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Infrared radiative corrections: Extended treatment applicable to resonant scattering
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The calculation of infrared radiative corrections to scattering cross sections, to which a great deal
of attention has been devoted in the past, is reconsidered here and carried to a higher order of accu-
racy within the context of a specific relativistic model. Earlier work, initiated by Low [Phys. Rev.
110, 974 (1958l] and developed further by others, which led to soft-photon approximations for
bremsstrahlung amplitudes, is extended to apply to virtual- as well as real-photon emission and ab-
sorption processes. As in the earlier work the requirement of gauge invariance plays a central role
in the analysis. Evaluation of the new correction term obtained here requires, as input, the physical
(on-mass-shell) amplitude for scattering in the absence of radiative interactions. The new term is ex-

pected to lead, in most cases, to only small modifications of the results obtained by standard
methods; verification of this expectation would provide a useful check on the range of validity of
these standard procedures. It is pointed out that for scattering in the neighborhood of a very narrow
resonance the new correction term, which properly accounts for rapid variations of the scattering
amplitude with energy, could become numerically significant. In an attempt to examine this possi-
bility in a very preliminary yet quantitative manner the radiative correction terms derived here have
been evaluated with the aid of a simple Breit-Wigner representation of the radiation-free scattering
amplitude, and some typical results are reported.

I. INTRODUCTION

It is a well-known feature of scattering theory that, as a
consequence of the imperfect energy resolution of particle
detectors, analyses of collision processes involving
charged particles must include the effect of energy loss
caused by the emission of soft photons. After removal of
infrared divergences one is left, in such analyses, with fi-
nite radiative corrections. ' In energy regions where the
cross section is rapidly varying, near narrow resonances
and reaction thresholds in particular, the standard treat-
ment of these radiative corrections can be inadequate.
Here we indicate, in the context of a particular model,
how to extend the standard treatment through the in-
clusion of corrections of higher order in the photon fre-
quency. In doing so the effect of the energy variation of
the scattering amplitude is accounted for to greater accu-
racy. If the variation is rapid enough —that is, if the cross
section changes appreciably as the scattering energy is in-
creased from E to E+A, where A is a suitably chosen
soft-photon cutoff energy —the new correction term can
be significant. This is illustrated in the numerical esti-
mates presented below. If, as will be true in most cases,
the cross section is slowly varying on this scale the correc-
tion should be small; the validity of the standard soft-
photon approximation can be investigated quantitatively
with an explicit form for the higher-order correction term
in hand.

Our treatment of radiative corrections to resonant
scattering may be thought of as an extension of the
Feshbach- Yennie theory of low-frequency bremsstrah-
lung —the emission of a single real photon during a
resonant collision. In that work Low's soft-photon
theorem was generalized to account for a rapid energy

variation of the cross section. Here we are concerned with
the radiation of an undetected photon, with energy below
some value AE corresponding to the detector resolution.
This process may be treated in the manner of Feshbach
and Yennie. In addition we must include the effect of vir-
tual photons. With terms of higher order than e ignored
( e is the electric charge) this amounts to the inclusion of
processes in which a single virtual photon is emitted and
reabsorbed. Our treatment of this effect is based on the
general analysis of soft-photon approximations given
some time ago by Brown and Csoble. These authors
showed how improved accuracy in the evaluation of mul-
tiphoton bremsstrahlung amplitudes can be obtained
through application of gauge invariance requirements.
They were primarily concerned with emission and absorp-
tion of real photons but as they remarked, and as is
shown explicitly below, it is a simple matter to adapt their
methods to the problem of infrared corrections involving
virtual photons.

It will be convenient to begin, in Sec. II, with a brief
summary of one of the standard treatments of the in-
frared radiative correction problem. This provides the
necessary preparation for the subsequent material, in Sec.
III, in which a more accurate calculation is presented.
The result of that calculation has the interesting feature
that the radiative corrections are expressed in terms of the
physical, on-shell cross section for scattering in the ab-
sence of any radiative interaction. We point out how the
calculation could be extended to still higher order in the
photon frequency; this would require, as additional input,
the physical single-photon bremsstrahlung amplitude.
For the sake of numerical orientation we have evaluated
the relative size of the new correction term obtained here
to the standard one over a range of scattering energies in
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with

—ie f ' d k (2p+k)"(2p+k)
(2m) " k —is (p+k) +m i—E

The condition p +m =0 has temporarily been lifted at
this point in order that we may first carry out the mass-
renormalization procedure in second order. As a first
step we make the subtraction

[(p +k)'+ m ] '~ [(p +k)'+ m '] ' —(2pk +k')

= —[(p+k) +m ] '(p +m )(2pk+k )

(The —is contribution to the energy denominators is im-
plied when not explicitly written. ) A similar subtraction
applied to the term depicted in the second diagram of Fig.
2(a) removes that term completely. Before taking the lim-
it p +m ~0, as required, we must evaluate the factor
(p +m )(p +m )

' in an unambiguous way. It may be
shown that the proper choice for this factor is —,'. The

contribution from the diagrams of Fig. 2(a) then becomes

i ) ~
' d k (2p+k)

(2') k (2pk+k )

to which must be added a similar term with p~p' corre-
sponding to the diagrams of Fig. 2(b}. Finally, from the
diagram of Fig. 2(c) we obtain the contribution

i —
~ d~k (2p'+k)(2p +k)

(2m. ) k (2p'k+k )(2pk+k )

Note that in this expression we have kept the elastic
scattering amplitude at its physical, mass-shell value.
That is (following Brown and Goble ) we have anticipated
that off-mass-shell contributions cancel. We will be more
explicit about this point below. (Cancellations of this type
are familiar from the work of Low and of Feshbach and
Yennie. } Collecting results we have, from the diagrams
of Fig. 2, an approximation to the tensor T" of Eq. (2.2)
which may be written as

2p +k 2p'+k
2pk +k 2p'k +k

2p+k
2pk +k

—2[T(s kP, t) —T(s, t)—] 2p'k +k 2pk +k
(2.5)

Taking into account the energy dependence of the elastic
scattering amplitude we see that the approximation (2.5)
fails to satisfy the gauge invariance requirement

k„T&"=k T&"=0 . (2.6)

We postpone consideration of this point until Sec. III,
where an improved approximation which does satisfy (2.6)
is obtained, and proceed, in the remainder of this section,
with a sketch of the standard derivation of the cross sec-
tion in which only the most singular terms are retained.

The cross section oo 2 is obtained from the right-hand
side of Eq. (2.1) by replacing T(s, t) with the amplitude,
denoted as M02, which includes the correction terms
shown graphically in Fig. 2. If we retain only the terms
in Eq. (2.5) which are most singular in the infrared limit
we obtain the approximation

2

Mop-=T(s t) 1+ —e f1 2 'dk p' p
(2n. )4 2 k~ p'k pk

with

1 +~&»z
ln

~P»p

2 2 1/2
ppe

&t&z
(p p )2

(2.9)

(2.10)

This formula holds for p»pz, for p&
——pq

——p we have
I (p,p) = —1. These results, applied to Eq. (2.8), then give

Mo p=T(s, t) 1 ——,
'

A ln— (2.11)

with

I

of the angular integrals which will be required here are
obtained from the formula'

1 2 1I(pl,p2):—(pipe) d 0
4~

(2.7}

The k integration can be carried out by the method of
residues, as described, for example, in Ref. 7. The expres-
sion (2.7) then becomes

2
1 1+Pt t,—2+ ln

this leads, in turn, to the approximation

(2.12}

2 AM„=T(s,t) 1 ——,
' ', f f d' n' (2~)3 ~ co p'l pl

2
A

ao 2=wo o 1 —A ln (2.13)

(2.8)

Here l is the four vector (1, 1), with 1.1= 1 and the angular
integration is over the directions of the unit vector 1. All

As remarked earlier one should add to o.o 2 the brems-
strahlung cross section o.

] 2 appropriate to the emission of
a photon with energy anywhere in the interval between A,

and AE, where hE is the energy resolution of the detector.
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Let us write this cross section as

o~q ——J ~(s —m M ) lM& & l
(2~) $(p+p —p' p' k)

dp' dP"' dk 4

X( ~kI (aE (2w) 2' (2m. ) 2E~ (2n) 2
l
k

l

(2.14)

Here M1 1
——M1 1"e& is the single-photon bremsstrahlung

amplitude correct to first order in the charge and e& is the
photon polarization vector. As a first approximation we
have (following Brown and Goble)

A brief calculation then gives

hE
01 2= 0'0 0A ln (2.19)

The observed cross section, correct to second order, is

M 1"—-e1, 1

2p'+k " 2p —k "
, T(s, t)+T(s+kP, t)

2p'k +k —2pk +k
(2.15)

AE
~0,2+~1,2=00,0 1+A ln (2.20)

This form (which, it should be noted, involves only the
on-shell value of the elastic amplitude) satisfies the
gauge-invariance condition

the logarithmic singularity associated with the limit X~O
having cancelled in forming the sum. "

kpM1 1"——0 (2.16) III. IMPROVED TREATMENT OF INFRARED
CORRECTIONS

p pMq ("-=eT(s,t) p'k pk
(2.17)

Since the condition (2.16) is satisfied by the approxima-
tion (2.17) the sum over transverse photon polarization
states can be performed as

M
pol

(2.18)

only in the approximation that the energy dependence of
the elastic amplitude may be ignored. When this is not
the case additional terms must be added to Eq. (2.15) to
enforce the condition (2.16), as discussed in Sec. III. With
only the most singular part retained we have

A. Amplitude corrections

PP
e [T(s +kP, t) T(s, t)]-

Pk
(3.1)

which is nonsingular in the limit k~O. The exact ampli-
tude may then be expressed as

As pointed out in Ref. 4 a deficiency in the approxima-
tion for the bremsstrahlung amplitude shown in Eq.
(2.15), namely, that it fails to satisfy the gauge invariance
condition (2.16), may be corrected through the addition of
the term

2p'+k" 2p —k " P" 2p —k"
M, ,~=e T(s,t),+, +[T(s+kP, t) T(s, t)] +-

2p'k+k~ —2pk+k~ Pk —2pk+k
+R&, (3.2)

where the remainder R" is nonsingular. Nominally, R" is
of order unity in the infrared limit, approaching a con-
stant, independent of k, for k~o. However, the fact that
R" satisfies the gauge invariance condition

(3.3)

allows one to conclude that the limiting value is zero.
This information is obtained by differentiating Eq. (3.3)
with respect to k and setting k =0. Since R" vanishes
for k~0 the terms in the expansion of M11" of order
k ' and k are both given correctly in the approximation
obtained by neglecting R" in Eq. (3.2), and this is the con-
tent of the low-frequency theorem for the bremsstrahlung
amplitude.

The derivation given above has been simplified by the
neglect of the dependence of the elastic amplitude on the
off-shell variables g=p +m and g'=p' +m . That is,
we should have introduced the extrapolated amplitude
T( t, gs', g'), with T(s, t, 0,0)=T(s, t) representing the on-

shell limit. The result of the derivation would have been
the same, however. To see this consider, for example, the
first term in the approximation (2.15). This should, more
properly, have been written as

e T(s, t, 2p'k+k, O) .
(2p'+k)"
2p'k +k

Expanding about g' =0 we have

T(s, t, 2p'k +k, O) =T(s, t, 0,0)+(2p'k +k ) (3.4)

the off-shell extrapolation has led to the introduction of
an addition term e(2p'+k)" dT/dg'. In a similar way, ex-
trapolation in the variable g brings in the additional term
e(2p k)I'BT/Bg. Both terms s—hould be included in the
representation (3.2) of the exact bremsstrahlung ampli-
tude. However, since these additional terms are nonsingu-
lar we may consider them to have been absorbed in the
remainder R", thereby leaving the form of Eq. (3.2) un-
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changed. We may then argue as before that R" is gauge
invariant as well as nonsingular, and therefore vanishes as
k goes to zero; inclusion of the effects of off-mass-shell
extrapolation has not altered our previous conclusion. It
should be noted that the correction term (3.1) may play a
significant role for scattering near a resonance whose
width is comparable to AE. If one does retain the correc-
tion then, for consistency, the treatment of virtual photon
corrections must be improved in a similar way. The
method for doing so will now be described.

We wish to improve on the accuracy of the approxima-
tion (2.5) for the tensor T"; recall that the second-order
virtual photon correction to the elastic scattering ampli-
tude is obtained by inserting T"" in the integral (2.2). In
obtaining Eq. (2.5) we accounted for diagrams in which
the virtual photon line is attached at both ends to external
charged-particle lines. We now wish to include diagrams,
of the type shown in Fig. 4, in which one end of the pho-
ton line is attached to an external line and the other to an
internal line; the corresponding amplitudes contain single
rather than double poles and are therefore of higher order
in the photon frequency than the terms already included.
%'e omit those nonsingular contributions corresponding to
purely internal radiative corrections. One might expect
that this will introduce an error of order unity for k~0.
It will be shown, however, that these nonsingular terms
are in fact of order k; their neglect constitutes the low-
frequency approximation for the tensor T" . The argu-

ment is based on the gauge-invariance condition and is
analogous to the one presented above in connection with
the bremsstrahlung amplitude.

The amplitudes depicted in Fig. 4 may be evaluated
from a knowledge of the bremsstrahlung matrix element.
It is not the full amplitude which is to be inserted, howev-
er, since to do so would be to include the terms already
accounted for in Eq. (2.5). The proper part to insert is the
difference between the full amplitude M] &" and the pole
terms shown in Eq. (2.15). With the aid of Eq. (3.2) one
sees that this difference, denoted as M

&
]", can be ex-

pressed as

PP
Mi i "(p',p)=e [T(s +kP, t) T(s, t)—] +Rt'(p', p) .

(3.5)

The dependence of the functions M~ ~" and R" on the
charged-particle mom enta is indicated explicitly here,
with all other momentum dependence left implicit. It is
understood that it is the on-mass-shell elastic amplitude
which appears in Eq. (3.5); as discussed earlier, the off-
shell contributions have been separated off and defined to
be part of the nonsingular remainder R". The graphs of
Fig. 4 are now evaluated with M~ ~" used to define the
bremsstrahlung subgraph —the vertex to which the four-
particle lines and single-photon line are attached. The re-
sult may be interpreted as a correction of the form

e [T(s,t) —T(s kP, t)) — +[T(s+kP, t) —T(s, t)]
P" (2p+k)" P" (2p' —k)
Pk 2pk+k Pk —2p'k +k2

+e R "(p',p +k), +R"(p' kp)—(2p +k), (2p' —k)"
2pk+k —2p k+k

(3.6)

which is to be added to the approximation (2.5) for T"'.
The function R" which appears in the expression (3.6)
may be evaluated with each particle momentum on the

appropriate mass shell. To see this, consider first the pho-
ton momentum. The photon is virtual, with k &0.
However, we may expand about k =0 and note that all
terms except the first may be neglected. These higher-
order terms introduce at least two additional powers of k.
Thus they contribute to corrections to T" which vanish
in the limit k~0 and terms of this order are omitted in
the low-frequency approximation adopted here. Turning
now to the dependence on the off-shell variables
g=p +m and g'=p' +m we observe that the expres-
sion (3.6) is to be contracted with g„and that R"k„=0.
Let us now write the function R "(p',p+k)p„, which ap-
pears in the contraction of the expression (3.6), as the sca-
lar function Y(g', g) with g=(p+k) +m =2pk+k and
g'=0. (The dependence of Y on the remaining scalar
variables which enter into a complete definition of the
function is suppressed here since it plays no role in the
analysis. ) Expanding about /=0 we have

FIG. 4. Radiative corrections in which one end of the
virtual-photon line is attached to an internal charged-particle
line with the other end attached to an external line.

Y(0,2pk+k ) = Y(0,0) + g 0
1 1 BY

2pk +k 2pk +k

(3.7)
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The leading term is on the mass shell. The next term is
nonsingular in the infrared limit and is neglected in the
low-frequency approximation for T"". The last term in
the expression (3.6) is analyzed in a similar way, and the
neglect of off-mass-shell extrapolations of the functions
appearing in (3.6) is thereby justified.

Proceeding with our analysis we note that the photon
propagator in the integral (2.2) is even in k so that the
sign of k may be changed freely in any one of the terms
contributing to T" . In particular, the second term in the
expression (3.6) will be rewritten as

e [T(s,t) T(s ——kP, t)]
P" (2p'+k)
Pk 2p'k+k

We now add a term to T"" which is nonsingular in the
limit k~0 and which leads to a gauge-invariant approxi-

mation, ' the procedure being followed here is analogous to
that which led us to add the term (3.1) to the approximate
bremsstrahlung amplitude. The term added to T" is

BT
e T (s kP—, t) T(—s, t) +kP (3.8)

The derivative term was included to provide us with a
nonsingular function but this term may in fact be neglect-
ed since it is odd in k while the remaining factors in the
integrand are even.

The foregoing discussion has led us to a representation
of the amplitude Mo z in the form

~ d4k
Mo 2 ——T(s, t) — g&„(T""+R"") (3.9)(2~)' k'

with

T""=——,e T(s, t)
2p'+ k

2p'k +k
2p+k

2pk +k
2p'+ k

2p'k +k
2p+k

2pk +k

V

—2[T(s kP, t) —T—(s, t)]
2p'+ k

2p'k +k
P 2p+4

2pk +k
p

Pk
(3.10)

Since the approximation T" satisfies the same gauge in-
variance condition (2.6) as the exact tensor the same must
be true for the remainder, that is

T""have been explicitly included. It follows that the er-
ror is of order k in the limit k ~0, that is, we have the
low-frequency approximation

kpR" =k R" =0 . (3.11) T"'=T"'+R (""+O(k) . (3.13)

An approximation to R" is provided by the last two
terms, involving R", in the expression (3.6). In the ab-
sence of resonance effects it would be reasonable to ignore
the small momentum shifts in the arguments of R" and
write R" =R)",with

R,p"=eRI (p' )
(2p +k) (2p' —k)

. (3.12)
2pk +k —2p'k +k

Since this approximation is gauge invariant the same can
be said for the error R" —R&" . Furthermore, this error
must be nonsingular since all the singular contributions to

PV—e [R"(p',p +k) —R~(p' —k,p)] Pk
(3.14)

resulting in the gauge-invariant approximation R"
=-R2~", with

Consider now an improved treatment in which the pos-
sibility of a strong momentum dependence of the function
R" is accounted for. Following the now familiar pro-
cedure we add to the original approximation to R"" [the
last two terms in the expression (3.6)] a term, shown
below to be nonsingular, of the form

R2""-=e R "(p' —k,p)
(2p +k)" (2p' —k)" + [R"(p',p +k) R "(p' k,p)]- —(2p +k)"
2pk +k —2p'k +k 2pk +k

PV

Pk
(3.15)

The error involved in this approximation is of order k
since it is both gauge invariant and nonsingular. The im-
proved low-frequency approximation to T" is obtained
by adding the expressions (3.10) and (3.15).

The claim that the expression (3.14) is nonsingular in
the limit k~0 can be verified as follows. Consider the
scalar Z =R "(p',p)P~. Since all the momenta are on the
mass shell Z is a function of five invariants which may be
chosen as s = pP, s'= p'P, t = (P' —P)—, u =pk, — —
and u'=p'k. The added term (3.14), after contraction
with g„, is then expressed as

—e(kP) '[Z(s kP, s', t, u, u') —Z(s, s'+kP, t,—u, u')] .

(3.16)

This approaches the nonsingular form e (BZ/Bs
+BZ/Bs') in the limit k~0.

B. Cross-section formulas

Let us summarize the results obtained up to this point.
The cross section of interest is the sum o.,&,

——o.
&
2+o.o 2

with cr, 2 given by Eq. (2.14) and oo 2 by the version of
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(2.1) in which T is replaced by Mo z. With R" neglected
in Eq. (3.2) we have an approximation to Mi i& which
correctly reproduces the terms of order k ' and k in the
bremsstrahlung amplitude. %'ith R&" neglected in Eq.
(3.9) we have an approximation to Mo 2 correct to order
k '. Still greater accuracy can be achieved if R" is
known to first order in k. Then, with R" assumed to be a
slowly varying function of the particle momenta, Eq.
(3.12) provides an approximation to the function R"'
correct to order unity in the limit k~0. It is interesting
to note that in this approximation the terms involving R"
cancel, in forming the sum o.o 2+o.i 2, in the special case
where hE and A are taken to be equal. ' An improved
approximation to R"", accounting for the possibility that
R" is strongly momentum dependent, is given by Eq.
(3.15).

In order to obtain a more explicit expression for the
cross section cr,b, we now introduce a number of simplifi-
cations, the primary one being the neglect of terms involv-
ing R". We also introduce the approximation

(2p +k)& p~ (2p'+ k)~ p'~
2pk+k2 pk 2p'k+k pk

(3.17)

p3p p4p

p3l p4l
(3.18)

with /=(1, 1). This may be expanded and expressed in
terms of the functions I(p;,pj }, which are defined and
evaluated in Eq. (2.9). The integrals over the magnitude
of the photon momentum are given in terms of the two
functions

There is some inconsistency in this neglect of corrections
of higher order in k when, at the same time, we retain
higher-order corrections involving terms such as
T(s kP, t) T—(s, t). H—owever, we have in mind applica-
tions to resonant scattering where corrections of the latter
type can be substantial, far outweighing in importance the
error incurred in the approximation (3.17). We shall
adopt the laboratory reference frame in which P"= (O,M).
Then kP= —k M, independent of the orientation of lt
and this, in conjunction with the approximation (3.17),
simplifies the evaluation of the angular integrations. To
simplify notation a bit we suppress the dependence of
T(s, t) on the momentum transfer variable t. The energy
variable is s = —pP =p M in the laboratory frame; get-
ting p =E we write T(E) in place of T(s, t).

By extension of the methods which led to the infrared
correction shown in Eq. (2.20) one finds that all of the re-
quired angular integrals appear in the forme', p] p2
A(pi p2 p3 p4)=

2 (2n. ) pil p2I

We may then write

~. =~„(1+C'"+C"'),
with

(3.21)

C' "=A (p',p;p', p)ln
A

(3.22)

—2A (p', P;p, P)F(E,A) . (3.23)

The first two terms on the right-hand side of Eq. (3.23)
arise from the improved estimate of crt 2 while the last
term corresponds to the correction to 00 2. Note that in
the special case where the target mass greatly exceeds that
of the projectile, so that the energy of the projectile is con-
served in the collision, the momenta p and p' are equal for
scattering in the forward direction. In this case the func-
tion A (p',p;p', p), and hence the standard correction C'",
vanishes. However, C' ' is nonvanishing, so that the
higher-order correction is dominant for forward scatter-
ing.

The correction term C' ' should make its most signifi-
cant contribution in the neighborhood of a scattering reso-
nance. Without entering into elaborate calculations at this
point we can obtain some quantitative indication of the
effect of the new correction term by adopting the simple
resonant form

T(E)= E —E +il"/2 (3.24)

for the elastic scattering amplitude. The integrals in Eqs.
(3.19) and (3.20) can then be evaluated as

(E —E ) +(I /2)'F(E,AE) = ln
(E —Eo —bE)2+(1 /2)'

6 (E,b) = g (E) I tan '[g (E)]—tan '[g (E —b F)] I

, F(E,b E), —

(3.25)

(3.26)

0.3

Q. I

Q

-O. I

—0.2

representing the standard correction, given in Eq. (2.20);
the new correction term is

C'2'= A (p',p;P p)F(E, bE)+A (P p;P p)G(E, bE)

F(E,b,E)
=

~

T(E)
~ f 2ReT'(E)[T(E co} T(E)], — —

—0.3 I

0

(3.19)

G(E,bE)=
i
T(E)

i J i
T(E —co) —T(E)

i

(3.20)

FIG. 5. Plot of the ratio C' '/C"' of correction terms, de-
fined in Eqs. (3.22) and (3.23), as a function of scattering energy.
The graph corresponds to the choices v =0.5, AE =I /10, and
A=SI /2 for the input parameters, with the scattering angle
taken to be 90'.
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with

(E —Eo)
(I aE/4)'"g(E) = (3.27)

We have evaluated the ratio C' '/C'" over a range of en-

ergies in the resonance region, for a number of different
choices of input parameters. For simplicity we have tak-
en M ))m and have fixed the scattering angle at 90', in
which case we have, for the parameters P of Eq. (2.10),

P~z
——U(2 —U )'i, P~p

——Pzp ——U, where v is the speed of
the incoming projectile. (The variation of the P parame-
ters as E ranges over the narrow resonance region has
been ignored. ) A typical set of results, corresponding to
the parameters U =0.5, AE =I /10, A=SI /2, is plotted
in Fig. 5. The form of the fluctuation with energy of the

correction term is common to a number of interference
phenomena involving radiation' or ionization' during a
resonant scattering process. The calculations indicate that
the correction can be a significant one in the resonance re-
gion for hE an appreciable fraction of the resonance
width. Undoubtedly, circumstances can be found under
which this condition is satisfied, but it is a rather restric-
tive one, requiring very narrow resonances. In most cases
of interest, in which b,E is very much less than I, the ef-
fect of the resonance on the radiative correction is expect-
ed to be small. However, an evaluation of the new correc-
tion term will still be of interest in such cases since this
provides the means for studying the accuracy and range
of validity of the standard form of the infrared radiative
correction.
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