dielectronic-recombination coefficient for
Fe + for initial ion states ls 2s S and 1s 2p P and primary
radiative stabilizing transitions En=0 and b,n&0.

Temperature
(keV)

Dielectronic-recombination
rate coefficient
(10 ' cm /sec)

1s2s S
An~0

1s~2p 2P

An&0
1s2s S
An=0

0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

70.0
54.8
44.2
36.5
30.8
26.5
23.0
20.2

8.22
4.70
3.12
2.27
1.74
1.39
1.15
0.964
0.826
0.296
0.162
0.106
0.0756
0.0576
0.0457
0.0375
0.0314
0.0268
0.009 50
0.005 17
0.003 36

0.008 66
0.0709
0.233
0.490
0.807
1.15
1.48
1.80
3.90
4.97
5.42
5.47
5.31
5.05
4.75
4.44
4.15
2.23
1.40
0.977
0.731
0.572
0.464
0.386
0.327
0.282
0.104
0.0576
0.0377
0.0271
0.0207
0.0164
0.0135
0.0113

0.0573
0.359
1.00
1.89
2.88
3.85
4.74
5.54
9.50

10.7
10.8
10.5
9.87
9.19
8.52
7.88
7.29
3.76
2.33
1.62
1.21
0.942
0.762
0.633
0.536
0.462
0.170
0.0939
0.0614
0.0441
0.0337
0.0268
0.0219
0.0184
0.0157

McLaughlin and Hahn, but that difference is inconse-
quential to the total coefficient.

As displayed in Table IX, the calculations reported here
and those of McLaughlin and Hahn for the b,n&0 radia-
tive stabilizing transitions with the initial ion state being
the 1s 2s S ground state are quite different. A portion of
the difference between the b n=0 calculations comes from
the termination in this calculation of the angular momen-
tum values for the autoionizing states larger than eight.
This error is only of the order of 20%. The cause of the
larger differences between the two calculations when the
initial ion is in the 1s 2s P state are not readily apparent.
However, if, in the calculations reported here, all radiative
transitions from autoionizing states based upon the
ls 3ln't' and ls 4ln'I' configurations to the states of the

TABLE V. The dielectronic-recombination coefficient for
Kr '+ for initial ion states 1s 2s S and 1s 2p P and primary
radiative stabilizing transitions An =0 and An &0.

Temperature
(keV)

s 2s
En=0

Dielectronic-recombination
rate coefficient
(10 ' cm /sec)

1s2s S
hn&0

1s 2p P
En&0

0.05
0.06
0.07
0.08
0.09
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

63.0
53.5
46.0
40.1

35.3
31.3
13.3
7.74
5.19
3.79
2.92
2.34
1.93
1.63
1.39
0.503
0.275
0.179
0.129
0.0980
0.0779
0.0638
0.0535
0.0457
0.0162
0.008 81
0.005 73
0.004 10
0.003 12
0.002 47

0.0192
0.0576
0.128
0.233
0.370
2.21
3.35
3.97
4.33
4.53
4.62
4.62
4.57
4.48
3.13
2.19
1.62
1.25
1.01
0.830
0.699
0.599
0.521
0.200
0.1123
0.0737
0.0531
0.0407
0.0324
0.0266
0.0223
0.0191

0.0168
0.0701
0.188
0.382
0.652
0.982
4.61
6.43
7.26
7.65
7.81
7.81
7.70
7.52
7.29
4.87
3.36
2.46
1.90
1.52
1.25
1.05
0.899
0.781
0.298
0.167
0.110
0.0790
0.0604
0.0481
0.0395
0.0332
0.0284

1s 2pn
"I" configurations are incorrectly treated as stabil-

izing (recombining) transitions, rather than just those to
states with energy below the first ionization limit (n" &no
of Table I), the McLaughlin and Hahn results are repro-
duced to within a few percent. Also, the proportionality
factor which McLaughlin and Hahn use for this case is
large, and it may well be that the accuracy of the
McLaughlin and Hahn scaling method decreases if this
factor is large.

Somewhat similar calculations for Ar' + were carried
out by McLaughlin and Hahn. However, a new propor-
tionality factor was not computed, i.e., they used the same
factor in these computations that was determined for
Fe +, arguing that over the range of ion charge in this
portion of the lithium isoelectronic sequence the factor
should be nearly constant. The differences between the
McLaughlin and Hahn results and those reported here are
somewhat smaller.
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FIG. 1. Detailed calculation of the rate coefficient for the
dielectronic recombination of Ne + in a low-density plasma.

FIG. 3. Detailed calculation of the rate coefficient for the
dielectronic recombination of Fe + in a low-density plasma.

The Ne7+ coefficients (Table VI) of Jacobs, Davis,
Rogerson, and Blaha and the Fe + coefficients (Table
VIII) of Jacobs, Davis, Kepple, and Blaha use autoioniz-
ing rates computed by a quantum-defect extrapolation
into the negative-energy region of partial-wave excitation
cross sections computed at threshold. Only dipole-
allowed excitations from the ground state ls 2s S (in LS
coupling) were considered. A distorted-wave theory was
used to compute the excitation cross sections. Apparently

a Hartree-Fock method was used to compute the bound
orbitals for the radiative transition rates. An I.S-coupling
scheme similar to McLaughlin and Hahn's was employed.
The calculations reported here agree to within a few per-
cent with those of Jacobs, Rogerson, Kepple, and Blaha
for Ne + and those of Jacobs, Davis, Kepple, and Blaha
for Fe + at the lowest temperatures where the An=0 ra-
diative stabilizing transitions dominate, but are approxi-
mately 50%%uo larger at the higher temperatures where the
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FIG. 2. Detailed calculation of the rate coefficient for the
dielectronic recombination of Ar" + in a low-density plasma.

FIG. 4. Detailed calculation of the rate coefficient for the
dielectronic recombination of Kr + in a low-density plasma.
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TABLE VI. Comparison of the dielectronic-recombination
coefficient for Ne'+ computed by several different methods for
the initial ion state 1s 2s with all radiative stabilizing transi-
tions.

Temperature
(keV)

0.008
0.01
0.05
0.10
0.50
1.00
2.00

Roszman

39.8
39.1

13.6
7.57
1.19
0.457
0.169

Dielectronic-recombination
rate coefficient
( 10 ' cm'/sec)
Jacobs, Davis,

Rogerson, and Blaha

33.9
35.7
11.1
4.80
0.951

Summers

27.2
23 ~ 3

5.39
2.18
0.862

TABLE VII. Comparison of the dielectronic-recombination
coefficient for Ar' + computed by several different methods for
the initial ion state 1s 2s with all radiative stabilizing transi-
tions.

Temperature
(keV)

Dielectronic-recombination
rate coefficient
(10 ' cm /sec)

McLaughlin
and HahnRoszman Summers

hn&0 transitions dominate. Similar ranges of agreement
and disagreement occur when comparison is made for the
coefficients of other elements in the lithium isoelectronic
sequence which have been computed by Jacobs, Davis,
and co-workers with coefficients computed using an
interpolation procedure for the detailed coefficients re-

ported here (discussed in Sec. V). The autoionization into
excited states with the same principal quantum number of
the excited electron as that of the core-excited electron of
the autoionizing state, a process which has been em-

phasized by Jacobs, Davis, and co-workers, has been in-

cluded in the calculations reported here. The modifica-
tion of the dielectronic-recombination rate coefficients by
these extra autoionization channels for highly charged
ions which are members of the lithium isoelectronic se-

quence is generally small since the less-excited Rydberg
autoionizing states which contribute most to the dielec-
tronic recombination lie below the threshold for these
channels. As an example, for Fe + only states from the
configurations 1s 3pnt with n & 24 can autoionize into the
continuum 1s 3sc.l'. A significant departure from this
model occurs for the less highly charged ions such as

Ne +. This departure is discussed in Sec. V. The major
difference between the atomic model used by Jacobs,
Davis, and co-workers and that of the work reported here
is the exclusion by Jacobs, Davis, and co-workers of the
nondipole excitations to configurations 1s 3snl and
1s 3dnl in the radiationless capture process and either the
subsequent decay by radiative transitions into the bound,
doubly excited states of the configurations 1s 2pn'I' or
the decay of nondipole autoionization into other energeti-
cally possible excited states. The rate coefficients of
Jacobs, Davis, and co-workers for Fe + can be repro-
duced to within 10% from the detailed calculations re-
ported here when only dipole-allowed autoionizing transi-
tions are included. A similar calculation for Ne + pro-
duces rates within 20%%uo of the Jacobs, Davis and co-
workers rates. While the extrapolation procedure likely is
not accurate for the lower members of the various au-
toionizing Rydberg series which are important for Fe +,
as discussed in Sec. V, the error introduced into the calcu-
lation of the total rate does not appear to be large. Of
course, this method also depends upon the accuracy of the
partial-wave-excitation cross sections. These are not
available for examination.

Summers in his large-scale ionization equilibrium calcu-
lations ' used the original Burgess analytic expression '

for the rate coefficient of dielectronic recombination with
the oscillator strengths computed in the Coulomb approx-
imation. The agreement between the data reported here
and Summers's for Ne +, Ar' +, or Fe + is not very
good since Summers's data differs only slightly from coef-
ficients computed using the original Burgess analytic for-
mula with oscillator strengths computed in the Hartree-
Fock approximation. As noted by Merts, Cowan, and
Magee, this is not a good approximation in the tempera-
ture region where radiative stabilizing transitions of the
type b, n&0 dominate. For Fe + the Summers's data is
somewhat larger than the Burgess data which probably re-
flects the error in extrapolation to outside the region
where data was actually calculated. The Ne + and Ar' +
coefficients were obtained by the spline interpolation sug-
gested by Summers and are within the region where data
was computed.

These comparisons demonstrate that when the regions
of validity of even simple atomic models overlap (such as
the low-temperature region) with the more exact and de-
tailed model defined in Sec. II, the agreement between the
total dielectronic-recombination rate coefficients is quite
good. However, models which oversimplify the atomic
structure, neglect important atomic processes, and the en-
ergy selection rules of various processes cannot yield accu-
rate dielectronic-recombination rate coefficients and must
be used with extreme caution.

V. FITTING AND INTERPOLATION OF THE DATA
0.10
0.50
1.00
2.00
3.00
6.00

15.3
7.12
3.62
1.56
0.903
0.341

7.9
4.3
2. 1

1.3

20. 1

11.1
7.71
3.49
2.15
0.813

The-relative differences between the coefficients for the
total gates related to the An&0 and En=0 radiative tran-
sitions computed as described above, and those computed
from the Burgess analytic formula for the An=0 transi-
tions and with the Merts-Cowan-Magee correction' for
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TABLE VIII. Comparison of the dielectronic-recombination coefficient for Fe + computed by
several different methods for the initial ion state 1 s 2s with all radiative stabilizing transitions.

Temperature
(keV) Roszman

McLaughlin
and Hahn

Dielectronic-recombination
rate coefficient
(10 ' cm /sec)

Jacobs, Davis,
Kepple, and Blaha Summers

0.10
0.50
1.00
3.00
6.00

22.0
7.74
4.98
1.56
0.630

8.37
3.21
1.1 1

22.8
4.54
2.67
0.806
0.323

26.0
17.1

13.8
4.94
2.06

where

B(z) = [z (z + 1)'/(z'+ 13.4)]'~',

E/T = (z + 1) (v; v; ) /Ta, —
with

(28)

(29)

a =1+0.015z /(z+1) (30)

and

A(x)=x 'i /(1+0. 105x+0.015x ),
for the original Burgess expression, or

A (x)=0.5x ' /(1+0. 210x +0.030x ),
for the Merts-Cowan-Magee correction' with

x =(z+1)/(v, —v; ) .—2 —2

(32)

(33)

The quantity f;; is the absorption oscillator strength for
the transition from the ground state i to the excited state

The summation over i ' is carried out for all transitions
of interest. The quantity v; is the effective principal
quantum number for the state i. The temperature T is in

rydbergs.
The relative difference displayed in Figs. 5—7 is defined

as the difference between the rate coefficient computed by
the detailed method and that computed from the

the b,n&0 transitions (in short, the Burgess-Merts formu-
la) are displayed in Figs. 5—7. The analytic Burgess-
Merts formula is the following

a( )= 4. 782&&11 ' T i B(z)gf;; A(x)e

Burgess™Merts analytic formula divided by the detailed
rate coefficient. Both unmodified hydrogenic oscillator
strengths and oscillator strengths and effective quantum
numbers computed in the single configuration, Hartree-
Fock approximations' were used in computing the rate
coefficients with the Burgess-Merts formula for the
An&0 transitions. Only the Hartree-Fock data was used
for the An=0 transitions. The data used in these calcula-
tions is tabulated in Tables X and XI. The differences be-
tween the rate coefficients computed from the Burgess-
Merts formula using either the hydrogenic or the
Hartree-Fock quantum numbers and oscillator strengths
reflect how "hydrogenic" the highly ionized elements of
the lithium isoelectronic sequence are.

A brief inspection of Figs. 5—7 reveals that in the
asymptotic temperature region [ T&0.9E, where E is de-
fined in Eq. (30)) the agreement between the dielectronic-
recombination rate coefficients for the ions Ar' +, Fe +,
and Kr + computed by detailed calculations reported
here and those computed using the Burgess analytic ex-
pression and the Burgess expression with the Merts-
Cowan-Magee correction, Eqs. (27)—(33), is remarkable,
being 20% or less. The differences near the temperatures
of the peaks of the rate coefficients and in the low-
temperature regions are quite large. The rates for Ne +
computed by the two methods are quite different. While
the causes for some of these differences have implications
for the determination of corrections to the Burgess-Merts
expression and for the derivation of alternate analytic ex-
pressions for the dielectronic-recombination rate coeffi-
cients, any agreement between the dielectronic-
recombination rate coefficients computed in a detailed

TABLE IX. Detailed data for this calculation and for that of McLaughlin and Hahn (Ref. 24) for
Fe23+

Ion state
hn change
Temperature

O eV) 1.00

1s2s S
An=0

2.00 4.00 1.00 2.00 4.00 1.00

Dielectronic recombination rate coefficient
( 10 ' cm'/sec)

s2sS
An~0

s 2p'P
An&0

2.00 4.00

Rosz man
McLaughlin
and Hahn

0.826
1.67

0.296
0.61

0.106
0.218

4.15
6.62

2.23
3.46

0.977
1.53

7.29
8.59

3.76
4.53

1.62
2.03
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3.977 06
3.99908

1.952 22
1.986 66
2.95408
2.986 76
2.999 51
3.954 66
3.986 80
3.999 35

1.967 45
1.990 61
2.968 74
2.99073
2.99963
3.969 14
3.990 77
3.999 51

1.976 72
1.993 15
2.97766
2.993 27
2.999 72
3.977 96
3.993 30
3.99964
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TABLE XI. The absorption oscillator strength for the noted transitions in lithiumlike ions and in hy-
drogen.

Transition Ne'+ Ar" + F 23+ Kr + H

2$-2p
2p-3$
2$-3p
2p-3 d
2p-4$
2$-4p
2p-4d

0.1534
0.02447
0.2992
0.6662
0.004 957
0.080 43
0.1232

0.078 27
0.018 72
0.3621
0.6789
0.003 979
0.091 48
0.1227

0.052 49
0.01694
0.3852
0.6841
0.003 662
0.095 23
0.1225

0.037 17
0.015 92
0.3993
0.6873
0.003 477
0.097 45
0.1223

0.013 59
0.4349
0.6958
0.003 045
0.1028
0.1218

As noted in the discussion of Sec. IV concerning the
data of Jacobs, Davis, and co-workers the use of autoion-
izing rates computed in the "dipole-only" approximation
is not adequate. Inspection of the autoionization rates
computed in the course of the detailed calculation report-
ed here reveals that the nondipole capture transitions (and
the corresponding autoionizing rates) from the states of
the initial configuration 1s 2sEl to the autoionizing states
of the ls 3snl and ls 3dnl configurations are at least as
large and generally larger than the dipole transitions to
the states of the 1s 3pnl configurations. The large radia-
tive transition rates from the 1s 3dnl configuration states
to those states of the 1s 2pn'l' configuration which are
below the first ionization limit cause the nondipole transi-
tions to contribute significantly to the dielectronic-
recombination process. This point was also noted by
Merts, Cowan, and Magee. ' The neglect of autoionization
into all energetically allowed continua based upon excited
configurations, such as the autoionization of 1s 3dnl into
the 1s 2pcl', 1s 3sgl', and 1s 3ppl' continua, can result
in the computation of a dielectronic-recombination rate
coefficient which is much too large. As noted below, this
neglect is most severe for light ions. Additional inspec-
tion of the data used here has revealed that radiative sta-
bilizing transitions by the more highly excited electron in
some autoionizing states is much larger than those of the
less highly excited electron, and, hence, cannot be neglect-
ed. The additional approximations have uncertain errors,
though it is known that the use of array-averaged transi-
tion rates generally yields dielectronic-recombination rate
coefficients which are too large. '

Several different atomic models which excluded various
autoionization and radiative stabilizing channels were
constructed in an attempt to determine the dominant pro-
cesses and to understand the agreement with the Burgess-
Merts analytic expression. No less detailed model than
the one described in Sec. II was found which would yield
accurate dielectronic-recombination rate coefficients over
the range of the lithium isoelectronic sequence considered
here and over the entire temperature range where the rate
coefficients were non-negligible. The failure of a simple
model to provide accurate rate coefficients can be under-
stood in terms of a few scaling laws of atomic quantities
and of some extrerna of several functional forms.

The scaling of the transition rates will be noted first.
The strongest radiative transition of an autoionizing state
which leads to a stable ground state generally involves the

core-excited electron (the less-excited electron). The rate
of this transition is essentially constant along a Rydberg
series since the more highly excited electron perturbs the
core only slightly, but does increase roughly as the fourth
power of the effective charge of the initial ion for b,n~0
transitions and as the first power of the effective charge
of the initial ion for An =0 transitions, ' i.e.,

and

A„(j;k)=const Xz (En&0) (34)

A„(j;k) =const &&z (b n =0), (35)

for the entire isoelectronic sequence, where z is the effec-
tive charge of the initial ion (before recombination). An
autoionizing rate for a particular state decreases as the in-
verse third power of the principal quantum number of the
state, ' but depends so weakly upon the effective charge of
the initial ion that it can be taken to be independent of the
charge over large portions of the isoelectronic sequence,
i.e.,

A, (j;iej ) =const/nj. , (36)

A, (j,ie, ) =a;/n, ',
the coefficient of the thermal exponential in Eq. (1),

a;/n A„(j;k)f(n)=
pa; /n + g A„(k;j)

(3&)

(39)

is a monotonically decreasing function which begins to
decrease rapidly along the Rydberg series (its second

for the entire isoelectronic sequence, where nj is the effec-
tive principal quantum number of the autoionizing state
labeled by j.

Next, several extrema of the dielectronic-recombination
rate coefficient as defined by Eq. (1) are noted. The tem-
perature T~ for which the rate coefficient for the dielec-
tronic recombination through a particular autoionizing
state, labeled by j, has its maximum is defined by the fol-
lowing:

T)
——2c,j/3 .

Assuming that the autoionizing rates along a Rydberg
series can be represented by their asymptotic form, name-

ly,
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n„= 2g A, (k;j)
(40)

For members of the series with principal quantum num-
ber n smaller than n„, the quantity f ( n) as defined in Eq.
(39) is almost constant. The rate of decrease of f(n) is
large once n & n if n is small, but is small if n is large.
If the energy cz is assumed to have a hydrogenic form,

ej. ——(z+1) 1 1 z
Pl.J

(41)

where v; is the effective quantum number of the interact-
ing bound electron in the continuum state of the ion and
v; is its effective quantum number in the core-excited
state, one can see that the thermal exponential at any tem-
perature is also a rnonotonically decreasing function of nz. .

The hydrogenic form of the autoionization energy, Eq.
(41), can be used to determine, approximately, the
minimum principal quantum number of the Rydberg elec-
tron nj at which autoionization into a particular excited
core can occur. Since the autoionization energy c& will be
zero at the threshold for autoionization, all states with
principal quantum numbers nj. satisfying the following in-
equality will autoionize into the continua which has the
core state containing an excited electron with effective
principal quantum number v;:

1
—1/2

z 1
n& ~ 2 2(z + 1 ) v;

(42)2
l

Generally, because the autoionization into excited states
occurs at small energies cJ, these rates are as large or
larger for all angular momentum values than those rates
for autoionization into the ground state.

For weakly charged ions, the radiative transition rates
for both the An=0 and hn&0 cases are typically 10 to
10 transitions/sec and are negligible compared to the au-
toionizing rates, which are on the order of 10'
transitionslsec. The quantity n„defined in Eq. (40) has a
value of n„=200. The rate coefficient for the dielectronic
recombination through the state with n =400 will be
roughly one-third the value for n =200, implying that the
convergence is slow. Clearly, for a high temperature, the
largest number of autoionizing states contributing to the
dielectronic recombination will be close to the large-n lim-
it of Eq. (42),

e =(z+ 1)
1 1

vr vs'
(43)

For all autoionizing Rydberg series of weakly charged
ions and for the An=0 series of all ions, n„ is quite large.
Autoionization into excited states will occur for small n~.

For somewhat more highly charged ions n„ is much
smaller for the autoionizing An&0 Rydberg series since,
because of the effective charge (z) dependence, the radia-

derivative with respect to n is zero) for n larger than the
value of n„which is determined from the following ex-
pression:

1/3
a;

tive rates become comparable to the autoionizing rates for
even the lowest members of a series. The dielectronic-
recombination rate is largest for the lower members of
these series and decreases rapidly for n 1 & n 0. The
analysis of the b,n=0 cases for these ions does not change
significantly because of the effective charge dependence of
the An=0 radiative transition rates. For very highly
charged ions, the radiative rates are much larger than the
autoionizing rates for all members of the b,n&0 series,
and the convergence pattern of the total dielectronic-
recombination rate is modified accordingly.

Ne + is essentially an example of the more weakly
charged ion case. For Ne +, n„=13 and the coefficient
for n=50 is approximately S%%uo of the term at n„. All the
states based upon the Is 3l and 1s 4l cores can autoionize
into the continua of the ls 2p core. For Ne +, autoioni-
zation of the states of the 1 s 3pnl and of the ls 3dnl con-
figurations into the continua of the 1s 3scl' configuration
occurs roughly for n larger than 13 and 11, respectively,
as computed from Eq. (42), and for 0+ for n larger than
11 and 9, respectively. The suppression of the dielectronic
recombination will be larger since these autoionizing rates
are large. This should account for the larger difference
between the rate coefficients computed by the detailed
method and those computed from the Burgess-Merts for-
mula for Ne + as noted in Fig. 5, and for the differences
for 0+ noted by McLaughlin and Hahn.

Ar' + is a transition case on the moderately charged
side. The n for Ar' + is n„=5 and the coefficient of
n =20 is approximately 5% of the one for n = 5. Au-
toionization into the excited states noted above occurs for
n larger than 19 and 16, respectively.

Fe + and Kr + are examples of the moderately
charged case. The n„ for Fe + is 2.6 with the coefficient
for n = 10 being 5% of the one for n . The autoioniza-
tion into the excited states occurs for n larger than 24 and
20, respectively, for Fe +. The n„ for Kr+ is 1.6, and
the n=6 coefficient is 5%%uo of the n„c oefficient. The au-
toionization into the excited states occurs for n larger
than 29 and 24, respectively, for Kr +. Of course, the n„
values for Fe + and Kr + have only mathematical
meaning since the Rydberg series does not contain these
members. Also, there is no significant suppression of the
dielectronic recombination by autoionization into the ex-
cited states.

In the single exponential of the Burgess expression the
energies of the autoionizing states are approximated by
the excitation energy of the stabilizing radiative transi-
tion, Eq. (43). This approximation yields nearly the
correct asymptotic temperature dependence, approximate-
ly T, for all ions. The correct temperature depen-
dence near the peak and in the low-temperature region for
any ion cannot be obtained with this choice of functional
form and of energy. The low temperatures emphasize the
energy and coefficients of the lowest members of a Ryd-
berg series which are not well approximated by any of the
asymptotic estimates discussed above. Additionally, the
larger differences between the energies of the lowest
members of a Rydberg series, which dominate the rate
coefficient for the dielectronic recombination of
moderately and highly charged ions, indicate that a single
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thermal exponential is unlikely to be an adequate repre-
sentation over the entire energy-temperature region which
is of importance. Experience with fitting the computed
data to interpolation expressions, which is discussed
below, supports this analysis.

The implications of the above analysis are that the scal-
ing of dielectronic recombination with the effective charge
of the ion and with the principal quantum numbers of the
members of a Rydberg series are too complex for a single
thermal exponential representation and for a monolithic
functional form for the coefficients of the thermal ex-
ponentials. Simple scaling arguments which assume that
the functional dependence upon the temperature, the prin-
cipal quantum number, and the ionic charge are the same
for all members of a Rydberg series which have a signifi-
cant contribution to the coefficient of dielectronic recom-
bination of an ion are not likely to produce useful ana-
lytic expressions over the entire temperature range or over
a significant portion of the isoelectronic sequence contain-
ing the ion.

A procedure which allows the interpolation of the
directly computed data described above for the total rates
of dielectronic recombination of the lithium isoelec-
tronic sequence and incorporates the implications of the
analysis described above has been developed and is
presented here. This procedure begins by fitting the total
rates for the four ions considered, Ne +, Ar' +, Fe +,
and Kr +, to a sum of exponentials,

1cx3/2c;e
i=1

(44)

where the parameters g; are determined by a minimization
procedure, and the coefficients c; by a linear least-
squares fit at each minimization step. The minimum
number of exponentials required to fit the data of each ion
over the temperature ranges 0.01—10 keV for the En&0
transitions was three, i.e., m=3, though as one might
suspect from the above discussion, two exponentials fit
the Ne + data almost as well as three. For the An=0
transitions over the indicated temperature ranges two ex-
ponentials were taken. The parameters g; and the coeffi-
cients c; are tabulated in Tables XII, XIII, and XIV.
These fits reproduce the directly computed data to better
than 0.01%.

Interpolation of the parameters g; and the coefficients
c; can be carried out by use of the following equations for

recombination through the An =0 radiative stabilizing
transitions:

and

3

log, o(c;)= g a;Jzj
j=1

4

g,-=z'g b,,z'-J .

(45)

(46)

For recombination through the An&0 transitions, the fol-
lowing equations can be used to interpolate the parame-
ters:

»glo(c ) = y tt j[»glo(z) V (47)

and

(48)

VI. CONCLUDING REMARKS

The dielectronic-recombination rate coefficients report-
ed here are for ions in the lithium sequence which are
several times ionized. The restriction to ions which are
several times ionized is based upon a conservative estimate

3

g, =z' g b,,z'-J,
j=1

where, as above, z is the effective charge of the initial ion.
The coefficients a,j. and b,z are tabulated in Tables XV,
XVI, and XVII. These coefficients were determined by a
linear least-squares fit. Many different functional forms
and methods of fitting the data were tried. These expres-
sions represent the most reasonable compromise between
smoothness of fit, accuracy of fit, the simplicity and econ-
omy of expression for the lithium isoelectronic sequence.
The expressions of Eqs. (44)—(48) cannot be used to extra-
polate to either heavier or lighter ions in the lithium
isoelectronic sequence since they represent fits of high-
order polynomials which diverge and are meaningless out-
side the data region used in the fit. Additionally, neither
the parameters g,. nor the coefficients c; should be com-
pared with the similar-appearing quantities in the
Burgess-Merts expressions [Eqs. (27)—(33)] since they
represent the rate coefficient for the total dielectronic
recombination of the ions in the lithium isoelectronic se-
quence rather than just the coefficients associated with a
particular radiative stabilizing transition.

TABLE XII. The coefficients and parameters for the fit of the exponential series
a= T ~ g, , c;exp( —g;/T) to the directly computed dielectronic-recombination-coefficient when the
initial ion is 1s 2s S and the primary radiative transitions have principal quantum-number change
b,n=0

C)

C2

4

Ne+

5.11X 10-"
0.186

9.13X 10—"
1.09

Ar" +

1-71 X 10
0.587

2.81 X 10
2.04

F 23+

1.71 X 10-"
0.587

3.64 X 10-"
2.90

Kr"+

2.92 X 10
1.00

6.18X1O-"
3.77
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TABLE XIII. The coefficients and parameters for the fit of the exponential series
a= T 3~2 +, , c;exp( —g;/T) to the directly computed dielectronic-recombination coefficients when

the initial ion is 1s 2s S and the primary radiative transitions have principal quantum-number change
An&0

Ci

C2

g2
C3

k

1.68 X 10
4.16

1.14X 10-"
8.40

8.49 X 10
10.8

Ar" +

1.86X10-"
11.6

1.31 X 10-'
28.3

1.59 X 10
38.3

p 23+

7.41 X 10
22.5

2.07 X 10-'
56.0

3.34 X 10-'
81.3

1.99X 10-'
41.2

4.26 X 10-'
105.8

5.99X 10-'
160.3

TABLE XIV. The coefficients and parameters for the fit of the exponential series
a=T ~2+, , c;exp( g/T) to—the directly computed dielectronic-recombination coefficients when
the initial ion is 1s 2p P and the primary radiative transitions have principal quantum-number change
hn &0

C)

Cp

4
C3

4

Ne+

3.43 X 10-"
3.29

1.94 X 10
7.18

2.46X 10-"
9.35

Ar" +

4.08 X 10-"
9.95

2.08 X 10
26.0

2.69 X 10-'
36.0

F 23+

1.65 X 10
20.1

3.20 X 10-'
52.8

5.15 X 10
78.1

Kr33+

3.27 X 10-'
37.7

6.48 X 10-'
101.5

8.41 X 10-'
156.0

TABLE XV. The coefficients of the least-squares fit to the parameters and coefficients of the three-
exponential fit to the directly computed dielectronic-recombination coefficients when the initial ion is in
state ls 2s ~S and the radiative transitions are hn=0, and where log~o(c;) = g, a;Jzj
g; =z"g. b;,z', and z is the effective charge of the initial ion.

Q)j
b)j
Q2j

b2j

—12.24
0.000 0125

—10.46
—0.000 002 53

J=2
0.136

—0.000 769
0.0702

0.000 185

J=3
—0.001 58

0.0137
—0.000 999
—0.005 55

j—4

—0.0363

0.186

TABLE XVI. The coefficients of the least-squares fit to the parameters and coefficients of the
three-exponential fit to the directly computed dielectronic-recombination coefficients when the initial
ion is in state ls 2s S and the radiative transitions are An &0, and where log~o(e;) = g. aj [log~0(z)]
g; =z g. b;Jz' J, and z is the effective charge of the initial ion.

Qij
bij
Q2j

b2j
Q3j

b3j

—10.16
0.0275
—30.50
0.0694
—24.86
0.128

1=2
—5.83
0.324
49.61
0.940
32.80
0.617

J=3
8.00

0.547
—38.51
—1.58
—22.78
0.178

j—4

—2.32

10.16

5.53
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TABLE XVII. The coefficients of the least-squares fits to
the parameters and coefficients of the three-exponential fit to
the directly computed dielectronic-recombination coefficients
when the initial ion is in state 1s 2p P and the radiative transi-
tions are An &0, and where log|0(c; )= gi a~ [log, o(z)]
g'; =z g. biz' ', and z is the effective charge of the initial ion.

a~&

bjj
021

b2J

Q3~

b31

—5.02
0.0272
—30.02
0.0700
—20.79
0.127

j=2
—19.38
0.234
49.10
0.797
24.44
0.499

j=3

20.40
0.319

—38.18
—1.83
—16.64
—0.407

j=4
—6.02

10.09

3.99

of when the atomic model defined in Sec. II is an accurate
representation of the actual physical situation. Ion s
which are less highly ionized require consideration of the
effects of core relaxation (the frozen-core model should
not be used) since the effective nuclear charge does not
produce such a dominant potential for these ions. Be-
cause the electron-electron interactions become more im-
portant for the weakly charged ions, Hartree-Fock ex-
change interactions should be used instead of the local po-
tentials considered here. Strong electron-electron interac-
tions also suggest that the complex effects of configura-
tion interaction may be quite important and that ortho-
gonality of the various orbitals must be "forced." Inter-
mediate coupling might change the rate coefficients some-
what from the LS-coupling case by modification of the
atomic structure and alteration of the various recombina-
tion channels. An additional potential complication is
that the autoionizing resonances may overlap and interfer-
ence between the resonant (dielectronic) and direct (radia-
tive) recombination process may occur. ' In these cases
the expressions for the computation of the coefficient of
dielectronic recombination is more complicated than that
of Eq. (1). For highly charged ions, relativistic modifica-
tions of the (initial ion) core states will have some influ-
ence upon the potentials produced. Whether the change
of the angular momentum coupling scheme from LS cou-
pling to intermediate coupling will have effects which sur-
vive the summation over all possible states is unknown
and problematic. Recent analysis of the configuration
interaction for Fe +, which has a roughly equivalent ef-
fect upon the dielectronic recombination process, showed
large modifications in the dielectronic-recombination rate
coefficients through individual autoionizing states but
only small differences when the coefficients for the rate of
total dielectronic recombination were considered.

In order to compute detailed cross sections of the
dielectronic-recombination process for even the range of
ionization stages considered here, or in order to compute
the spectra of satellite lines produced by dielectronic
recombination, one must use the more complete descrip-
tion of the atomic physics. For these quantities, the
correct positions of the autoionizing states, and, at a
minimum, the relative strengths or intensities can be mea-
sured.

The omission of the ls (E-shell) excitation is not a seri-
ous approximation in the temperature regime for which
the lithiumlike charge state for an ion is the dominant
charge state. ' However, in a very hot, very rapidly
recombining, tenuous plasma, dielectronic recombination
through the 1s excitation channels could become impor-
tant.

The detailed calculations reported here as well as those
discussed in Secs. IV and V are based upon the model of a
low-density plasma with no applied external fields. Ef-
fects such as the modification of ionization limits, of en-
ergy levels, and of atomic states by plasma produced
and/or applied external fields and the variation of the
population of the autoionizing states by collisions with
constituents of the plasma before radiative stabilization
can occur will likely alter the rate coefficients for dielect-
ronic recombination in higher-density plasmas and experi-
mental situations. Since the states of the 1s 2pnl configu-
rations are the most weakly bound, they will most likely
be affected first and quite strongly. Whether these envi-
ronmental effects will increase or decrease the rate coeffi-
cient of dielectronic recombination cannot be estimated
without additional detailed calculations since the various
processes can be of the same size and of opposite influ-
ence.

The general conclusion which can be drawn from com-
parison of the detailed calculations reported here with
other calculations and from the analysis of the magnitude
of the influences of the various autoionization and radia-
tive channels is that all processes must be included in the
atomic model in order to determine accurate dielectronic-
recombination rate coefficients. Simplification of the
atomic model of the dielectronic-recombination process
by neglecting specific processes will lead to the computa-
tion of inaccurate rate coefficients in one temperature re-
gion or portion of the isoelectronic sequence even though
accurate results may be obtained in some other region.
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