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Resonance positions and widths of doubly excited N + ions associated
with N =3, 4, and 5 N + thresholds
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Some doubly excited autoionizing states of heliumlike nitrogen ions converging on the X =3,
N =4, and N =5 hydrogenic thresholds are calculated by a method of complex-coordinate rotation.
Hylleraas-type wave functions are used for L =0 and L =1 resonances, and products of Slater-
orbital-type wave functions with expansion lengths up to 323 terms for L )2. Results can be used
for experimental references in the recently identified doubly excited autoionization states of N +

ions in double-electron charge-transfer collision experiments between N + ions and helium atoms.

I. INTRODUCTION

Recently, there has been considerable interest in experi-
mental investigations of electron-transfer collisions be-
tween a highly stripped ion and a two-electron helium
atom. In such processes, although one-electron captures
would dominate the electron-transfer collisions, it was
found that two-electron capture processes are also impor-
tant. For example, the two-electron capture into doubly
excited autoionization states of N + ions were observed in
collisions of N + ions with He atoms' and with H2
molecules. In the scattering experiments between He and
N + ions, ' the doubly excited states were observed in en-

ergy gain spectra of N + ions. In the collision experiment
between Hq and N + ions, some states were identified in
ejected electron spectra. Similarly, there is also interest in
production of doubly excited autoionization states of 0 +

ions below the N =3 and N =4 thresholds in collisions of
0 + ions with He atoms. To interpret and identify satel-
lite lines of such highly stripped ions, which in turn
would play an important role in spectroscopic diagnostics
of high-temperature astrophysical and laboratory plasmas,
knowledge of the doubly excited autoionizing states are
needed.

This work presents a theoretical study of doubly excited
resonances of N + ions. The method of complex-
coordinate rotation (for example, see Ref. 5 and references
therein) is used for the present investigation. The advan-
tage of using this method is that resonance parameters
(both resonance positions and total widths) can be ob-
tained by using bound-state-type wave functions and no
asymptotic wave functions are necessarily used. Such an
advantage becomes apparent when we are calculating a
resonance in which many channels are opened. Calcula-
tion of resonance position and total width for a many-
channel resonance is as straightforward as that for an
elastic resonance. The use of this method has been very
successful for calculations of resonances for L =0 and
L, = 1 resonant states of two-electron atoms. In a series of
extensive papers, resonance parameters have been pub-
lished for N =2 (Ref. 6), N =3 (Ref. 7), and N =4 (Ref.
8) resonances for two-electron systems with Z =2—10. In
these papers several lower-lying doubly excited 'S', 'P',

and P' resonances were calculated. Some of the theoreti-
cal resonances have been identified and were found to
have good agreements with experimental observations. '
We now extend calculations to I.)2 states. This work
concentrates on doubly excited states of N + ions because
of the recent experimental interest.

Doubly excited resonances may also have strong effects
on collision strengths (related to excitation cross sections)
in electron-ion scattering. Collision strengths in electron-
ion scattering are important for investigations of collision-
al equilibrium problems in diagnostics of laboratory and
astrophysics plasmas. Hayes and Seaton examined reso-
nance effects on collision strengths in e-0 + scattering in
a close-coupling calculation. Some so-called 3I3I' reso-
nances were shown graphically (numerical values of the
doubly excited N =3 resonances were not published). The
algebraic variational close-coupling method has been used
to calculate some doubly excited resonances below the
N =3 hydrogenic thresholds for C + and 0 + by Abu-
Salbi and Callaway, ' and for N + by Oza. " Here we re-
port results for some lower-lying resonances associated
with N =3, 4, and 5 hydrogenic N + thresholds.

II. WAVE FUNCTIONS

The wave functions used in this work are of Hylleraas
type for L =0 and L = 1 resonances,

gckl exp' ~(r1+ "2)lr12
k

X [r lr2 Yoo( 1)YLO(2)+r2r1 + Yoo(2) YLO(1)l

/=A g QC, , b.g, .(r1)gb (r2,).
la, lb i,j

X Y„ib(1,2)S(tr„t72), (2)

where

g, (r)=r 'exp( g, r) . —

where (k+I+m)(co, with co a positive integer, and
products of Slater orbitals for resonances with L )2:
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TABLE I. Individual Slater-orbital-type wave functions used.

S

d

g
h

l

k
I

lDe 3De lpo 3+0 1Ge 3ge

10
9
7
6
5
4
3
2
1

Total ?81 277 283 283 320 319

S

d

Total

lHO

301

3Ho

301

lie

10
9
8
7
6
4
3
2
1

310

Ie

10
9
8
7
6
5

3
1

270

10
9
8

7
6
5
3
2
1

1

270

3+0

10
9
8

7
6
5
3
2
1

1

270

1L e

10
9
8
7
6
5
4

290

d

Total

3pe

10
9
8

7
6
5
4
3
2
1

220

lDo

10
9
8
7
6
4

284

D'

10
9
8
6
5

3
2
I

280

lye

280

3+e

287

16o

283

360

283

lHe 3He lio 3I0 3+e

P
d

Total 296 323 280 280 261

In Eq. (2), A is the antisymmetrizing operator, S is a
two-particle spin eigenfunction, Y is a two-particle spheri-
cal harmonic, and the g are individual Slater orbitals. It
has been suggested that use of Slater orbitals to calculate
resonances of high angular momenta and associated with

high excitation thresholds can produce accurate results.
This is supported by the hydrogen negative ion results
that the resonance parameters for some L )2 states agree
well with an extensive 18-state close-coupling calcula-
tion. ' Also, good agreements have been found between a
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TABLE II. Doubly excited resonances of N + ions associated with X =3 N + threshold. Resonance
energies and widths are expressed in Rydbergs.

—E„

lee
1Se
's
vapo

1po
3po
3po
1De
1De
1De
3De
1FO

3FO a

16e

3pe
3pe a

1Do
3D0
3Fe

10.2159
9.8560
9.208 40

10.042 85
9.4735

10.1917
9.82648

10.1220
9.8773
9.5583
9.9683
9.7025

10.0165
9.7275

10.066
9.6717

10.0080
9.889 12
9.8411

0.050

0.005
m. = ( —1)L+ '

0.0006
0.0082
0.0083

~=(—1)
0.009 98
0.0436
0.000 536
0.0295
0.0074
0.007 78
0.002 74
0.0129
0.0234
0.0070
0.0016
0.0250

2
0

—2
1

—1

2
0
2
0
0
1

1

2
2

1

—1

1

0
1

0
0
0
1

1

0
0
0
2
0
1

1

0

'The widths of these states are extremely narrow.

TABLE III. Doubly excited resonances of N'+ ions associated with
nance energies and widths are expressed in Rydbergs.

X =4 N + threshold. Reso-

's
's
lSe
1Se
1po
1po
lpo
3po
3po
3po
1De
1De
1De
1De
1De

3D e

De
1FO

lFo
lFo
3F0
3Fo
3FO

lee
16e
16e
3Ge
'H'
H'
'I'

5.765
5.6335
5.432
5.082 68
5.7021
5.531
5.2162
5.7570
5.6251
5.422 45
5.7388
5.6380
5.5865
5.4547
5.2732
5.6815
5.494 25
5.6362
5.5683
5.3435
5.7105
5.6099
5.5333
5.6597
5.5225
5.3807
5.5788
5.4313
5.60005
5.442

0.006
0.029
0.044
0.0003
0.0162
0.0480
0.0056
0.0052
0.0158
0.0036
0.0078
0.0200
0.0236
0.0250
0.0060
0.0108
0.0040
0.0175
0.0240
0.0190
0.0066
0.0029
0.0002
0.0115
0.034
0.030
0.0008
0.049
0.002
0.075

m=( —1)
3
1

—1

—3
2
0

—2
3
1

—1

3
1

1

—1

—1

2
0
2
0
0
3
1

1

3
1

1

2
2
3
3

0
0
0
0
1

1

1

0
0
0
0
2
0
2
0
1

1

1

3
1

0
2
0
0
2
0
1

1

0
0

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

4
4

4
4
4
4
4
4

4
4
4
4
4
4
4
4
4
4
4

4
4

4
4
4
4
4
4
4
4
4

4
4
4
4
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2s+11 e —E,

TABLE III. (Continued).

~=( —1)'+'
3pe
3pe
3pe a

lDo
lDo
Do

3Do
1Fe
3Fe
F'

3Fe
1Go
3go
3He

5.7050
5.5556
5.3491
5.6897
5.5344
5.6391
5.4584
5.6082
5.6569
5.5725
5.453 95
5.608 04
5 ~ 524 74
5.5068

0.008
0.015

0.0070
0.0011
0.0154
0.0065
0.0020
0.0054
0.0136
0.0058
0.00042
0.0149
0.021

0
—2

2

1

—1

1

'The widths of these states are extremely narrow.

TABLE IV. Doubly excited resonances of N'+ ions associated with
nance energies and widths are expressed in Rydbergs.

& =5 N + threshold. Reso-

2$+ 11 7T

'S'
's
lge
ige
lge
lpo
ipo
lpo
Ipo
3po
3po
3po
3po
lDe
lDe
IDe
lDe
lDe
lDe
lDe
3De

De
De

1FO

1Fo
lFo
F'

1Fo
3FO

F'
Fo
Fo
F'
16e
16e

—E,

3.696
3.6355
3.550
3.425
3.208 86
3.666 9
3.594
3.487
3.288
3.692 75
3.6315
3.5453
3.4194
3.6860
3.6363
3.6205
3.554
3.522
3.4437
3 ~ 325
3.6590
3.5800
3.4609
3.6443
3.6028
3.5498
3.5115
3.366
3.6755
3.6248
3.6023
3.5417
3.4876
3.6587
3.6040

0.008
0.017
0.040
0.040
0.000 21
0.0100
0.029
0.0500
0.0050
0.004 20
0.0130
0.020
0.0038
0.0052
0.0146
0.0160
0.024
0.034
0.023
0.0040
0.0084
0.0168
0.0044
0.0124
0.0190
0.0250
0.0260
0.0150
0.0056
0.0078
0.011
0.0034
0.0013
0.0074
0.0096

m. =(—1)

—2
—4

3
1

—1

—3

—2
4

—2
—2

—1

3
1

1

—1

0
0
0
0
0
1

1

1

1

0
0
0
0
0
2
0
2
0
2
0
1

1

1

1

3
1

3
1

0
2
0
2
0
0
2
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2s+ 1L m —E„

TABLE IV. (Continued. )

m. = ( —1)
1Ge

1Ge
1Ge
1Ge
3Ge
3Ge
3Ge
1~o
18o
l~o
3~0
H'

380
1Ie
1Ie

I
Ie
1~o
3+0
lL e

3.5749
3.5668
3.492
3.393
3.6245
3.5875
3.5148
3.591
3.543
3.4225
3.6374
3.5775
3.5348
3.6032
3.521
3.442
3.5552
3.466
3.5669
3.466

0.0066
0.0272
0.030
0.022
0.0080
0.0038
0.0012
0.0150
0.0290
0.037
0.0055
0.0030
0.0009
0.0114
0.038
0.050
0.0028
0.060
0.0062
0.09

2
0
0
0
3
1

1

3
1

1

4
2
2
4
2
2
3
3
4
4

0
4
2
0
1

3
1

1

3
1

0
2
0
0
2
0
1

1

0
0

5
5
5
5
5
5

5
5
5
5
5
5

5
5
5
5

5
5

5
5

3pe
3pe
3pe
3pe a

1Do
lDo
1Do

Do
Do
Do
1Fe
1Fe
Fe

3Fe
3Fe
3Fe
3Fe
1Go
1Go
1GO

3GO

3GO

G'
10e
3~e
3He
3He
lIo
3I0
3+e

3.666
3.5965
3.5015
3.379
3.6615
3.590
3.4944
3.6365
3.5545
3.4425
3.6242
3.5378
3.6497
3.6035
3.5725
3.5145
3.4486
3.6328
3.5880
3.545 97
3.6035
3.571
3.4870
3.5748
3.6081
3.5450
3.488
3.5756
3.518
3.508

0.016
0.018
0.015

0.0070
0.0096
0.0014
0.0114
0.0192
0.0058
0.0076
0.0025
0.0059
0.0150
0.0059
0.0134
0.0040
0.0044
0.0032
0.0003
0.0060
0.0156
0.011
0.0020
0.0034
0.0200
0.0150
0.0024
0.024
0.035

3
1

—1
—3

3
1

—1

2
0

—2
2
0
3
1

1

—1

—1

3
I
1

2
0
0
2
3
1

1

3
2
3

'The widths of these states are extremely narrow.

14-state close-coupling calculation' and unpublished
complex-coordinate results for Z =6 resonances below the
N =3 threshold.

In this work, quite extensive basis sets are used in the
wave functions. The detailed information about various

orbitals used in the wave functions are listed in Table I.
For example, for the 'D' resonances we use orbitals of 9 s
types, 8 ptypes, 7 d, 6 f, 4g, 3 h, 2i, 2 k, and l ltype.
These orbitals would couple to a total of 281 terms for the
'D' states. The actual numbers of terms for other
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TABLE V. Comparisons between complex-coordinate and close-coupling results for resonances
below the N =3 N + threshold.

Complex coordinates
—E, (Ry) 1 (Ry)

lge

Close-coupling (Ref. 11)
—E, (Ry) I (Ry)

10.2159
9.8560
9.208 40
8.003 87
7.775 92
7.481 36
7.0503
6.9280
6.7802

0.009 94
0.040 36
0.000 536
0.006 44
0.0214
0.000 19
0.0036
0.0102
0.000 082

10.2159
9.855

8.004
7.770

7.050
6.924

0.0102
0.0406

0.0064
0.0218

0.0030
0.0106

8.067 81
7.915 78
7.6597
7.073 77
6.9822
6.8531

0.000 098
0.000 34

0.000 16

3+e

8.0678
7.9152

0.000 106
0.000 36

10.042 85
9.4735
8.0560
7.8915
7.8876
7.5908
7.547
7.069
6.991
6.970
6.837
6.815

0.0295
0.0074
0.0002
0.0156
0.0013

0.010

1po

10.0427
9.462
8.0560
7.890
7.887
7.582

6.989

6.805

0.0296
0.0084
0.000 116
0.0156
0.001 02
0.0040

0.0082

0.000 15

10.1917
9.826 48
7.995 07
7.99062
7.7868
7.776 38
7.6071
7.046
7.0303
6.9318
6.9136
6.8420

0.007 78
0.002 74
0.000 266
0.0042
0.000 192
0.000 84
0.000 02

3p0

10.1918
9.825

7.9906
7.7845

7.0287

0.0076
0.0032

0.0043
0.000 52

0.000 22

10.1220
9.8773
9.5583
7.954 15
7.9515
7.7998
7.6795
7.5862
7.0244
7.0075

0.0129
0.0234
0.0070
0.0001
0.0070
0.0130
0.0010
0.0006
0.003

1De

10.1219
9.8765
9.551
7.953 97
7.951
7.798

7.0234
7.0066

0.0131
0.0240
0.0086
0.000 11
0.0074
0.0132

0.0033
0.000 11
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Complex coordinates
—E, (Ry) r (Ry)

TABLE V. (Continued. )

Close-coupling (Ref. 11)
—E, (Ry) I (Ry)

lac
6.940 15
6.885
6.852 37
6.832 48

9.9683
8.0292
7.914 15
7.8618
7.8101
7.677 75
7.0512
6.983 30
6.9735
6.9315
6.874
6.8525

0.0072

0.0016
0.000 26
0.000 30
0.0010

0.0002

0.000 24

3D8

6.939

9.9681

7.8616

7.0511

0.0063

0.001 94

0.001 06

0.000 14

9.7025
7.978 23
7.8134
7.7075
7.5963
7.0225
6.9468
6.8954
6.8620
6.840

0.025
0.000 30
0.0026
0.0112

0.0012
0.0054

IF0

9.7013

7.813
7.705

6.894

0.0261

0.0028
0.0125

0.0060

10.0165
7.902 58
7.871 05
7.8300
7.7292
6.9985
6.9620
6.9468
6.8995
6.8633

0.000 10
0.000 70
0.000 20

0.0004

3FO

10.0162

7.828
7.726

6.8986

0.00008

0.000 63
0.000 33

0.000 16

9.7275
7.793
7.6396
6.9495
6.9165
6.8695
6.8585

0.050
0.020
0.0052
0.0080

lGe

9.720 0.04

7.879 35
7.795
6.9712
6.9324
6.9153
6.8701

Ge
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TABLE V. (Continued).

Complex coordinates
—E, (Ry) I (Ry)

'H'

Close-coupling (Ref. 11)
—E, (Ry) r (Ry)

7.6350
6.8845
6.8605

0.0040

0.0020

7.8358
6.9508
6.8875

0.0020
0.0008

H'

resonant states differ slightly depending on different an-
gular momenta and parities. But in any case, no less than
220 terms are used in the present calculation. The total
numbers of terms for different angular momenta and par-
ities are also shown in Table I. By using such extensive
basis sets, components of open channels below various
thresholds are included in the wave functions either expli-
citly or implicitly. This is the reason why we are able to
calculate the total widths for such resonances.

III. CALCULATIONS AND RESULTS

The theoretical aspect of the complex rotation method
is discussed in previous publications (see Ref. 5, for exam-
ple) and will not be repeated here. Instead, we only briefly
describe the computational procedures. First, we use the
stabilization method to obtain optimized wave functions
in which complex rotation calculations will then be car-
ried out. The use of the stabilization method as a first
step for the complex rotation method has been demon-
strated in previous calculations. Once the stabilized
wave functions for a particular resonance are obtained, a
straightforward complex-rotation method is then applied,
and the so-called "rotational paths" are examined. The fi-
nal resonance parameters, both resonance positions and
total widths, are deduced from conditions that the discrete
complex eigenvalue is stabilized with respect to the non-
linear parameters in the wave functions [Eqs. (1) and (2)]
and with respect to 0, the so-called rotational angle of the
complex transformation r ~r exp(ig).

Results for doubly excited resonances associated with
the N =3, N =4, and N =5 hydrogenic thresholds are re-
ported in Tables II, III, and IV, respectively. Both states
with parities ( —1) and ( —1) +' are calculated. Each
state in Tables II—IV is classified by a set of quantum
numbers (L,S,m, K, T,N, n), where L a. nd S are the total
angular momentum and spin, respectively, and ~ the pari-
ty. The quantum number N denotes the Nth threshold of
the N + ions below which resonances lie, and n has the
usual meaning for a given Rydberg series. The condition
of n is n )N. In Tables II—IV, we only show the lowest
member for a given Rydberg series. In other words all the
resonant states reported in Tables II—IV have values of
n =N. States in which both electrons occupy the same
shell are called the intrashell resonant states. The quan-
tum numbers K and T are approximately good quantum
numbers, and are the results of investigations by Herrick

and Sinanoglu' using a group-theoretical method. The
quantum numbers are obtained by diagonalizing the
square of

~
A, —Az ~, where A& and Az are the Runge-

Lenz vectors for electron 1 and 2, respectively. The phys-
ical meanings for K and T can be described briefly as fol-
lows; —K is related to (cos8&2), where 8,2 is the angle be-
tween the position vectors of the two electrons. The
larger the positive K, the closer the value of (cos8&2) is to
unity. The two electrons in this situation are located near
the opposite sides of the nucleus. The quantum number T
describes the orientations between the orbitals of the two
electrons. For example, a state with T=0 implies that
the two electrons are moving on the same plane. The
quantum numbers I( and T hence describe the angular
correlations between the two doubly excited electrons.

Hyperspherical coordinates have also been used to in-
vestigate classifications of doubly excited resonances in
two-electron systems. ' The angular correlation quantum
numbers K and T discussed in Ref. 14 are similar to those
of Ref. 13. In addition, a parameter "3" is used to
describe radial correlations in Ref. 14, and 3 is related to
other quantum numbers by'

m( —1) + ' for all K&L N, —
0 otherwise .

There are very limited theoretical calculations for dou-
bly excited states of N + ions in the literature. These in-
clude the calculation carried out by Bachau, ' who use a
truncated diagonalization method to calculate some N =3
and N =4 resonances, and recently by Oza, " who used a
14-state close-coupling approximation to calculate reso-
nances below the N=3 threshold. The calculation by
Bachau, ' however, is not as accurate as those reported
here because of the extremely limited basis sets used (no
more than 30) to represent the closed space part of the
wave function. Also, the omission of Feshbach shifts be-
tween closed channels and open channels in his calcula-
tions is another source of error. The close-coupling calcu-
lation would provide results with accuracy close to the
present complex-coordinate calculations. Comparison be-
tween the complex-coordinate and close-coup1ing results
for states with parities of ( —1) is given in Table V.
Agreements are, in general, quite good. For collision ex-
periments between the N + ions and He atoms, and be-
tween the N + ions and H2 molecules, higher resonances
for some series are of interest. Table V also shows higher
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TABLE VI. Possible identification of experimental peaks (given in eV under the entry AE) for doubly excited 3ln'l states of N'+
ions autoionizing to the N =2 threshold of N + ions. Only states of parity ( —1) and of large widths are given.

'S'(2, 0) 'S'(0, 0) 'P'(1 1) 'D'(2, 0) 'D'(0, 2) 'I' (1,0) '6'(2, 0)
Experiment (Ref. 2)

N +-He N'+-H,

3 3

3 4

3 5

—E (Ry)
hE (eV)
—E (Ry)
hE (eV)
—E (Ry)
b,E (eV)

10.2159
27.68

8.003 87
57.77
7.050 30

70.75

9.8560
32.45
7.775 92

60.87
6.9280

72.41

10.042 85
30.03
7.8905

59.32
6.991

71.553

10.122
28.95
7.9515

58.49
7.0244

71.10

9.8773
32.28
7.7998

60.55
6.940 15

72.25

9.7025
34.66
7.7075

61.80
6.8954

72.85

9.7275
34.32
7.793

60.64
6.9495

72.12 70.3—71.4 71.1

57.1,58.6,60.9 56.9,58.7,61 ~ 1

members of resonances below the N =3 threshold. Table
VI shows some of the higher-lying resonances as corn-
pared with possible identifications in the two-electron
capture experiments. These states are expressed in eV as
they autoionize to the N =2 threshold of the N + ions.
Here, we only show states of parity ( —I) and with large
autoionization widths. Agreements between the present
theoretical values and experimental peaks are quite good.

IV. SUMMARY AND DISCUSSIONS

In summary, we have carried out an extensive
complex-coordinate calculation for the doubly excited res-
onances of N + ions associated with N =3, N =4, and
N =5 N + thresholds. The resonance parameters as cal-
culated by using the method of complex-coordinate rota-
tion are quite accurate. The resonance positions and
widths are useful for experimental investigations of
double-electron capture processes in ion-atom scattering.
On the theoretical side, the resonance parameters reported
here are useful references for studies of electron correla-
tion effects by use of the group-theoretical method and by
use of hyperspherical coordinates. For example, the
present results can be used to test the triatomic molecular
model of the doubly excited states as proposed by Kell-
man and Herrick, ' These authors observed that the
model is less applicable for high-Z ions than for low-Z
systems such as H and He. The present numerical re-

suits for Z=7 are therefore useful in studies of atomic
correlations. Also, accurate results are needed for investi-
gations of the grandparent model' for doubly excited
states. In such a model, the two electrons are treated as a
single entity under the influence of the bare nucleus (the
grandparent). The energy levels of the doubly excited in-
trashell states can be fitted to a Rydberg-like sequence in
a screened six-dimensional Coulomb potential in hyper-
spherical coordinates, converging to the two-electron
break-up ionization limit. Again, due to the lack of ex-
perimental data for the highly excited states, the present
accurate results associated with high excitation thresholds
would help the verification of a such a model. In addi-
tion, since we are able to provide values of widths for res-
onances, and the widths are inversely proportional to life-
times of such doubly excited states, the present results
may help in future studies to gain some insight of the
symmetry of these two electron systems, and the underly-
ing mechanism of atomic autoionization.
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