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Effective eigenvalue for the intensity correlations of single-mode and two-mode lasers
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Exact formulas for the effective eigenvalue characterizing the initial decay of intensity correlation
functions are given in terms of stationary moments of the intensity. Spontaneous emission noise and
nonwhite pump noise are considered. Our results are discussed in connection with earlier calcula-
tions, simulations, and experimental results for single-mode dye lasers, two-mode inhomogeneously
broadened lasers, and two-mode dye ring lasers. The effective eigenvalue is seen to depend sensitive-

ly on noise characteristics and symmetry properties of the system. In particular, the effective eigen-
value associated with cross correlations of two-mode lasers is seen to vanish in the absence of pump
noise as a consequence of detailed balance. In the presence of pump noise, the vanishing of this
eigenvalue requires equal pump parameters for the two modes and statistical independence of spon-
taneous emission noise acting on each mode.

I. INTRODUCTION

Dynamical information on the statistical properties of
laser light is obtained from the steady-state time-
dependent intensity correlation function. Generally
speaking, the intensity correlation function can be ex-
pressed as a superposition of decaying exponentials whose
damping constants are calculated from a certain eigen-
value problem associated with a Fokker-Planck equation. '

A global characterization of the correlation function is
given by the relaxation time 1, defined as the area under
the normalized correlation function. The correlation
time includes, in principle, contributions from all the
eigenvalues, but it gives no information on possible dif-
ferent time regimes of evolution. An alternative partial
characterization of the correlation function is given by an
effective eigenvalue A.,rf or weighted decay rate, "which
is the reciprocal time constant associated with the initial
slope of the correlation function. This quantity also con-
.tains contributions from all the eigenvalues. The behavior
of T and A,,fr is sometimes similar. En fact, if a single
eigenvalue dominates the decay of the correlation func-
tion, T =A,off This is, for example, the case for a single-
made gas (He-Ne) laser. However, if different time scales
are involved T and A,,~r can be quite different and in this
case A,,~f gives precise information on the initial decay of
the correlation function.

T and k,~f depend sensitively on the characteristics of
the noise present in the system. This is because the eigen-
value spectrum depends on the noise characteristics. The
spectrum and correlation functions of a single-mode gas
laser on resonance are by now well understood. ' However,
anomalous statistical properties have been observed in a
single-mode dye laser. '" These have been attributed to
pumping fluctuations. ' A phenomenological modeling

of pumping fIuctuations leads to equations which include
multiplicative (state-dependent) noise and in which span-
taneous emission noise is neglected. ' Multiplicative
noise gives rise to a continuous eigenvalue spectrum and
to a slowing-down phenomena in the sense that T grows
with increasing noise intensity. ' ' Experimental results
for the intensity correlation functions of the single-mode
dye laser indicate ' ' that pumping fluctuations cannot
be modeled by a white noise, but they rather have a finite
correlation time. It has been recently shown"" that
when taking into account nonwhite pumping fluctuations
the intensity correlation function exhibits for short times
a very slow decay with a characteristic plateau. This ini-
tial behavior should be characterized by A,,ff In fact one
can show that for the model under consideration the ini-
tial slope of the correlation function vanishes'"b'
(X ff—0). This result seems to be in agreement with ex-
perimental measurements which discriminate times of 1

psec. ' However, these results were based on a model on
which spontaneous emission was neglected. This approxi-
mation is known to be unreliable far below threshold. '

The importance of spontaneous emission noise in the tran-
sient statistics of dye lasers have also been recently em-
phasized. ' ' The theoretical characterization of the ini-
tial decay through the calculation of A,,f~ taking into ac-
count spontaneous noise remains then an open question.

The statistical properties of two-mode ring lasers have
been reviewed by Singh. For an inhomogeneously
broadened ring laser (gas), experimental and theoretical re-
sults do not show important discrepancies. The eigen-
value spectrum is exactly known for equal pump parame-
ters of the two modes (a& ——a2). Several approximate
calculations exist for a~&a2. ' ' The autocorrelation
seems to be fairly well represented by a sum of two ex-
ponentials. The situation is not so clear for the homo-
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geneously broadened two-mode dye laser. Similarly to
what happens for the single-mode dye laser, it seems that
a model for a proper description of this system requires
taking into account pumping fluctuations. An extensive
experimental study of the autocorrelations and cross
correlations of this system has been recently reported.
The main qualitative features which have been observed
are reproduced by a simulation of a model which includes
nonwhite pump fluctuations and spontaneous emission
noise. Both the autocorrelation and cross correlation ex-
hibit in a short time scale a small initial slope. By analo-

gy with the single-mode case" it has been suggested that
this is due to the nonwhite character of the pumping fluc-
tuations, but no theoretical characterization of this regime
through the calculation of the corresponding A, eff exists so
far.

In this paper we calculate the effective eigenvalue
which characterizes the initial decay of the correlation
function for single-mode and two-mode lasers taking into
account spontaneous emission white noise and pumping
fluctuations modeled by a nonwhite noise. For the two-
mode case our results are valid for homogeneously
broadened and inhomogeneously broadened lasers as well
as for different values of the two pump parameters. An
important difference between this and other studies is that
we do not attempt a direct calculation of A,,tt by explicitly
calculating the eigenvalue spectrum. We give exact re-
sults for A,,ff in terms of moments of the stationary distri-
bution. We obtain these formulas by an analysis of the
different role of white and nonwhite noise in the continui-
ty properties of the time derivative of the correlation
function at the initial time and by exploiting symmetry
properties of the models under consideration. Our results
indicate that the analysis of the effective eigenvalue gives
a reliable method to determine the existence of different
sources of noise in the system, as well as the main charac-
teristics of the noise. It also gives a good test of the sym-
metry properties of the system.

The outline of the paper is as follows. In Sec. II we
consider single-mode lasers. We first analyze a general
mathematical model for a single variable including both
white and nonwhite multiplicative fluctuations. Our gen-
eral analysis is then applied to a single-mode dye laser.
We obtain that A,,tt becomes different from zero due to
spontaneous emission noise. Our results are discussed in
connection with experimental and simulation data. The
dependence of A,,tt on pumping fluctuations is elucidated.
Section III is devoted to two-mode lasers. Again, we first
analyze a mathematical model (Sec. III A). This analysis
permits us to clarify the role of symmetry properties and
of the statistical independence of different sources of
noise. General results are then given for a two-mode laser
valid both when pumping fluctuations are present or ab-
sent (Sec. III B). We then study the relevance of these re-
sults for previous theoretical and experimental studies of
inhomogeneously broadened lasers (Sec. III C). The effect
of mode competition in the effective eigenvalue of the au-
tocorrelation is analyzed. We also show that the effective
eigenvalue associated with the cross correlation vanishes
for any value of the pump parameters due to the property
of detailed balance. In Sec. IIID we finally consider

two-mode dye lasers. We analyze our results in the con-
text of experimental and simulation data. We discuss
the dependence of Agff for the autocorrelation on pumping
fluctuations. We also show that due to pumping fluctua-
tions the effective eigenvalue associated with the cross
correlation in general does not vanish except if the two
pump parameters are equal. The Appendix contains an
explicit calculation of correlation functions for a linear
two variable model in which the different effects associat-
ed with symmetry properties and nonwhite noise are
clearly displayed.

. II. SINGLE-MODE DYE LASER

Before studying the problem of the single-mode dye
laser, we consider the following general one-variable prob-
lem for a relevant variable x:

B,x (t) =u (x)+g (x)p (t) +h (x)q (t) . (2.1)

Here p (t) stands for colored noise, which we do not need
to specify at this point, and q (t) is a Gaussian white noise
with zero mean and correlation

(q(t)q(t') ) =2D5(t t') . — (2.2)

We wish to obtain the value of the initial slope of the
correlation function C(s) in the steady state. C(s) is de-
fined by C(s) = (x (t +s)x (t) )„—(x )„. The initial slope
is given by

C(0+ ) = lim C (s) .
s —+0 C&

{s)0)

(2.3)

+(x(t)h(x(t+s))q(t+s))„. (2.4)

In (2.4) the two first terms are continuous functions of s
at s =0. On the other hand, because q (t) is a white noise,
the last term has a discontinuity at s =0, so that

lim (x(t)h(x(t+s))q(t+s))„=D(xhh')„,s~0
{s&0)

(2.5a)

lim (x(t)h(x(t+s))q(t+s))„=D(xhh')„+D(h )„.
s —+0
{s(0)

(2.5b)

In the steady state we have B,(x (t).)„=0. This implies
the relation

(xu)„+(xgp)„+ (xhq)„=0.
Using

(xhq )„=D(xhh')„+D(h 2)„

(2 6)

(2.7)

in (2.6), and taking also into account (2.4) and (2.5a), we
obtain in the limit s~0 (s )0)

C(0+)= —D(h )„. (2.8)

Taking Eq. (2.1) at time t+s, and multiplying it by x(t),
we get

C(s) = (x (t)u(x (t +s) ) )„+(x (t)g(x (t +s) )p (t +s) )„
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We conclude from this result that when there is no white
noise, D=0, the initial slope vanishes. This is not
surprising, since C(s) is an even function of s, and when
there is no white noise present, it has a continuous deriva-
tive at s =0. On the contrary, if white noise acts on the
system, D&0, we have

emission fluctuations are not considered, C(0+ ) =0.
However, these fluctuations cannot be neglected, specially
for small intensities, ' and therefore C(0+) is not strictly
zero.

One'quantity of interest to characterize the correlation
function is the effective eigenvalue k,tt given by "'

C(0 ) = lim (x (t +s)x (t) )„s~0 dS
(s (0)

= —C(0+) =D(h )„. (2.9)
where

C(0+) 4D

X(O)(I)„' (2.17)

Note that the relation C(0+)+C(0 )=0 always holds.
This relation is equivalent to 8, (x (t) )„=0.

We now consider the problem of the single-mode dye
laser. This system can be described by' '

B,E=(a A
i
E —

i
')E+p(t)E+q(T), (2.10)

where E is the laser complex amplitude. The random
term p (t) models the fluctuations of the pump parameter
a. It is assumed to be Gaussian with zero mean and
correlation function of the form

(p*(t)p(t ')) =Q « (2.1 la)

q(t) stands for the spontaneous emission fluctuations,
whose real q and imaginary part q are independent
Gaussian white noise of zero mean and correlation

=2D5(t t') . — (2.11b)

For later reference we consider the dimensionless form of
(2.10),

B,E=(a —~E ~')E+p(t)E+q(t), (2.12)

where we have introduced the following dimensionless
variables:

—1/4

E = — E, t =(DA)' t, a =(DA) ' a . (2 13)

In these variables we have D = 1 and

Q =(DA)-'"Q, r=(DA)-'"r . (2.14)

From (2.10) we obtain an equation for the laser intensi-

B,I=2(a AI)I+2p (t)I+2q—(t)E +2q (t)E

(2.15)

This equation is similar to (2.1), but we have now two
variables, due to the complex character of E. However,
taking into account that q, q are independent, we can
obtain the initial slope for the intensity correlation follow-
ing the same method than for (2.1),

(2.16)

It was shown in Ref. 11(b) that when the spontaneous

dC(0+)= lim (I(t+s)I(t))„= 4D(I)„. —
cE$

(s)0)

C(s)
(I),',

(2.18)

The first thing we would like to point out is that (2.17) is
an exact result, given in terms of moments of the station-
ary distribution. Earlier approaches to the general prob-
lem of calculating A,,ff were based on different approxima-
tion methods.

Concerning experimental data, ' it is not easy to obtain
the initial slope in order to compare it with the one given
by (2.17). Such comparison requires accurate data in
short time scales. However, it seems that the initial slope
is small, which corresponds to a small value of the addi-
tive noise intensity D. It is also observed that the decay
of A,(s) is slower when (I)„grows. This agrees, at least
qualitatively, with (2.17). At this point we also note that
the values for A,,tt obtained by approximating C(s) by a
sum of a few exponentials do not give a good test of
(2.17). In fact, to obtain a good estimation of A,,tt, we
must consider a time scale short enough for the curvature
to be negligible. The effective eigenvalue k,ff predicted by
Eq. (2.17) is shown in Fig. 1 using experimental and simu-
lation values of A,(0) versus (I)„(Ref. 17). The validity
of the model (2.10) for the dynamical properties of the
system could be tested by a comparison of the results in
Fig. 1 with a direct measurement of A,,ff.

An interesting piece of information that can be extract-
ed from (2.17) concerns the influence of the multiplicative
noise p('t). Although the expression for A,,tt is the same,
the dependence on (I)„ is different with and without
multiplicative noise. This is due to the different variation
of A,(0) with (I)„in both cases. The effective eigenvalue
for the system (2.12) without multiplicative noise is shown
in Fig. 2 in the dimensionless units of (2.13). The station-
ary moments needed are taken from Ref. 1. Comparing
Figs. 1 and 2 we observe that pump fluctuations cause a
large reduction of A.,tt due to the peak of A, (0) and
suppress the minimum of A,,ff. Measurements of A,,ff give
a way to check the existence and characteristics of pump
fluctuations and also to determine their intensity. We re-
call that if p (t) were a white noise there would be an addi-
tional contribution to (2.17) proportional to Q. An exper-
imental determination of the value of Q from measure-
ments of A,,tt require, in principle, an evaluation of (2.17)
for different values of Q, but no analytical results are
known for A,(0) and (I )„,and values obtained from simu-
lations are only known for a single value of Q. ' Howev-
er an estimate of Q can be obtained recalling that for
large values of (I)„, spontaneous fluctuations can be
neglected and pump noise can be approximated by a white
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FIG. l. A,,f» vs (I ) for a single-mode dye laser with pumping
fluctuation. Intensity scale in arbitrary units. Continuous line
follows from the simulation of (2.12) with Q =300, I'=5 (Ref.
17}. Dots follow from experimental results of Ref. 17.

FICx. 2. A,,tt vs (I ) for a single-mode laser (no pumping fluc-
tuations).

noise in the calculation of A, (0). ' In this approximation
A(0) =Q/(I )„so that for large (I)„,A,,tt(Q)Q =const.

III. TWO-MODE LASERS

In the case of two-mode lasers new aspects are faced:
Different sources of noise must be considered for each
mode, and we can also study the initial slope of the cross
correlation. In order to discuss these new aspects in a
general framework we first consider a general two-
variable model.

( q,'(t)q»(t') ) =2Ds»5(t t') . — (3 2)

A. A general two-variable model

We consider a general system described by the follow-
ing equations for the two variables x»,x2.

Btx» ——v1(x»,x2)+g", (x „x2)Pk(t)+h", (x»,x2)q„',
(3.1)

Btx2 —v2(x», x2)+g2(x», x2)Pk(t)+& 2(x1,x2)q„,
where pk(t) are colored noise which we do not need to
specify here and q„' are Gaussian white noise with zero
mean and correlation

ishes in the absence of white noise. On the contrary, the
initial slope of the cross correlation, C12(s)
= (x1(t +s)x2(t) )„—(x1),t(x2 ),„, can be different than
zero, even in the absence of white noise. A vanishing

C12(0+) is rather related to a symmetry of the system
(3.1) under the interchange of x1 and x2. In this connec-
tion, the linear problem studied in the Appendix shows by
an explicit solution that this symmetry is a necessary and
sufficient condition for C12(0+ ) to vanish when q ',q are
independent white noise. We will now show that for a
two-variable system (3.1) symmetric under the interchange
of x1 and x2, and with independent white noise for each
variable (D„'» 0), C——12(0+) vanishes. The reason for this
result is the following. %»hen the white noise acting on
each variable is independent, the cross correlation has a
continuous derivative at the initial time. Then, due to the
even parity of C12(s)+C2, (s), we get C12(0)+C21(0)=0.
Now, using the symmetry x&~x2, it can be shown that
C,2(0) =C2, (0). Therefore, we obtain C12(0)=0. How-
ever, when the white noise acting on each variable are not
independent (D„'» &0), the continuity argument for C12(0)
does not hold, and we can have C12(0+ )&0.

Let us assume that

In Eq. (3.1) summation over repeated indices is assumed.
Following the approach used in Sec. II it is straightfor-
ward to get the initial slope of the autocorrelations
C;;(s):—(x;(t +s)x;(s) )„—(x; )„

V2(X»,X2)=V1(X2,X1):—V (X2,X1),

g2(X1,X2) =g1(X2,X1)=g (X2,X1),k k k

~2(xltx2) 1(X2~X1)= 1 (X2~xl) ~

(3.4)

C»1(0+)= Dr'»(h (x»,X2)h—»~(x», X2))st (i =1,2) . (3.3)

It is clear that the initial slope of the autocorrelation van-
I

dC12(0+)= lim (x1(t+s)x2(t))„
s —+0 dS

(s )0)

so that EtIs. (3.1) are symmetric under the interchange
x»~X2, q, :=q„. Multiplying Eq. (3.1) for x1(t+s), by
x2(t), we get

Bh "(xt, x2 )» 1, tlh '(x t,x2 )= (X2V(X1|X2))st+ (X2g (X 1ix2)pk )st+ X2 h (X 1~x2) Dr» + X2 (X2»X1) Dr»
st st
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where we have calculated &x2(t)h'(x~(t+s), xq(t+s))q„'(t+s) &„ in the limit s —+0 (s &0). In the steady state
B,&x~(r)xz(t) &«=0, so that

Bh "(x(,x2) 11
& xzu(x~, x2) &«+ &xqg (x»x2)pk &«+ x2 h (x ~,x2) D„~

BX1 st

Bh "(xi,xz) i,z+ x2 h x2,x1 DrI + h x1,xp h x2~X1 stDrI ——0 .
BX2 st

(3.6)

To get (3.6) we have used the following symmetry rela-
tions for an arbitrary function p(x &,x2): B,I, =2(a, AI, —gI2)I—~

&y(x„x, ) &«= &q(x„x))&«,

&q(x1 x2)pk &«&q'(x2 xl )pk &st

Using (3.6) in (3.5) we get

(3.7)

+2p ~(r )I, +2q f (t )E
& +2q, (t )E &,

J

B,I2 ——2(az AI2 —gI, )I2+—2p (T)Iz

+2q, (T)E g+2q2(T)E, ,

(3.11)

C&2(0+) = DJ &h—"(x&,x2)h'(x2, x~) &« . (3.8)

B. Effective eigenvalues for two-mode lasers

This is the main result of this section. It agrees with ihe
one obtained for the linear system in the Appendix and it
shows that when the symmetry properties (3.4) are as-

sumed C&2(0+)=0 if q ~ and q2 are independent.
We finally note that in the particular case of a Marko-

vian system (no colored noise), it is possible to study other
symmetry properties associated with detailed balance.
Such properties can also lead to the vanishing of C~z(0+),
without assuming (3.4). When the variables x; are even
under time reversal, detailed balance implies that
C~2(s)=C2~(s). Then, if C&2(s) has a continuous deriva-
tive at s =0, as it happens when the noise acting on each
variable is independent, C&2(0) vanishes.

where R (I) means real (imaginary) part. Defining nor-
malized correlations A.;i(s)=—C~J(s)/(&I; & «&I J&«) we ob-
tain

C,, (0+)
A, , (0+)=

&I, &.',
4D

(i =1,2) (3.12)

C„(0+)
A&2(0+)= =0 (ai ——a2) .

&I, &«&I, &«
(3.13)

This last result is obtained using the symmetry under the
interchange of the two modes and the independence of q &

and qz. When a t &a2, a straightforward calculation leads
to

&IiI2 &.t
A, &z(0+) =(a~ i2)—

&I&&&I, &.,

The approach used in Sec. III A to get the initial slope
of the autocorrelation and cross-correlations for a two-
variable mode1, can be applied to two-mode lasers,
described by the following equations:

~tEI (+1 A
I
Ei

I

'—k I
E2

I
')Ei+p(r)E&+q&(t»

(3 9)

B,E2 ——(a2 —A
I
E2

I

'—p E,
I

')E, +p (i )E,+q, (T),

where q;(t) are independent Gaussian white noise, with
zero mean and correlation

& q;*(t)q, (T') & =45;,D5(t t ') . —(3.10)

q1 and q2 model spontaneous emission fluctuations. We
have also included in (3.9) a colored noise p(t) [with the
properties (2.11a)] associated with pumping fluctuations
which are known to be important for dye 1asers. ' The
mode-coupling parameter in the dimensionless units of
(2.13) is smaller than one, g'(1, for inhomogeneously
b'roadened lasers. It is clear that (3.9) is symmetric under
the interchange E1+ E2, q1= =qq, when a1 ——a2 ——a. We
apply now the method used in Sec. IIIA to get the initial
slope of the autocorrelation and cross correlation of the
field intensity I; =

I
E;

I
. We take as a starting point the

equations for I;,

+2D 1

&I, &„
(3.14)

4D

&I, &„X,, (0)

We also define A,,'g~ by analogy with X,"f~ as

A, )p(0+ )
eff g (0)

(3.15)

(3.16)

Our results in this section clarify a previous sugges-
tion of a vanishing slope for the cross correlation of a
two-mode dye laser due to nonwhite pumping fluctua-
tions. This is a necessary condition, but we have seen that
the result can be derived only when pump parameters are
equal, and the spontaneous emission noise for each mode
are independent. However, for inhomogeneously
broadened gas lasers pumping fluctuations are not impor-

When a~ ——a2, &I~ &„=&I2&„, &I2I& &„=&I&I2&«and we
recover (3.13).

The effective eigenvalue A,,"~~ can be obtained from
(3.12),
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tant, p(t)=0, and the resulting Markovian system satis-
fies the property of detailed balance. In this case, ac-
cording to the discussion at the end of Sec. III A, we also
have A,,'tt ——0, for any ha =a, —az. When pumping fluc-
tuations are present, the effective eigenvalue A,,'tt vanishes
in general only when a ~

——a2. A more detailed account of
these results is given in Secs. III C and III D.

C. Inhomogeneously broadened two-mode lasers

We now discuss the consequences of the general results
(3.12) and (3.14) for inhomogeneously broadened lasers.
These formulas are valid for any value of the coupling pa-
rameter g and in particular for the weak-coupling case
/&1 corresponding to inhomogeneously broadened gas
lasers. In this case pumping fluctuations are not believed
to be important, but the formulas (3.12) and (3.14) are still
valid. A first obvious consequence of (3.12) is that a
difference in pump parameters b.a =a

&

—a 2 can be identi-
fied from the initial slopes of A, ~t and A,2z. For /&1 and
b,a &0, (I~ )„becomes distinctively larger than (Iq)„
so that the initial slope of A, » should be much smaller
than that of A,q2. Our results can be compared at least
qualitatively, with the explicit calculations of A, »(s) and
A,2z(s) by Tehrani and Mandel for g= 1 and b,a =0. The
first thing to be noticed is the different initial behavior of
A, ~ ~(s) and A, &2(s) (Figs. 6 and 7 of Ref. 23). Such behavior
is compatible with a vanishing initial slope for A, &z(s) and
a nonvanishtng slope for A, ~&(s), as predicted here in gen-
eral. Also, their eigenvalue expansion formula for
(I, (t+s)I, (t) }„,s,s'=1,2, implies that A&~(0+) is a neg-
ative definite quantity, while for A, &2(0 ) a cancellation of
terms is possible compatible with A, ~2(0+)=0. In addi-
tion, the initial relaxation of A, ~~(s) becomes slower with
increasing pump parameter. This is also compatible with
(3.12) since (I, }„is a monotonous growing function of
the pump parameter.

The effective eigenvalues predicted by (3.15) and (3.16)
for the autocorrelation are shown in Figs. 3—5 for dif-

eff
16-

12
O1

FIG. 4. )I ff vs a, for a two-mode laser, /=0. S (no pumping
fluctuations).

ferent values of ba and g' in dimensionless units [see
(2.13)] for model (3.9) with p(t)=0. We include results
for strong coupling g'=2 as appropriate for homogeneous-
ly broadened lasers in the absence of pumping fluctua-
tions. The stationary moments needed are taken from the
results of Ref. 23. We obtain here exact results for these
effective eigenvalues without need of addressing the
dynamical problem through the calculation of eigen-
values. This was the method followed in other ap-
proaches, as, for example, using a one-dimensional ap-
proximation to calculate A,,'tt (Ref. 22). In Fig. 3 we ob-
serve that this approximation is reliable well above thresh-
old (large a

&
). However, it leads to different values of A.,'tt

for b,a = + 1 below threshold, whereas our exact results
show that in this region A,off does not change appreciably
with Aa. In fact, in the weak-coupling case (g & 1) the ef-
fective eigenvalue A,,tt tends below threshold to the one of
the single-mode case (see Fig. 5). In Fig. 4 we observe
that when /=0. 5 the behavior of A,,'tt with a ~ is similar to

11

ef f16

12
12

I

12

ha=0

FIG. 3. A,,'ff vs a& for a two-mode laser, g=1 (no pumping
fluctuations). Dotted lines correspond to a one-dimensional ap-
proximation (Ref. 22).

FIG ~ S~ I ff vs a & for a two-mode laser, g =2 (no pumping
fluctuations). Dotted line corresponds to the single-made case
=0.
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that of the single-mode case. This corresponds to a weak
coupling. When the coupling is stronger, g) 1, and there
is no dominant mode, b,a =0, A,,rr has no minimum (Figs.11

3 and 5). The behavior of A,,'rr is different from that of the
single-mode case due to the competition between the two
modes. However, when one mode dominates (ha = 1, and
g)1), A,,'rr behaves again as in the single-mode case. Fig-
ures 3—5 show that useful information on the values of g'

and ba can be obtained from measurements of A,,'rr.
Concerning experimental data for A,,'rr, they fit well only

for a &4 with theoretical results for g'=1, ha =0 (see
Fig. 5.5 of Ref. 22). Note, however, that the experimental
results were obtained by using a sum of two exponentials
for the correlation function, which might not be reliable
for estimating the initial slope.

It can be shown that the effective eigenvalue for the
cross correlation vanishes. As we noted in Sec. III A, for
a Markovian system it is easy to verify if detailed balance
holds. This is the case for model (3.9) without pumping
fluctuations. Consequently, the cross correlation is an
even function. Due to the independence of the white noise
for each mode the cross correlation has a continuous
derivative at the initial time. Therefore, the initial slope
of the cross correlation vanishes. This result also follows
from Eq. (3.14). A lengthy but straightforward calcula-
tion of the time-independent correlations in the right-
hand side of (3.14) using the results in Ref. 23 shows that
A, ~q(0 ) vanishes identically. A similar result is obtained
in the Appendix. Note, however, that now X,~~ vanishes
even when a&&a2. In this case there is no symmetry
under the interchange of E~ and E2. The vanishing of
A,,'~~ is due exclusively to the detailed balance property.
%'e remark that this result can be obtained only when the
colored pumping fluctuations are neglected (Markovian
case).

D. Two-mode dye laser

eff

1Q 2 10-' 100 lQ'

FIG. 6. A,,'rt vs (I)=(I~)+(I,) for a two-mode laser, /=2,
Au=0 including pumping fluctuations. A, ~~(0) obtained from
simulation with Q =500, I =5 (Ref. 27).

the intensity Q of pump fluctuations in the simulation
was not adjusted to fit the experimental results, Q being
too large. This leads to a larger peak of A, »(0) than the
experimental one. The range of values of (I)„ is also
larger than the experimental one. As a consequence, the
experimental k,'rr is larger than the effective eigenvalue
predicted from simulation results. As we already dis-
cussed for the single-mode case, Eq. (3.12) is the same
when pumping fluctuations do not exist. The actual value
of A,,'rr depends on pumping fluctuations through the dif-
ferent values of k&~(0)(I)„. A comparison of A,,'zq includ-
ing or not including pump fluctuations is seen from Figs.

'6 and 8. The observed differences can be used to check
the existence and determine the intensity of pump noise.
In particular we observe that pumping fluctuations are
predicted to cause a large reduction of A,off due to the peak
of A, »(0) (compare scales of Figs. 6 and 8). In Fig. 6 we

2
8xl0

2
4xlQ

~ ~ ~ ~
I II

0.25x10 0.25xlO ' 0.25xl00.25

FICx. 7. A,,'rr vs (I)=(I~)+(I2) for a two-mode dye laser.
A, ~&(0) obtained from experimental data (Ref. 27).

We now turn our attention to ring dye lasers for which
pumping fluctuations are known to be important. 2 '' We
first consider the autocorrelations. An asymmetry in the
pumping parameters will be again reflected in different
initial slopes of A, ~~(s) and A,~2(s). Other than that, the
main qualitative features of the autocorrelations are the
same as for the single-mode case. In the following we re-
strict ourselves to the symmetric case a =0. The initial
slope of A,;;(s) is predicted to be very small well above
threshold, but for small (I; )„spontaneous emission noise
becomes important and the slope is not necessarily small.

The experimental and simulation results of Lett and
Mandel indicate a slower relaxation of A, »(s) with in-
creasing (I&)„which is in agreement with the implica-
tions of Eq. (3.12). The effective eigenvalue 7gff predicted
by Eq. (3.12) is shown in Figs. 6—8 in the dimensionless
units of (2.13). Figure 6 gives A,,'rr using for the time-
independent correlation A.»(0) the values obtained in the
simulation of Ref. 27. In Fig. 7 the time-independent
correlations are the experimental ones. Figure 8 gives
A ff in the absence of pump noise using the time-
independent moments needed as calculated in Ref 23. .
%'e observe that the simulation gives much smaller values
for A,,'tr than those in Fig. 7. This is due to the fact that
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200-

100-

)0-1 &0' )01

FIG. 8. A,'ff vs (I ) = (I~ ) + (Iq ) for a two-mode laser, / =2,
ha =0 (no pun. ping fluctuations).

IV. SUMMARY AND CONCLUSIONS

In this paper we have obtained exact expressions for ef-
fective eigenvalues characterizing the initial decay of the

also see that the initial decreasing of A,Jf with the mean
intensity is much faster than in Fig 8. T. his is originated
in the increasing part of A.»(0) with (I),„. A quantitative
determination of Q and I from measurements of I,,'ff re-
quires curve fitting with previous knowledge of A, (0) for
different noise parameters. Measurements of X(0) al-
ready give a way to determine noise parameters but A,,ff
seems to be more sensitive to the actual values of the noise
parameters. In particular we recall that (3.15) is only
valid for I ' strictly different from zero. In any case the
determination of noise parameters through (3.15) gives a
stringent consistency test of the accuracy of parameters
determined through measurements of A,(0).

Concerning cross correlations, the simulations of Ref
27 for short times indicate a clearly different behavior of
A, »(s) and A.,2(s). The cross correlation A, &z(s) exhibits a
very flat initial decay and certainly much slower than A, ».
This is compatible with our result of zero initial slope for
A, &2 when a& ——az and nonzero slope for I,». This differ-
ence is also seen in larger time scales of the same simula-
tion. %e have already mentioned that our result
A, ~z(0+)=0 for a~ ——a2 is based on symmetry properties
and on the assumption of independence of the spontane-
ous noise driving each mode. Therefore, the nonwhite
character of the pumping fluctuations is a necessary but
not sufficient condition to have A, ~z(0+)=0. In fact, our
prediction based on model (3.9) is that generally
k~q(0+)&0 for a~&a& even if pumpin~ fluctuations are
not white. In summary, a vanishing A,d~ indicates either
the absence of pumping fluctuations or ba =0. The first
possibility can be ruled out considering the behavior of

ff versus (I )„. In addition, b,a =0 implies that
jeff—jeff. The explicit values of 2,'ff for a &&a2 cannot be
given since no analytical or simulation results exist at
present for the stationary moments of the intensity distri-
bution P(I~,I2) when a~&az.

intensity correlations in single-mode and two-mode lasers.
These expressions are given in terms of stationary mo-
ments. The effect of pump noise and symmetry proper-
ties on the effective eigenvalues have been analyzed in de-
tail. In particular we have discussed the conditions under
which the effective eigenvalue vanishes. Our main results
are the following. For the single-mode dye laser we ob-
tain that the existence of spontaneous emission noise im-
plies a nonvanishing initial slope. The slope becomes
larger where spontaneous emission is more important rela-
tively to pumping fluctuations, that is for small mean
value of the intensity. The actual value of A,,ff depends
implicitly on pumping fluctuations through the mean
value of the intensity. Measurements of A,,ff give then a
way to probe the existence of pumping fluctuations. Ad-
ditional information on the dependence of static proper-
ties as A,(0) on noise parameters can be used as an alterna-
tive consistent way to experimentally determine noise pa-
rameters from measurements of A,,ff.

The results for two-mode lasers given an interesting ap-
proach to compute the effective eigenvalue for the inho-
mogeneously broadened case in which pumping fluctua-
tions are not crucial. Our explicit results show that when
the coupling is weak the behavior of the effective eigen-
value A,,ff is similar to the single-mode case for different
values of b,a. But if the coupling becomes stronger and
there is no dominant mode (ha =0), A,,'ff has no minimum
in contrast with the single-mode case. However, if one
mode dominates the other, A,,'g~ behaves again as in the
single-mode case. Measurements of the effective eigen-
value give then a way to analyze the competition between
the two modes.

Concerning cross correlations, we have shown that, in
the absence of pump noise, they have a vanishing initial
slope. This result is due to the existence of detailed bal-
ance and to the assumption of statistical independence of
the spontaneous emission noise acting on each mode.
This result is valid for arbitrary values of b,a.

A proper description of a two-mode dye laser requires
considering colored pump noise. In this case the cross
correlations are found to have a vanishing initial slope
only when b,a =0. This result clarifies a previous sugges-
tion of a vanishing slope due to colored pumping fiuc-
tuations. This is a necessary condition if pumping fluc-
tuations exist, but the result only follows if b,a =0. An
additional requirement of statistical independence of the
spontaneous emission noise for each mode is also needed.
We have also given a formula (3.14) for the initial slope of
the cross correlation in a general case. The effective
eigenvalue A,,'ff of the autocorrelation is never exactly zero
due to the spontaneous emission noise. %'e have comput-
ed A,,'ff using simulation and experimental results for
time-independent moments, concluding that A,off can be
used to determine the parameters characterizing the
pumping fluctuations.

As a final general conclusion we point out that the ef-
fective eigenvalue is a quantity very sensitive to the
characteristics of the noise acting on the system and, as a
consequence, it provides a good way of determining which
are the sources of noise acting on the system and their
characteristic parameters.
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APPENDIX

x ~ (t)= —,
' f du [(e + +e )g&(t —u)

—~+"+p(e + —e )rtz(t —u)]+x&(0),
(A2)t Q —A, +Qx2(t)= —, du[(e +e + )g2(t u—)

0

)g&(t —u)]+x2(0),
where

In this appendix we study the following two-variable
linear model:

' 1/2

A, + —1+(ab)'~ &0, p=
b

(A3)

B,x~ ———x& —ax2+g&(t),

B,x2 = —x2 —bx ) +F12(t),
(A 1)

(i) We consider first the case of independent noise
sources with zero mean and correlations

where we take a, b ~ 0 and ab & 1 in order to have a stable
system when taboo.

The explicit solution of (Al) is given by

(q;(t)rj;(t') ) =5;,A;, (t t') . — (A4)

In the steady state we get the following correlation func-
tion:

r

C,2(s)= —,
' f du Ip '[A»(s —'u)+A~~(s+u)]+p[A22(s —u)+A22(s+u)]I

0 A+

Q

e

+Ip '[A&&(s —u) —A~~(s+u)] —p[A2z(s —u) —Aq2(s+u)]I(e —e +
)

When g;(t) is a colored noise, the initial slope of the cross correlation is

Ci2(0)= —,
' f du[pA22(u) —p 'A~~(u)](A, e —A, +e + ) .

The vanishing of C&2(0) is therefore equivalent to the condition

a(g2(t)g2(t')) =b(g](t)q/(t')) .

(A6)

When q~ and g2 are independent and with the same correlation function this implies a =b. This corresponds to a sys-

tem (Al) symmetric under the interchange of x& and x2. We also note that the vanishing of C&2(0) is equivalent to
C2&(s) =C&2(s) [see (A5)]. This result is due to the linearity of the system (Al).

When g ~
and gq are white noise,

(q;(t)g,.(t') ) =25;,D, 5(t t'), —

we obtain

(AS)

C,2(0)= —,
' (bD, aD2) . — (A9)

The condition for C~2(0) =0 is then the same as when g~ and g2 are independent colored noise.
(ii) As a second case we consider the same source of noise for each variable, q ~

——g2. We then have from (A2)

C)~(s)= —, f du [A(s —u)+A(s+u)] P P e + + e
OO (1+ p)(1+p ') —&+~ (1—p )(1—p ')

+[A(s —u) —A(s+u)][(p —p ')(e + e )) (A10)

For colored noise the initial slope of C~2(s) is

C&2(0).=
& f du A(u)(A, e —A, +e + ) .

4(ab) '~2

I

C&2(s)=C2&(s). However, when we consider that g~ ——gq
is a white noise the situation changes. In this case we ob-
tain

(Al 1) C(2(0+)= —D 1+ (a b)—
2

(A12)

The vanishing of C~2(0) is again equivalent to the condi-
tion a =b. Note that this is also equivalent to which is not zero when a =b. This is due to the discon-
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tinuity of C&z at the initial time. But we see from (A10)
that the symmetry of C,2(s) under time reversal is again
equivalent to a =b.

We can summarize our results for the linear system
(A 1) as follows. The even parity of C&2(s), i.e.,
C&q(s)=Cz&(s), is equivalent to condition (A7). Then,
when, q& and gz have the same correlation function,
& ~~(u) =222(u), this is equivalent to a =b, corresponding
to equations symmetric under the interchange of x& and
x2. Now, for a cross correlation with continuous deriva-
tive at the initial time the parity of C&z leads to the van-
ishing of the initial slope of C~q. This situation happens
in the cases of colored noise and independent white noise

for each variable. We remark that in these cases the con-
dition a =b is equivalent to the vanishing of C&2(0) but
not for q~

——g2 white noise. %'e finally note that in the
particular case of a Markovian system (g~, rl2 white noise),
condition (A7) is equivalent to the existence of the de-
tailed balance property. This means that the variables
x&,x2 are even under time reversal. Then the invariance
of C~2(s) under time reversal can be derived as a conse-
quence of this property. Note, however, that in the Mar-
kovian case the equivalence of detailed balance and the
symmetry under the interchange of x~ and x2 (a =b) is
due to the linearity of the system (Al) (see Sec. III C).
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