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First-order theory for charge exchange with correct boundary conditions:
General results for hydrogenlike and multielectron target atoms

Dzevad Belkic* and Howard S. Taylor
Uniuersity of Southern California, Department of Chemistry, Uniuersity Park, Los Angeles, California 90089-0482

(Received 3 September 1986)

The first Born approximation of Belkic, Gayet, and Salin [Phys. Rep. 56, 279 (1979)] with correct
boundary conditions for charge exchange is thoroughly investigated. Functional analysis is used to
derive general result T„'I'.„I of the transition amplitude for electron capture from hydrogenlike

and multielectron atoms by bare nuclei. The basic matrix element is a two-center Dalitz integral

with the logarithmic Coulomb phase factors, which has a broad spectrum of applications in both

atomic and molecular physics. Multielectron target atoms are treated within an independent-

particle model which goes beyond the customary procedure for scaled hydrogenlike wave functions.

An accurate and efficient algorithm is encoded for both hydrogenic and Roothaan-Hartree-Fock or-

bitals into a single program for charge exchange between completely stripped ions and arbitrary

atoms. An exemplary computation of the total cross sections is presently carried out for electron

capture from all shells of Li by n particles in the energy range from 250 to 2500 keV. Good agree-

ment is found with recent experimental data of McCullough et al. [J. Phys. B 15, 111 (1982)] and

Sasao et al. [J. Phys. Soc. Jpn. 55, 102 (1986)].

I. INTRODUCTION

Standard scattering theory has originally been devised
in nuclear physics, where interactions are of short range.
These potentials leave the asymptotic channel states unal-
tered and, hence, the plane wave is commonly used to
describe the relative motion of the heavy particles. '

Such a formalism has customarily been extended to atom-
ic physics without the essential modifications. However,
atomic-collision processes involve long-range Coulomb
potentials which are, in general, present even when the
scattering particles are at infinite separation from each
other. This peculiarity causes distortion of unperturbed
channel states which, in turn, yields some modifications
of the perturbation potentials. These two major com-
ponents of scattering theory are interrelated and cannot be
arbitrarily changed, i.e., any change in the Coulomb phase
of the wave functions will induce a change in the perturb-
ing potential. Hence, the usual scattering theory must be
reformulated whenever long-range Coulomb potentials are
present in the asymptotic region. This is the boundary-
condition problem which requires that both initial- and
final-state wave functions exhibit correct asymptotic
behavior at infinite internuclear separation R. This is
equivalent to the asymptotic convergence problem which
consists of showing an existing of Mufller wave matrices
0'+' and O' '. Ignoring this problem, as has repeatedly
been done in the literature, ' will imply divergence of the
scattering operator S as well as other related quantities of
physical interest, such as the transition amplitude T, etc.
This conclusion has been reached by Dollard with
mathematical rigor, for both potential scattering and the
multichannel problem.

The fundamental work of Dollard, however, did not
receive due attention for a long time and, hence, its

relevance was limited to only formal aspects of Coulomb
scattering. It has been only recently that a consistent
procedure was proposed along the lines of Dollard's study
and within the most basic rearrangement collisions of
heavy particles. In their derivation of an exact eikonal T
matrix, Belkic et aI. have imposed the correct boundary
conditions to both channel states. As a result, the exact T
matrix possesses the following three important properties.
(i) Perturbation potentials W; and Wf causing the transi-
tion are of short range as R ~ ao through a11 orders in the
T operator ( T = 8~+ Wf G,+ W; ). (ii) The total eikonal
Green's function G, , as well as potentials W; and Wf do
not contain internuclear interaction Vr(R). (iii) Station-
ary channel states N,+ and 4f occurring in the exact T
matrix exhibit logarithmic Coulomb phase distortion.
These phase factors are dependent upon R, but do not
bear any relationship with the internuclear potential
Vr(R) and must be retained in the computation of both
differential as well as total cross sections.

The most important consequence of these properties is
that the exact eikonal T matrix of Belkic et al. is free
from the singularities which have originally been revealed
by Dollard, Mapleton, and Carpenter and Tuan and
rediscovered more recently by Dewangan and Eichler (see
also Ref. 9).

The present work is concerned with the first-order ap-
proximation to the exact eikonal T matrix of Ref. 7. Pre-
vious results' '" which have been obtained by means of
this conceptually plausible scattering theory were en-
couraging and have motivated us to carry out an extensive
analytical study of the most general transition amplitude
for charge exchange in collisions between fast bare nuclei
and hydrogenlike as well as multielectron atoms. As an
illustration, detailed numerical computations have been
performed for electron capture from the K and I. shell of
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a lithium atom by a particles. Atomic units will be used
throughout the work unless stated otherwise.

2iZp(ZT —1)/v8'(R) =(pv) exp[ —i g ln(vR +v R)],
2lZT( Zp 1 )/v8'(R)=(pv) exp[+i/in(vR —v R)],

(2.4a)

(2.4b)

II. THEORY

Consider charge exchange of the prototype

Zp + (Zy' e); ~(Zp, e)f +Zr (2.1)

where Zp and Z~ are the nuclear charges of the projectile
and target. Indices i and f are the collective labels for the
usual set of quantum numbers n'l'm' and n I m, respec-
tively. Let rp and rz be the position vectors of the elec-
tron relative to Zp and Zz-, respectively. Further, let R
be the position vector of Zz- with respect to Zp.

The "prior" and the "post" forms of the transition am-
plitude for process (2.1), in the first Born approximation
with asymptotically correct boundary conditions, can be
written as follows:

Zp
dr dry+I Ip

Zp
P'p

T
q; (r, )

i k "r, +i k~.r~ —i g 1n( vR +v.R)
Xe (2.5a)

where g=(Zr —Zp)/v and p is the impact parameter
(R=p+Z p Z=O). Multiplying terms (pv)

2i p(Zr —()/u
and (pv) do not contribute to the total cross
section and, therefore, the single Coulomb phase such as
exp[ —i/ 1 n( vR +v.R)] or exp[+ i/in(vR —v R)] need
to be retained in the calculation. Hence, the phase factor

2iZP(ZT —1)/v 2iZT(ZP —1)/v
(pv) or (pv) can freely be dropped
from the transition amplitudes and we are finally led to

T'f '(ri)

Zp

rp

( )
' ' &(R),

T'f '(g)= f f dr;drripf (rp)

(2.2a)

T(+ )( )

z * Z~ Z~ z= f f drfdrpipf (rp) — y; (rz )

T'f+'(p)= f f drfdrpipf (rp)
ZT

ik, r, +ikI r~ —ig'ln(vR+v. R)
Xe (2.5b)

( )
' ' &(R),

where g is the transverse momentum transfer, and

Zp(Zz. —1)
8'(R) =exp i ln(vR —v.R)

(2.2b)

As to the differential cross section, however, phase factor
2iz&( ZT —1 ) /v 2iZT (Z+ —1 ) /v

(pv)
p r or (pv) plays an essential

role. ' ' ' Hence, in the most general case with
Zp&1&Zr, quantities T'f ' and T'f+ derived respective-
ly from Eqs. (2.5a) and (2.5b) will not be proportional to
the differential cross section. Nevertheless, Eqs. (2.5a)
and (2.5b) can still be used for the purpose of computing
d o.,'~'/d Q, provided that the missing phase

2iZP(ZT —1)fv
(pv) is subsequently accounted for, via

Zr(Zp —1)+i ln(vR +v R)
V

(2.3)

T Zp
Here, &p; (rr ) and i(of (rp ) are the initial and final
bound-state wave functions, v is the incident velocity vec-
tor, k; and kI are the initial and final momenta. Further,
r; (rf ) is the position vector of the center of mass of sys-
tem Zr —e (Zp e) relative —to Zp (Zr), respectively.

Whenever the initial and final bound states are exactly
known, as in the case of hydrogenlike atoms, the prior
and the post transition amplitudes yield the same result.
Nevertheless, for the purpose of a straightforward gen-
eralization of the present method to multielectron atoms,
for which there is a post-prior discrepancy, we shall here-
after calculate simultaneously T'f '(g) and T'f ~(rl).

Calculation of transition amplitudes (2.2a) and (2.2b) is
possible with the most general form of auxiliary function
8'(R) containing the two exponential factors with the
Coulomb phases. As a result, the one-dimensional in-
tegrals over nonterminating Gauss hypergeometric func-
tions 2F1 would be encountered. This is, however, un-
necessary since Eq. (2.3) can readily be simplified as fol-
lows:

irif 2izp(zr —()/U (+ )= pv dpp ~if p
2ao

sr atom

(2.6)

f (q) =(2m. ) f dr e'~'f (r) (2.7)

we obtain the following result from Eqs. (2.5a) and (2.5b):

T(f )(~)=ZPI(fo'00)(~) —
2 I(fo'') )(~)

TIf~ (ri) =ZrIg '0 (77)—2 Ii(f )' (g). .

(v, , vI)
where If'(g) is an auxiliary integra. l of the type

(2.8a)

(2.8b)

where M,'f (p) are the impact-parameter-dependent tran-
sition amplitudes which can be obtained by taking the
Fourier transforms of quantities (2.5a) and (2.5b), respec-
tively. Hence, for every practical purpose of computing
the total as well as the differential cross sections, formulas
(2.5a) and (2.5b) with the single Coulomb phase
exp[ —i g ln( vR +v R) ] can be used.

Introducing the Fourier transform f (q) by
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zp+ zT
(v, v) (q —a)y; (q+ p)

If'.(g)=(2m) f dRR '(vR+v R) '~ f dqe
(

I q —a
I
'+af) '(

I q+p I
'+bf) '

(2.9)

with

V

2'
V V

2 2
b; af
2+2

(2.10)
AE =E; —Ef———

a=ri+a, v, p= rl+—p, v, g=(g cospv, rtsinp&, 0)

AE AE v

S„'„f(R)

qR
27T2

9",f t(q —a)9't;;(q+p)
X

(
I q —a

I

'+&f') (
I
q+p I

'+b') '

af =Zt /n, b; =ZT/n', a+P=v .

The hydrogenlike wave function in the momentum space
is given by

with n~ =pj. +. I~+v~+1 (j =i,f)

A. Calculation of integral 9'

(2.15)

&p J(q)
cp

(tI'+ (Zcc/n')'fj '

ZK zl(. - lj(q)=(2n) NJ i'
nj

(2.11)

Using the Feynman identity'

1 (n +m —1)!
(n —1)!(m —1)!

1

dttn ' 1 —t ' At+a 1 —t

N) ——16m Z~

where 9't~(q) =q'Yt~(q),

(Z~/n ) (ni+IJ)! I!(4Z~/n )
'

nj nj! (21'+ 1)!
we can write

(n, m ) 1) (2.16)

CpJ

( nj)z (—n +I +1)z Zz
(IJ+ —, ) g.! n~

(2.12) g„'„(R)= ' f dt t (1—t) 'U„'„(R), (2 17)"t"f n. Inf! 0 n;nf

(a)k =I"(a +k)/I (a), nj=n/ IJ 1——

Hence,

(v, ,vf )

I,f'(g).
(j =i, f;K =P, T) .

where

U„'„~(R)

rg R 9",I t(q+Q )Pt;;(q+Qp)e;q.R t m

2+~2 +~

n' nf
=i'( i)'~N~ Nf —g g c~c~ H„„' . (a,P),

p =0pf =0

(2.18)

where

(a,p)=(2m) 3 f dRR '(UR +v.R)

X 9„'„f(—R),

(2.13a)

(2.13b)

(2.14)

with

Q=at —p(1 —t), b, =U t(1 t)+aft +b; (1——t),
(2.19)

Q =Q —a=(1—t)v, Qp ——Q+P= tv, —
n =n;+nf+1 .

Next, by employing an addition and recombination for-
mula for the regular solid harmonic 5' (q) we shall
have'

tf t(q+Q )t, ,(q+Qp)= g g g g g ' t '(1 —t) &,™,'(I,v)q 3't (q),
1 j =Olfj=0m j = Ij mfj= lfjl=lf

where

(2.20)

0t,','(l, v)=(lIm~
I

1'm')(1~~m
~ I

lfmf)(l'~mI
I

l~~mf~
I

Im )5'*~ q(v)Pt, , ( —v), (2.2 la)
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21J+ 1 (lj+m J)! (l~ —m J)!

(2ljj+1)(212+1) (1)+m ) )!(lq+m2)! (1) —m ) )!(12—m J2)!

1/2

(2.2 lb)

and

(21', +1)(21,+1)(21+1)
( 1')m ')

~

lf(m f)
~

lm ) = ( —1) o o o4m —m& m'& —m

l, +l =l~, m, +m =m, —l2 &m &+l, m =m', —m, , k=l', +l, ,

(2.21c)

(2.21d)

max(
~

1', —lf& ~, ~

m
~

) if max(
~

1'& —lf& ~, ~

m
~

)+A, even,
lif

max(
~

1I —lf~ ~, ~

m
~
)+ 1 if max(

~
1& —lf~ ~, ~

m
~

)+A, odd .

Here, quantity (1',m'&
~

lf~mf~
~

lm ) represents the Gaunt coefficient and

(2.21e)

Ji J2 J3

m) m2 m3

is the Wigner 3j symbol. ' The upper index (2) in Eq. (2.20), associated with symbol g' ', indicates that the summation
If) li

is to be carried out in steps of two, due to the parity coefficient (0' 0' 0), which is equal to zero unless A, +1 is even. '

Thus, we can write

I Ii f + I'1 + if( I 1m 1
V V

U„'„f(R)= '&" g g g g g "'t '(1 t) ~Q, ,','—(l,v)W„'„(R),
n,.nf

II ——0 l(=0 mI ———II m( = —1( I =I'f
(2.22)

with
X—l~

W„'„(R)= dq2
( 2+~2)n+1 (2.23)

The result of the radial integral (2.26) is given by'

g(A, +I)—2n +1
F„i(R)=(—1) '

2"n!

Angular integrations over Qq
——(Oq, gq) in Eq. (2.23) can

be carried out by means of the partial-wave expansion of
the plane wave, i.e.,

00 + I

exp(iq R)=4~ g g ij'~(qR)YIm(q)YIm(R), (2.24)
1=0m = —I

where ji(z) is the spherical Bessel function. This implies

( —2)'
&& g ( —n), ( —X, ),k. „,(Ra)

s=0 S.

(2.27)

where A, l
——(A, —1) /2(n, v=n —s —1, and kz(z) is the re-

duced Bessel function'

W„'„(R)=i'F„((R)9(m(R),

where

(2.25)
k„(z)=V'2/vrz "K„(z), (2.28)

A+2 ~

( R)
F„I(R)= dq

7TR 0 ( +Q )"
(2.26)

with K&(z) being the McDonald function [Gradshteyn
and Ryzhik, ' Eq. (8.468)]. Hence,

and

II ——0 l( =0 mI ———I'I mf| ———1( I =i'f

~l S

(R)= g ( —n), ( —a, ),B.", '(R)
s=0 st

(2.29)

(2.30)

where B„'I ' (R) is the so-called B function of Filter and Steinborn, '

B'Im(R) =k, g2(Rb, ) 3 (m(R) .

The final form of integral 9' is, therefore, reduced to

(2.3 I )
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8„'„f(R)=
I'I ——0 I)=0 mI ———I'& mg= —lfl =!'f

(2.32)

B. Calculation of integral A

Inserting result (2.32) into Eq. (2.14) we deduce

4 „'„ f (a,p)=

with

li If +!') +If

g '"(—1) 'I'n, ,','(i, v)X„
n;!n ! I' =0 If=0 m' = —I' m)= —ljl =I'f

(2.33)

~gy) d tlf+l2( I )Il;+l2 Nlm (2.34)

where

S

~'„I' '(Q}= g ( —n},( ~l}.B'Im '(Q}
s=0

Here B '„I' '(Q) is the Fourier transform of function B'„I' '(R} introduced by

(2.35)

B„'~I a'(R)=R '(uR —v R) '~B'I'(R) . (2.36}

The general result for integrals of this type is obtained in Appendix A, from which it follows
-l

, ~'„I' '(Q)=, L„'I' '(Q), (2.37)

where

L„I ' (Q)=, g 3F2 n, —A,I, n+l—;—2n„+, n—„+— ;1 G~l
' (Q, v) (2.38)

with

~a l
6-'I' '(Q, v)= g g W~l'( )Dl'(Q, v),

a=0 li ——0
(2.39)

]cl (Jr~i (cr) =ab 3F2
v~ —l +2+ Q2

, l —iy), a.+l+1,—p —I; (2.40)

and

+l)
Dim(Q, v)= g (limi

~

lm)B'I m (Q)9' mI( iv), —
m) ———l)

(2.41)

a =I (1—I'g)(l +1)q
(2b, )

(&'+Q')

b= 2 ( l.}.(1—2). (1—yf~)"
1 g2 (I + 1)„a!

2l +1 (l +m)! (l —m )!
( l

&
m I ! lm = 4m.

(2l&+l)(212+1) (li+mi)!(l2+m2)! (l, —m&)!(l2 —m2)!

X = 2
Q2++2

(ub. —iQ.v),

y =U/6,
l~+l2 ——I, m~+m2 ——m, —I2 &m2 (+I2,

' 1/2

(2.42a)

(2.42b)

(2.42c)

(2.42d)

(2.42e)

(2.42f)
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n„=n —l —1, v =p —~, p =p+o

y) g——+il „y2 g
——l—l2 .

Here, 3F2's are the Claussen generalized hypergeometric polynomials'

(Ai ".-p)
3F2 —n, —Xl, n—„+p;—n„+—, n—,+;1p p+1.

S=0 n+—&
S

p+1
( —n), ( —kl ), ( n„—+p),

S

st

(2.42g)

(2.42h)

(2.43a)

3F2 2'
v~ —1 +2+ g2

, 1 —1y),~+I +1,—p —I;
( —v /2)„( —v + —, )„(1—iy) )„g2+g2

(l('+1+ 1)„(—p —1)„u! Q2

where [l~~/2] is an integral part of l~ /2. Finally, we can infer that

(2.43b)

(2n„)! !fmf
&' f (a p) g g g g g (2)( 1)(2.+l)I2 " ~ ) ((1 )n ~ nf, (7 (n )1 l'(m'(

1') ——01~) ——0 m'1 ———1'
mfa

——if(1 =1'f T

( n„)~— p p+1.X Q,F2 —n, —k, , n„+p—; n„+ —, n,—+—
0 ( 2n„—)~ 2' ' 2

;1
Pp —2n —1

pI

(o., h)
nf+l2 n +lf elm

X d«f '(1 —r}'
0 g2n —(A, +1)—p —1

(2.44)

C. Choice of the quantization axis 11
D l' (Q.v)=(l)

~

lm)( —iv) 'Q 'Hl (Q.v), (2.49)

Q, ,','(l, v) =Ql', l((v)5; 05 (2.45)

where 6; J is the usual Kronecker 6 symbol, and

Ql,.
&

(v)=(l) (1'm')(I (l)fmf)(1 m)'
)
llm

(
lm )

The most general result (2.44) is valid for any axis of
quantization of the hydrogenlike wave functions involved.
However, considerable simplifications arise if we choose
the quantization axis of both initial and final bound-state
wave functions along the same vector v. Thus with
choice v =(0,0,1), we shall have

with H1 being the normalized Legendre function of the
first kind,

21, + 1 (1) —m)!
(z) =( —1)

2 (1, +m)!
E(+m

x(1 2)mf2 d (z —1) '

dz

(m )0) (2.50a)

Xv ( —v) (m =m' —mf),l( I ~2

(2.46) (z) =(—1) Hl (z), (2.50b)

(11)
~

lJml)= 21~+ 1 (ll+ m f)!
21~(+ 1 (lj) +m J)!l~q!

1 J2
(Ij—m ~)!

(1) —m ) )!12!
(2.47)

(P„)=(2m. ) 'f2exp(img„) . (2.50c)

Hence, general result (2.44) is simplified as follows, for
v~~Z:

We can write, in general, Q=a+(1 t)v= —p —rv, from—
which it follows that for v=(0, 0,v), azimuthal angle p&
of vector Q becomes independent of integration variable r,
i e., pq p=pfl ~(ltd =ltlz——). This implies

Hn, nf ~ (a,p) =~„'„.(a v, p.v)N* f(p )C) i(p&)

(2.51)

Dl'(Q, v)=D l' (Q v)&b ((t„),
where

(2.48) with H „'„.(a v, p.v) being independent of azimuthal
angles P,P~ and
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; (2n, )!
y (2)( 1)(2,+I)/2 —m' ~ '

film ( )
I' =

)
m'( if=

)
m

)
I = I'~

( n—„)p p+1 2
3F2 —n, —A,I, n—„+p; n„+—, —n„+;I

0( 2—n) ' " ' " 2' " 2
' p.

+I',. +I~ g;I
' (Q v)(cr, b, )

dl t '(1 —t) '

0 g2n —(A, +I)—p —1
(2.52)

where

I

g~I'"(Q v}= g g ~pI'(&)D I' (Q'v} .
~=olq —/m

/

(2.53)

Upon inserting final result (2.51) into Eqs. (2.13a) and
(2.13b), auxiliary integral (2.9) is completed. Therefore,
the resulting transition amplitudes (2.8a) and (2.8b) can be
calculated in the most general case in terms of a one-
dimensional real integral. This conclusively proves that
the first Born approximation with correct boundary con-
ditions in both scattering channels can be computed as ef-
ficiently as the approach of Jackson and Schiff (see Belkic
and Taylor' ).

Henceforth, choice v=(0,0,1) will be understood, and
this is particularly advantageous while calculating the
eikonal total cross section defined by

(i)( 2) f d f (2.54)

z =(g —2)/(2) +2) . (2.55)

where zE[ —1, +1]. Details about an explicit and regu-
lar form of transition amplitude Tf'(z) as a function of
new variable z can be found in Ref. 20.

The above analysis can readily be extended to collisions
involving multielectron targets, such as

where Tf'(rl) is either T'f ' or T'f+'. Integration over
azimuthal angle P„can be performed analytically due to
the factored dependence (2.51) of the integrand in Eq.
(2.54). The remaining integral over q must be performed
numerically and this is best accomplished through the
scaling of quadrature points towards the dominating for-
ward cone by means of a suitable change of variable, such
as

charge transfer. Furthermore, in this picture the passive
electrons occupy the same orbitals before and after the
collision. (ii) The perturbation potentials occurring in
the prior W ( =Zp /R —Zp /rp ) and post W~
( = ZT /R ZT —/rT) forms of the transition amplitude
are of short range as R~oo. Here rz T are the active
electron coordinates with the same meaning as in process
(2.1) and ZT is an effective charge to be conveniently
chosen. It is consistent, within this model, to neglect
the post collisional state of target rest
(ZT', le i,e2, e3, . . . , elv ] ); in the exit channel.

Assumptions (i) and (ii) reduce process (2.56) to a one-
electron problem (2.1) with ZT ——ZT . The multielectron
nature of the target, however, is present through initial-

Zeff
state wave function (p; (rT) which we shall choose to be
the Roothaan-Hartree-Fock (RHF) orbital as computed
by Clementi and Roetti. ' lt is toithin this model that we

impose the correct boundary conditions to both of the
channel asymptotic states which are consistent with the
above potentials W; and Wf. This will lead again to pri-
or and post transition amplitudes (2.2a), (2.2b), (2.5a), and
(2.5b) with ZT ——ZT, g=(ZT Zp)/v an—d E; =E; where
c.; is the Roothaan-Hartree-Fock orbital energy obtained
variationallp in Ref. 21. Finally, we shall choose effective
charge ZT to be in the form proposed by Belkic et al. ,
i.e., ZT ——[ —2(n') e;]'~ where n' is the principal quan-
tum number of the orbital occupied by the active electron
to be captured.

Unlike process (2.1), this time we need to compute both
prior and post forms of the transition amplitude since
they are unequal and, furthermore, there is no firm
theoretical ground upon which either of them should be
favored. Hence, we have decided to introduce an average
transition amplitude Tf' in the following symmetrical
form:

Z p+(Z ,TeI e eie2, 3. . . , e ]Iv);

~(Zp e)f +(ZT [ei,e2 e3 e)v I ); (2.56}
T'f" (ri) = —,

' [T'f '(g)+ Tf+'(g)], (2.57)

where set I e),e2, e3, . . . , e)v] represents the noncaptured
electrons and the remaining notation is analogous to that
for reaction (2.1}. In applying the present theory to pro-
cess (2.56) we shall devise an essentially one-electron
model which is based upon the following assumptions.
(i) All of N noncaptured electrons are considered as "pas-
sive" in the sense that the correlation effects are neglected,
i.e., the interaction potentials between the active electron
and the passive ones are weak and do not contribute to

where T'f ' and Tf+' are defined by Eqs. (2.2a) and (2.2b)
or (2.5a) and (2.5b) with ZT ZT, g'=(ZT ———Zp)/v

Zeff
E; =s; and with qr; (rr) being the RHF orbital. ' The

Zeff
Fourier transform of RHF wave function y; (rT) can be
expressed as a linear combination of momentum-space-
normalized Slater-type orbitals which have recently been
obtained in the form of Cxegenbauer polynomials by Belk-
ic. This has enabled us to extend the analysis for hydro-
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genlike atoms to multielectron targets. Appropriate
changes in the evaluation of matrix elements, however, are
required. For example, Eq. (2.8b) has been derived using
the following eigenvalue problem: ( —,

' V', +Zr
ZTIrr+E; )y; (rz-) =0. This equation ceases to be valid for

Z eff

the RHF orbital qr; (rz. ) and, therefore, the matrix ele-
ment with potential —ZfIrr-must be computed in a
slightly different manner. Nevertheless, the basic
mathematical apparatus is very much similar to the one
following Eqs. (2.8a) and (2.8b) and need not be reiterated.

III. ALGORITHMS

We have devised an algorithm into a single program for
both hydrogenlike and multielectron target atoms in the
most general case of arbitrary initial and final quantum
numbers. The axis of quantization for initial and final
bound states has been chosen along the same vector of in-
cident velocity v, which enormously simplified the
angular-momentum algebra. The present version of the
program is primarily concerned with the total cross sec-
tion for electron capture from any target atom by bare nu-
clei. Differential cross sections for the case when either
Zt' or Zr are equal to unity are also available from our
program A more general problem with arbitrary nuclear
charges requires special consideration in evaluation of
cross sections do'f /dQ and this is deferred to a future
publication.

A number of test runs have been carried out in order to
check the accuracy and efficiency of the algorithm. The
present algorithm reproduces exactly the results of Belkic
and Taylor ' for the so-called two-center Dalitz integral.
Furthermore, it has been verified in the case of arbitrary
nuclear charges that the partial differentiation technique
for all the possible combinations between n 'l 'm ' and
n l m with n ' & 3 and n (3 is in exact agreement with
our general program for both hydrogenic and RHF orbi-
tals. A detailed account of a more thorough test can be
found in Ref. 20, where it has been seen that the present
algorithm is capable of efficiently providing results with
any prescribed degree of accuracy.

largely overestimates the measurement. The findings of
Ref. 24 are very important since they have clearly estab-
lished a role of the boundary-condition problem in the
framework of the first-order theories. This has been done
within a purely hydrogenic problem in both channels of
reaction (2.1), which is of a particular relevance for
theoretical models due to the availability of the exact
bound-state wave functions. Nevertheless, in order to
make a general and full assessment about the validity of
the theory in regard to experiment, it would be of consid-
erable interest to perform a systematic study of capture
processes in multielectron atoms

In this section we shall be concerned with electron cap-
ture into any state of He+ by fast a particles from a lithi-
um atom, i.e.,

He ++Li(ls, 2s ')~"He+(X)+Li+ . (4.1)

Total cross sections for electron capture from an indivi-
dual shell of Li by an o' particle into any state (X) of He+
has been computed by means of Eq. (2.54) with scaled in-
tegration variable (2.55) and average transition amplitude
Tf ' given by Eq. (2.57). We shall henceforth use the fol-
lowing abbreviations:

(1) (&) (&)
Ojf —Og -f —0 . f)f f (4.3a)

(1)
j;nfIf

+~f
(&)
j;nfrfmf

mf= —If
(4.3b)

nf —i
(1) ~ (1)

If=o
(4.3c)

An independent-particle model of Sec. II will be adopted
for this reaction with the RHF orbital for the ground
state of lithium. ' Experimental data of McCullough
et al. and Sasao et al. relate to total cross sections for
electron capture from all shells of Li into any state of
He+ . Hence, we have computed cross sections for each K
and L shell independently and their combined result
ax '+L (X4) was compared with the measurements, i.e.,

(& )=2 '"(& )+ "'(& ) . (4.2)

IV. RESULTS AND COMPARISON
WITH EXPERIMENTAL DATA nf= i

(4.3d)

Our general program has already been used in a number
of exhaustive computations of differential and total cross
sections for electron capture from hydrogen-atom and
multielectron targets by bare nuclei. Collisions of type
H+ -H and H+ -Ar have been investigated in Ref. 1 1 . A
remarkable improvement of the present theory over the
standard first Born approximation of Jackson and Schiff
has been achieved by using a simple hydrogenic model for
Ar. Nevertheless, it would be desirable to employ a more
realistic description of multielectron atoms, such as the
present RHF model.

Recently, Belkic et al. have studied reaction (2.1)
with projectile charge Zt' ranging from 1 to 6 and for a
fixed Zz ——1 . Excellent agreement has been obtained be-
tween the present theory and experimental data in con-
trast to the usual Jackson-Schi ff approximation, which

'(&)=o' "(&~)=—g o.
,
",„'f+y(3,X)oI!'

nf= &

where

(4.4)

+i N+1
y(3, N) =1+(%+1)'g(3)—

nf= &

nf (4.5)

with g(3) being the Riemann zeta function. By setting
the upper limit to be equal to 4 we shall be investigating
the convergence of the following sequence: o; ( X i ),( )

o';"(Xq), o,' (X3), and o.,'"(X&), i.e.,

In practice, the infinite summation in (4.3d) has been
truncated and the scaling (n ) law was used to make an
estimate of the type"
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o';"(X,) = 1.202cr'. ,',
~I"(r,) =~I!I+1.616~I!,',

', "(X,) = '. ,'+,".,'+2.081', .,',
~'i "(&4)=~'i i+~'i 2.+~'i ~+3 113~'i'4 .

(4.6a)

(4.6b)

(4.6c)

(4.6d)

Cross sections (4.3a)—(4.3d) for capture of an electron
from the K shell of Li are respectively listed in Tables
I(a)—I(d). It can be observed from Table I(c) that the
n = 1 level of He+ yields the dominant contribution
throughout the energy range under consideration, i.e.,
E =250—2500 keV. The Roothaan-Hartree-Fock orbital
energy ' for the K shell is c;=—2.47773, which yields
the following value for the effective charge:

Zz. ——( —2s;)'~ =2.226086 (K shell) . (4.7)

This value of Zz is close to the projectile charge Zp ——2,
and hence transition a+.Li(K shell)~He+( ls)+Li+ is of
a nearly resonant nature, within the present model. An
inspection of Table I(d) will reveal that the convergence
rate of sequence (4.6a)—(4.6d) is extremely good.

Corresponding results for cross sections (4.3a)—(4.3d)
relating to capture from the L shell of Li are presented in
Tables II(a)—II(d), respectively. This time, at energies
E (1500 keV, electron capture into excited states of He+
plays an important role. It can be seen from Table II(d),
that at the lower edge, E=250 keV, the largest contribu-
tion to the I.-shell capture comes from the n =3 level of
He+. The L-shell RHF orbital energy ' of Li is
c; = —0.196 320, which implies

capture from a Li atom by a particles into the nf=3 level
of He+ gives the major contribution. This excited state of
He+ will subsequently decay to its ground 1s level either
directly or by cascades via intermediate allowed transi-
tions emitting soft-x-ray photons. An inverted level dis-
tribution of final states can be produced in this way,
which is required for laser action in the far-ultraviolet or
soft-x-ray region. In their analysis of double electron cap-
ture, Post et al. have proposed the use of a neutral lithi-
um atom beam to probe the a-particle distribution in
tokamak fusion reactors. The present results for energies
E & 250 keV show that the ground state of He+(ls) yields
the main contribution to the total cross sections in a-Li
(K-shell) collisions. Hence, reaction (4.1) can hardly be
used at these energies for the production of soft-x-ray
lasers.

Charge exchange of types (2.1) and (2.56) find their ap-
plications in various areas such as plasma physics, astro-
physics, etc. When the target is atomic hydrogen in its
ground state and the projectile is a stripped metallic mul-
tiple ion, electron transfer (2.1) appears to be one of the

-15
10

-16
10

ZY ——( —8c,;)'~ =1.253220 (L shell) . (4.8)

On the other hand, the electronic binding energy of
He+(n =3) is Ef ———0.222222, which is very close to
the RHF orbital energy c,;=—0.196320, and therefore
the reaction path a+ Li( L shell) ~He+(n f= 3) + Li+
provides a near-resonant contribution. Notice that al-
though the excited states are very important for the L.-
shell capture, the size N=4 of sequence (4.6a)—(4.6d) is
satisfactory in obtaining a good convergence at higher en-
ergies [see Table II(d)].

Total cross sections summed over all the initial and fi-
nal states are displayed in Table III, from which it follows
that capture from the K shell of Li dominates the corre-
sponding contribution from the target I shell. The situa-
tion is, however, reversed at energies lower than those
presented in this work.

Comparison between the present theory and measure-
ments is depicted in Fig. 1, where satisfactory agreement
is obtained. Also displayed on this figure are the results
of the continuum-distorted-wave approximation as com-
puted by Ghosh et al. It is quite surprising that this
higher-order theory, which is supposed to be adequate for
process (4.1) at energies greater than roughly 800 keV,
fails to reproduce experimental data.

Results of the classical trajectory Monte Carlo method
obtained by Olson (not shown on Fig. 1) are found to be
in very good agreement with our cross sections. It has
previously been observed by Shipsey et al. as well as by
Bransden and Ermolaev ' that at energies below 100 keV,

tV
E
LJ

a/I

C3

10

10-18,
I

6 7 8 9 10

IMPACT ENERGY (100 I(%V)

FICx. 1. Total capture cross sections o';"(X4) in cm for
charge-exchange reaction (4.1) as a function of laboratory im-
pact energy F. (keV). Index i refers to the K, L, or (K+L)
shells. The results relating to electron transfer from an indivi-
dual shell of Li are obtained by means of Eq. (4.6d), whereas
o~+1(X4) is computed by means of Eq. (4.2) ~ Theory: Present
results: ( —- —.—-, L shell; ———,K shell; and
( K +L) shells). The continuum-distorted-wave approximation:

—,Ghosh et al. (Ref. 28). Experimental data: ~,
McCullough et al. (Ref. 25) and 0, Sasao et al. (Ref. 26).
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TABLE I. Total cross sections (in units of cm ) for electron capture from the E shell of a Li atom by an alpha particle ( He +) as
a function of laboratory impact energy E (keV). The quantization axis for both initial and final bound states is chosen along the in-
cident velocity vector v. (a), (b), and (c) relate to Eqs. (4.3a), (4.3b), and (4.3c), respectively. (d) corresponds to the sequence in Eqs.
(4.6a) —(4.6d). X [ N—] implies X && 10

(a)
E (keV)

nf mf 250 700 1500 2500

2.02 [—16]

1.59 [ —17]
1.38 [ —17]
1.21 [—18]

6.57 [ —17]

7.64 [ —18]
5.92 [ —18]
7.86 [ —19]

3.39 [ —17]

4.35 [ —18]
3.22 [ —18]
4.78 [ —19]

1.52 [ —17]

2.08 [ —18]
1.38 [ —18]
2.17 [—19]

5.22

7.49
4.01
6.41

[ —18]

[ —19]
[ —19]
[ —20]

1.06 [ —18]

1.55 [—19]
5.71 [ —20]
8.96 [ —21]

0
1

1

2
2
2

0
0
1

0
1

2

3.95 [ —18]
3.54 [ —18]
2.81 [ —19]
5.92 [ —19]
8.98 [ —20]
6.48 [ —21]

1.55 [ —18]
1.41 [ —18]
1.09 [ —19]
3.13 [ —19]
4.70 [ —20]
3.32 [ —21]
1.13 [—20]
2.98 [ —21]
4.34 [ —22]
2.79 [ —23]

2.20 [ —18]
1.73 [ —18]
2. 10 [ —19]
2.08 [ —19]
4. 12 [ —20]
4.12 [ —21]

9.14 [—19]
7.22 [ —19]
8.49 [ —20]
1.14 [ —19]
2.18 [ —20]
2. 12 [ —21]
3.71 [ —21]
1.05 [ —21]
1.92 [ —22]
1.53 [ —23]

1.29 [ —18]
1.00 [ —18]
1.38 [ —19)
1.05 [ —19]
2.55 [ —20]
2.74 [ —21]

5.44 [ —19]
4.28 [ —19]
5.76 [ —20]
5.90 [ —20]
1.39 [ —20]
1.46 [ —21]
1.78 [ —21]
6.10 [ —22]
1.26 [—22]
1.05 [ —23]
(b)

6.28 [—19]
4.53 [ —19]
6.72 [ —20]
4.06 [ —20]
1.13 [—20]
1.24 [ —21]

2.66 [ —19]
1.97 [ —19]
2.86 [ —20]
2.33 [ —20]
6.38 [—21]
6.86 [ —22]
6.39 [ —22]
2.55 [ —22]
5.49 [ —23]
4.60 [ —24]

2.28 [ —19]
1.37 [ —19]
2.10 [ —20]
9.89 [ —21]
3.01 [ —21]
3.23 [ —22]

9.72 [ —20]
6.04 [ —20]
9.12 [ —21]
5.80 [ —21]
1.74 [ —21]
1.84 [ —22]
1.34 [ —22]
5.87 [ —23]
1.27 [ —23]
1.04 [ —24]

4.73 [ —20]
2.01 [ —20]
3.06 [ —21]
1.02 [ —21]
3.23 [ —22]
3.33 [ —23]

2.02 [—20]
8.93 [—21]
1.35 [ —21]
6.08 [ —22]
1.90 [ —22]
1.95 [ —23]
1.03 [ —23]
4.75 [ —24]
9.97 [ —25]
7.93 [ —26]

nfIf 250 500
E (keV)

1500 2500

1s

2$
2p

3$
3p
3d

4s
4p
4d
4f

2.02 [ —16]

1.59 [ —17]
1.62 [ —17]

3.95 [ —18]
4.10 [ —18]
7.84 [ —19]

1.55 [ —18]
1.63 [ —18]
4.14 [ —19]
1.81 [ —20]

6.57 [—17]

7.64 [ —18)
7.50 [ —18]

2.20 [ —18)
2.15 [ —18]
2.99 [ —19]

9.14 [ —19]
8.92 [ —19]
1.62 [ —19]
6.21 [ —21]

3.39 [ —17]

4.35 [ —18]
4. 18 [ —18]

1.29 [ —18]
1.28 [—18]
1.61 [—19]

5.44 [—19]
5.43 [—19]
8.97 [ —20]
3.28 [—21]

(c)

1.52 [ —17]

2.08 [ —18]
1.81 [ —18)

6.28 [ —19]
5.87 [ —19]
6.57 [ —20]

2.66 [ —19]
2.54 [ —19]
3.74 [ —20]
1.27 [ —21]

5.22

7.49
5.29

2.28
1.79
1.66

9.72
7.87
9.64
2.78

[—18]

[ —19]
[—19]

[—19]
[ —19]
[ —20]

[ —20)
[ —20]
[ —21]
[ —22]

1.06 [—18]

1.55 [—19]
7.50 [—20]

4.73 [ —20]
2.62 [—20]
1.73 [ —21]

2.02 [ —20]
1.16 [—20]
1.03 [ —21)
2. 19 [ —23]

250 700
E (keV)

2500

Equation

(4.6a)
(4.6b)
(4.6c)
(4.6d)

2.02 [—16]
3.20 [—17]
8.83 [—18]
3.62 [—18]

250

2.43 [ —16]
2.54 [ —16]
2.52 [ —16]
2.52 [—16]

6.57 [ —17]
1.51 [ —17]
4.65 [ —18]
1.97 [ —18]

7.90 [ —17]
9.02 [ —17]
9.05 [ —17]
9.05 [ —17]

3.39 [ —17]
8.52 [ —18]
2.73 [ —18]
1.18 [—18]

{d)

4.08 [—17]
4.77 [—17]
4.81 [—17]
4.82 [—17]

1.52 [ —17)
3.89 [ —18]
1.28 [ —18]
5.59 [ —19]

E (keV)

1.82 [ —17]
2. 14 [ —17]
2. 17 [—17]
2. 18 [ —17]

5.22
1.28
4.24
1.86

6.28
7.29
7.38
7.40

[ —18]
[ —18]
[ —19]
[ —19]

[ —18]
[ —18]
[ —18]
[ —18]

1.06 [ —18]
2.30 [ —19]
7.52 [ —20]
3.29 [—20]

2500

1.28 [ —18]
1.43 [ —18]
1.45 [ —18]
1.45 [ —18]
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TABLE II. The same as in Table I, except that this time
X~10—~.

capture is taking place from the L

(a)
E (keV)

shell of Li. X [—X] implies

nf 250 700 1500 2500

3.30 [ —18] 8.39 [ —19] 4.01 [ —19] 1.70 [ —19) 5.56 [ —20] 1.07 [ —20]

3.86 [ —18]
5.24 [ —18]
3.29 [ —19]

3.87 [ —19]
7.91 [ —20]
2.30 [ —20]

1.08
4.37
1.44

[ —19]
[ —20]
[ —20]

3.15
2.18
5.52

[ —20]
[ —20]
[ —21]

8.90 [ —21]
5.89 [ —21]
1.23 [ —21]

1.62
6.87
1.23

[ —21)

[ —22]

1.50 [ —18]
2.95 [ —18]
1.67 [ —19]
3.77 [ —18]
1.18 [ —18]
9.80 [ —20]

1.56 [ —19]
4.67 [ —20]
5.44 [ —21]
7.87 [ —21]
2.88 [ —21]
4.25 [ —22]

4.04
1.26
3.61
1.52
1.02
2.74

I:
—2o]

[ —20]

[ —21]
[ —21l
[ —22]

1.06
6.76
1.63
1.05
4.65
8.12

[ —20]
[ —21]
[ —21)
[ —21]
[ —22]
[-23)

2.81
2.00
3.99
2.23
8.58
1.18

[ —21]
[ —-1)
[ —22]
[ —22]
[ —23]
[ —23]

4.99 [—22]
2.43 [—22]
4.20 [—23]
1.59 [—23]
5.63 [—24]
6.58 [ —25]

6.69 [—19]
1.42 [—18]
8.20 [—20]
2.45 [ —18]
7.12 [ —19]
5.73 [ —20]
9.82 [—19]
4.36 [ —19]
7.49 [ —20]
4.16 [ —21]

7.32 [ —20]
2.62 [ —20]
2.30 [ —21]
7.27 [ —21]
2.24 [ —21]
2.09 [ —22]
2.06 [ —21]
7.24 [ —22]
4.54 [ —23]
6.72 [ —24]

1.86
5.42
1.43
6.92
4.87
1.35
8.78
4.10
1.89
3.52

[ —20]
[ —21]
[—21]
[ —22]
[ —22]
[ —22]
[ —23]
[ —23]
[ —23]
[ —24]

4.69 [ —21]
2.88 [ —21]
6.82 [ —22]
5.71 [ —22]
2.50 [ —22]
4.39 [ —23]
3.27 [ —23]
1.80 [ —23]
6.06 [ —24]
7.30 [ —25]

1.21
8.82
1.73
1.30
4.91
6.68
4.93
2.58
6.93
6.87

[ —21]
[ —22]
[ —22]
[ —22]
I:
—23]

[ —24]
[ —24]
[ —24]
[ —25]
[ —26]

2.13
1.08
1.85
9.49
3.31
3.85
2.15
1.08
2.53
2.23

[—22]
[—22]
[—23]
[ —24]
[ —24]
[ —25]
[—25]
[ —25]
[ —26)
[—27]

500 700 2500

1s

2$
2p

3.30 [ —18]

3.86 [ —18]
5.90 [ —18]

8.39 [ —19]

3.87 [ —19]
1.25 [ —19]

4.01

1.08
7.25

[ —19]

[ —19]
[ —20]

1.70

3.15
3.28

[-19]

[ —20]
[ —20]

5.56

8.90
8.35

[ —2o]

[ —21]
[ —21]

1.07

1.62
9.33

[ —2o]

[-21]
[ —22]

3$
3p
3d

1.50 [ —18]
3.29 [ —18]
6.34 [ —18]

1.56 [ —19]
5.76 [ —20]
1.45 [ —20]

4.04
1.98
4.10

I:
—2o]

[ —2o)
[ —21]

1.06
1.00
2.14

[-2o]
[ —20]
[ —21]

2.81 [ —21]
2.80 [ —21]
4.19 [ —22]

4.99
3.27
2.85

[—22]
[—22]
[ —23]

4$
4p
4d
4f

6.69 [—19]
1.58 [—18]
3.99 [—18]
2.01 [ —18]

7.32 [ —20]
3.08 [ —20]
1.22 [ —20]
3.62 [ —21]

1.86
8.28
1.94
2.15

[ —20]
[ —21]
[ —21]
[ —22]

4.69
4.25
1.16
8.23

[ —21]
[-21]
[ —21]
[ —23)

1.21
1.23
2.41
1.16

[ —21]
[ —22]
[ —23]

2.13
1.45
1.69
4.85

[—22]
[—22]
[—23]
[ —25]

250
E (keV)

1500 2500

3.30 [ —18]
9.75 [ —18]
1.11 [ —17]
2.25 [ —18]

8.39 [ —19]
5.17 [ —19]
2.29 [ —19]
1.20 [ —19]

4.01
1.80
6.43
2.90

[—19]
[—19]
[ —20]
[ —20]

1.70
6.43
2.28
1.02

[ —19]
[ —20]
[ —20]
[ —20]

5.56 [ —20]
1.72 [ —20]
6.03 [ —21]
2.69 [ —21]

1.07 [—20]
2.55 [ —21]
8.54 [—22]
3.76 [ —22]

Equation 250 500
E (keV)

1000 1500 2500

(4.6a)
(4.6b)
(4.6c)
(4.6d)

3.96 [ —18]
1.91 [ —17]
3.62 [ —17]
4.53 [ —17]

1.01 [ —18]
1.67 [ —18]
1.83 [ —18]
1.89 [ —18]

4.82
6.93
7.15
7.20

[ —19]
[ —19]
[ —19]
[ —19]

2.04
2.74
2.81
2.83

[ —19]
[ —19]
[ —19]
[ —19]

6.69 [ —20]
8.35 [ —20]
8.54 [ —20]
8.58 [—20]

1.28 [ —20)
1.48 [ —20]
1.50 [ —20]
1.50 [—20]
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TABLE III. Total capture cross section o.,'"(X4) in cm for
reaction (4.1) as a function of laboratory incident energy E
(keV). Columns labeled K shell and L shell relate, respectively,
to i—:n ' = 1 and i =—n ' =2. Both sets of these results are ob-
tained from Eq. (4.6d). The last column E+L is obtained from
Eq. (4.2) and represents the contribution from both K and L
shells of Li( S). X [—X] implies XX 10

APPENDIX A

In this appendix we shall calculate the Fourier
transform of the type

~l S

~„'Im '(Q)= g ( —n), ( —7 I),B~I~ '(Q)
s=0 s!

E (keV)

250
500
700

1000
1500
2500

2.52 [ —16]
9.05 [ —17]
4.82 [ —17]
2.18 [ —17]
7.40 [ —18]
1.45 [ —18]

Shell
L

4.53 [ —17]
1.89 [ —18]
7.20 [ —19]
2.83 [ —19]
8.58 [ —20]
1.50 [ —20]

2.97 [ —16]
9.24 [ —17]
4.89 [ —17]
2.20 [ —17]
7.48 [ —18]
1.47 [ —18]

with

and

f(q) =(2') f dre'q'f (r),

B„'I' '(R)=R '(vR —v R) '~B'I'(R),

(A2)

(A3)

where B'I'(R) is the so-called B function of Filter and
Steinborn, ' i.e.,

most probable sources for soft-x-rays in the interstellar
medium.

z E,(z),

B~(~(R)=k, Igg(RK)9'I~(R),
1/2

2k„(z)=

(A4)

(A5)

V. CONCLUSIONS

General expressions have been derived for charge-
exchange transition amplitude T„'l'.„l in the first Born
approximation of Belkic et al. with correct boundary
conditions in both entrance and exit channels. The final
results are given in terms of a one-dimensional real in-
tegral and, hence, can be obtained as easily as in the stan-
dard Jackson-Schiff approximation.

We have presented the first results for electron capture
from multielectron atoms by bare nuclei, employing an
independent-particle model with the Roothaan-Hartree-
Fock wave functions. Comprehensive illustrative compu-
tations for the He +-Li( S) collision system have been
carried out at laboratory energies ranging from 250 to
2500 keV. It is observed that the main contribution to the
K-shell capture comes from the ground state 1s of He+
throughout the energy range under consideration. The
final-state distribution of He+(nf) tends to broaden con-
siderably when capture takes place from an isolated L-
shell of Li at intermediate energies. At the lower edge,
however, i.e., at E=250 keV, the level n =3 of He+ is
found to be preferentially populated for the L-shell cap-
ture. An overall contribution from the L-shell is negligi-
ble in comparison with capture from the K-shell at ener-
gies greater than 250 keV. Agreement with experimental
data is satisfactory.

(see also Ref. 15). We shall express the B function in
terms of a linear combination of unnormalized Slater-type
orbitals, '

v —I

B„'(~(R)= g bpbI'X ', '(R), -
p=0

where p=p+l+1, and

(A6)

(R) (A7)

(2v —p —2)! 2I'+'

( v —p —1)! p!
Hence, we shall have

(AS)

s =Op =0

xX'"(Q) ' —",
plm s! (A9)

where

'(R) =R '(vR —v-R) '~X' ' (R) .plm plm (A10)

The general result of the Fourier transform of functions
of the type (A10) is obtained in Appendix B, from which
it follows that
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2 ~ I I'o I

X,-', ' '(Q)=, X g ~,I'(~»I'(Q, v)
le= 0 1]——0

(p =p +cr), (Al 1)

where
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]cl i
i() 2+ Q2

~~i'(cr) =ah 3F2 —, , 1 —i y, ;~+1+1, —p —I; (A12)

+11
Di' (Q,v)= g (l(m(

i
Im)9'I, , (Q)9'(, ,( iv—),

m) ———1i

(A13)

a =I (1 i(—)(1 +1)~
(2b, )

(i()2+Q2) (7

(A14)

'~ )) '~ '2 ( p) (—i'Y2)K (1—y /X)'
(1+1) ~!

(A15)

2
X = (ub, —iQ v), y =u/b,

i!)
2 + Q

2
(A16)

2l +1 (1+m)! (1 —m )!
1)m)

i
lm = 4~

(21) +1)(212+I) (1) +m) )!(12+m2)! (1) —m) )!(12—m2)!

1/2

( —12 ™2( +12) . (A17)

Finally, we shall demonstrate how the double series in Eq.
(A9) can be analytically reduced to a single summation.
To this end, the summation over s will be exactly carried
out. A direct interchange of order of summations over s
and p in Eq. (A9) is, however, impossible due to
the dependency of upper limit p,„upon s
(p,„=v—1 =n, —s). This difficulty nevertheless can be
alleviated by introducing the Heaviside step function
h (n, —s —p) as follows:

A 1 n„—s

S '„I' '(Q)= g g C,p&~X ', ' '(Q)-
S=Op=O

(a)„(a)„,=( —1)'
1 —a n—S

(a )2k —(a /2)k
—2k a+1

2
(A21)

nt
(n —2k)!=

Fourier transform X-'I' '(Q) is independent of dummy in-
dex s and, further, the s dependency of coefficient C,~ can
be factored out by means of the following Pochhammer
identities:

C ~ 6~X I' (Q)h (n„—s-—p)
S =Op =0

n Al

g g C,~A~X'1' '(Q)h(n„—s —p)
p =Os =0

n min( A.I,n„—p)

(A 18)

Thus we obtain

C,p ——
( —n), ( —&1)s( —n, +p),

sf

S

n+& n+ p+—'—
2

""
2

S
p=0 S=0

where

( ~ )
( —2)' (2v —p —2)!

SP S S

(2n„)! ( n„)~—
n„! ( 2n„)z p!— (A22)

1, n„—s —p &0
h(n„—s —p)= '

0, n, —s —p (0.

(A19)

(A20)
Inserting Eq. (A22) into (A18) and carrying out the sum-
mation over s we arrive at

( ~) (2n„)! "' ( —n„)p p+1 —
( g) lV2W Jm (Q)=, g 3F2 n, —A, i, n„—+p; n„+, n—„—+;1X (' —(Q)

n„! 0 ( 2n„)~— 2 " 2 p'.
(A23)
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where 3Fz( n—, —A ~, —n, +p; —n„+p /2, —n„+ (p + 1)/2; 1) is the Claussen hypergeometric polynomial of order
min(ki, n, —p) with unit argument'

p p+1
3F2 —n, —A,l, —n„+P; —n„+—,—n, +

min(z, ,n„—pl

s=0 p—n„+—
2

S

p+1
r

( n—), ( —kl ), ( n„—+p),

S

st

(A24)

APPENDIX 8

Consider integral J given by

J=(2m) J dRe' R '(vR —v.R) '~X' '(R),Pm

(81)

where 9'i (r)=r'Yi (r), and

1 I p /2 1/2F i (cr;co, r)=Noir+ Cp+„(co+/r+ ),
N (

——4m(21)!!(p +o )!, (21)!!=2il!,
2

ci)+ =cv+6, 7+ ——r +co+, p~ =p +o

(88)

(89)

where X-'I ' (R) is an unnormalized Slater-type orbital, i.e. ,

X-', ' (R)=R~ 'e "Yi (R),
with C„(z) being the Gegenbauer polynomial [Ref. 18,
EcI. (8.930)]. Using the power series representation of
C„(z) we can write [Abramowitz and Stegun, (22.3.4)]

p=p+1+1 (p =0, 1,2, . . . ) . (82)

We shall choose the following integral representation for
the Coulomb phase factor (vR —v.R) '~ according to
Gradshteyn and Ryzhik' [Eq. (8.310)]:

p~
2

pi ——0
(810)

(vR —v R)

l(g) dz z'~ 'exp[ —(vR —v R)z], (83)

where an infinitesimally small negative imaginary part
—ie is assumed to be added to parameter g' in order to as-
sure the convergence of the integral at its upper limit.
Upon carrying out the calculation, the limit a~0+ should
be taken.

Hence,

bp~,
' ——( —1) '2" (k —1)!/(p, !k'!1!),

p1+p2 p p1 +p2 p p1 2p1

k =p2+~, k'=p2+o. .

(811)

(812)

Quantities co+ and r+ bear a simple dependence upon in-
tegration variable z such as

r+ ——a+ (1+xz), co+ ——(1+yz)b, ,

where

(813)

where [p /2] is the largest integer contained in the frac-
tion p /2, and

where (vb. —iQ. v), y =v/b„a+ —Q~+A2 . (814)
X-' (o-cv ~)=(2n. ) dRe" " R 'X-' '(R)

Plm Plm

(85)

1 =Q —1vz, co=vz (86)

Integral (85) has been calculated by Belkic, with the re-
sult

Furthermore, an addition theorem for the regular solid
harmonics %i (r&+r2) can be applied in order to factor
out the z dependence (Seaton, Belkic ),

1

(Q) = g DI
' (Q, v)z ', (815)

i, =o

X'('(o",co,r)=(2v) i F'i '(o;cv, r)9'I (r), (87) where

+1)
Di~(Q, v)= g (I, m&

~

lm)9'i, ~ (Q)&i, ,( iv), —
mi ———7i

21 +1 (1+m)! (1 —m )!
lcm&! lm = 4'

(21' +1)(2lq+1) (1& +m
& )!(12+m2)! (li —m i )!(lq—m2)!

1/2

(816)

(817)

l1+l2 ——I, m1+m2 ——m, —l2 &m2 &+l2 (818)

~ i tp i2l I

g Np~ ~'Di' (Qv) . I dz z ' (1+xz) "(1+yz)"
(2' ) & 0

(819)
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~here N, =N ibp, and a'=6 /a+. The integral in

the curly brackets is a special case of the Appell hyper-
geometric function F1 of two variables (Appell and
Kampe de Feriet ),

F, (a;b, b', c;x,y)

Finally,

where

(2 )I!I'a
g &r I' '(O )Dlm (Q, V),2~'

p, =01,=o
(826)

1 1
a —1(1 )c —a —1

B(a,c —a)

X (1—xz) (1—yz) (820)

g&I' '(cr) =AB 2F1( k', —l2+I g;g;1 —y/x),

A =(—1)"2k'r(i —g)

(827)

where B (x,y) = I (x)I (y)/I (x +y). Changing the in-
tegration variable z in (820) according to z~z/( I —z), we
obtain

p !(k —1)!(ig)1,(1—g)g,

gk'(g2+g2) —k 2

(828)

(829)
FI(I2;b,b', c;1—x, 1 —y)

1 oo

dz z' '(1+z) + '(1+xz)
B (II,c —a)

X ( I +yz)

Therefore,

(821)

If we choose v as the vector of the quantization axis for
Slater-type orbitals, it is at once seen that

Dlm(Q, v) =( IU) '(l1—
I
lm»l, m(Q) =—D lm(Q v),

(830)

where

K = f dz z ' (1+xz) "(1+yz)= r(g)
(ig)I, (1 if)g, —

= I (1 ig)—
'I

)&FI(12+i(,k, —k';g;1 —x, 1 —y), (822)

(11 i
lm ) =

1/2
21+1 (l+m)! (l —m)!
211+1 (11+m)!l2! (l, —m)!12!

and Eq. (826) is subsequently reduced to

(2') a I IJ=
2 g g 9'll' '(cr)D lm(Q. v) .

2w
p& ——o I&

——Im

(831)

(832)

where (a)„=I (a +n)/I (a), $1 ——p1+11+1 and
g=pI+l +1. Next, we shall use the two following prop-
erties of the Appell function FI .

F, (a;b, b', c;x,y)

Another form of integral J which is an alternative to Eq.
(832) can be obtained by means of the following Poch-
hammer identities:

(a)k =r(a+k)/r(a),

=(1 x) 'F, a;c b —b', b', c;——x x —y
x —1'x —1

(a),„=2
k

a+1
2 k

(823)

F1(a; ,0'bc;x,y) =2F1(a,b';c;y), (824)

where 2F& is an ordinary Gauss hypergeometric function
of one variable [Gradshteyn and Ryzhik, ' Eq. (9.100)].
In the present case 2F& is further reduced to a polynomial,
since

(g)1,(1—g)g,
Ic = r(1 —g)

(g —1)!

(a)„k——( —1) n!/(a —1 —n)k,

(n 2k)!=—n!/( n)2k, —
(a +m)k =(a +k) (a)k/(a)

(II)a+k =(a)k(I2+k)„.

The final result is then given by

(2i)l a I «I1 ~ I1
~pl (~)D lm(Q. v»

2w ~=0 I&
——

I
m

(833)

(834)

X2F1(—k';l2+ij;g;1 —y/x) . (825) where

]el ) +2+ Q2
Jr&I'(cr) =ab 3F2 —,—,1 i @1,v+ l + 1, —p ——l; (835)

a =r(1—ig)(i+ 1)~
(2&)

(+2+Q2) a
(836)
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(837)

K =p —&, p =p +o., y, =g+il„y2=$ i—l2

Here, 3F2 is the Claussen generalized hypergeometric polynomial'

(838)

3F2 2'
K~ —1 +2+ g2

, 1 —i@~,v+l +1,—p
( —tc~/2)„( —tc~/2+ —, )„(1 i—y ) )„g2+Q2

(tc+ l + 1)„(—p —l)„u! Q2

where [x. /2] is the largest integer contained in the fraction tc /2.

(839)

'On leave of absence from Institute of Physics, P.O. Box 57,
11001 Belgrade, Yugoslavia.
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