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We consider a three-level atomic system driven strongly on one transition and weakly on the oth-
er. The excited state on the weak transition is assumed to be metastable. We give an analysis of the
fluorescence from the strong transition in terms of the elementary probability density

Pron(ty,ta, ..
t1,t2, .

., t,) which gives us the probability density that exactly n photons are emitted at times
- . »1, by the atom in the time interval [0,7). We show that p(o, essentially factorizes into

products of conditional densities ¢(7) that, given a photon is emitted at time zero, the next photon
emission occurs at time 7. This enables a simulation of the individual photon emissions to be given
which shows directly the existence of prolonged dark windows in the fluorescence corresponding to
the shelving of the electron in the metastable state or “‘quantum jumps.”

I. INTRODUCTION

There have recently been a number of discussions in the
literature concerning the possibility of observing quantum
jumps in atomic systems.!~* The system currently under
discussion involves a double-resonance scheme illustrated
in Fig. 1(a) where two excited states | 1) and |2) are con-
nected to a common lower level |0) via a strong and
weak transition, respectively. The fluorescent photons
from the strong transition are observed. However, an ex-
citation of the weak transition where the electron is tem-
porarily shelved in the metastable level |2) will cause the
strong transition to be turned off. It is, therefore, possible
to monitor the quantum jumps of the weak transition via
the macroscopic signal provided by the fluorescence of the
strong transition. In the language of quantum measure-
ment theory,’ the fluorescence from the strong transition
acts as a pointer from which the microscopic quantum
state of the atom may be determined. A similar effect
may be observed for an atom in the A configuration
shown in Fig. 1(b).

This idea was first suggested by Dehmelt® as a way to
detect a weak transition in single-atom spectroscopy. Be-
cause the weak-transition linewidth may be exceptionally
narrow, this scheme has been proposed for an ultimate
laser frequency standard.

Cook and Kimble! have argued that since the weak
transitions occur randomly in time, the atomic fluores-
cence intensity has the form of a random telegraph signal.
Using a rate-equation approach they have calculated the
probability density for the durations = of darkness (off
times) and light (on times) in the fluorescent signal and
show them to be exponentially distributed.

The paper by Cook and Kimble has stimulated a num-
ber of responses. Schenzle et al.? and Pegg et al.* have
calculated the conditional probabilities that, given a pho-
ton is observed at time ¢, another photon but not neces-
sarily the next one is observed at time ¢ +7. From these
intensity correlation functions these authors infer the ex-
istence of significant dark periods in the fluorescence and
hence quantum jumps. Javanainen® has calculated the
nth-order conditional probabilities of the type described
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above and shows that the photon counting statistics are
equivalent to a Markov jump process between two states.
This allows him to deduce that the photon counting ex-
periment should record alternating periods of finite counts
and zero counts.

In the present paper we shall present a microscopic
model based on calculating the elementary probability
density pio,n(f1,...,t,) which gives us the probability
density that exactly n photons are emitted at times
t1,...,t, by the atom in the time interval [0,¢) on the
strong transition. In this context we calculate the condi-
tional probabilities ¢(7) that, given a photon has been em-
itted at 7=0, the next photon emission occurs at time 7.
This quantity is shown to be the sum of exponentials
which for sufficient differential in the time scales describe
the periods of light and darkness. Using this conditional
probability it is possible to numerically simulate the indi-
vidual photon emissions. These photon emissions clearly
show the presence of emission windows where the electron
has been shelved in the metastable level.
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FIG. 1. (a) V system; (b) A system.
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II. STATISTICS OF PHOTON EMISSION
IN RESONANCE FLUORESCENCE
FROM TWO- AND THREE-LEVEL SYSTEMS

We consider resonance fluorescence from a three-level
system in a ¥V configuration shown in Fig. 1(a). The
ground state is denoted by |0) which is coupled to the
upper-states | 1) and |2). Level |2) is assumed to be
metastable. The system is driven by two lasers at the
“strong” and “weak” transition lines |0)-|1) and |0)-
|2), respectively.
fluorescent photons on the strong transition line |1)- | 0).
Accordmg to the suggestion of Cooke and Kimble! the
“quantum jumps” of the atomic electron from the active
two-level system {|0),|1)} to the metastable state |2)
is reflected in the presence of emission windows on the
strong transition line. In this section we derive general ex-
pressions for the elementary probability density
Pron(ty, . . . ,1,) which gives us the probability density
that exactly n photons are emitted at times ¢;,...,t, by
the atom in the time interval [0,¢) on the transition |1)-
|0). This provides us with a microscopic description of
photon emission on the strong line. We show that the ele-
mentary probability density factorizes essentially into
products of conditional probability densities ¢(z, . ,|¢,)
(r=1,...,n—1) Markov property) which are the pro-
babiilty densities that—given a photon has been emitted at
time t,—the next photon is emitted at time t, ;. The
conditional probability density ¢ governs the time distri-
butions of photon emissions and are the basis of our
understanding and interpretation of the presence of pho-
ton emission windows. We emphasize that these elemen-
tary probability densities p(q,,) differ from the coincidence
probability densities usually considered in the context of
calculating intensity correlations (antibunching) for » res-
onance fluorescence (see Sec. IT A below).! %7

For simplicity we start developing the formalism below
by considering the problem of resonance fluorescence
from a two-level system (Sec. IIA).® Generalization to
the three-level situation is given in Sec. II B.

A. Two-level system

We consider a two-level atom with ground state |0)
and excited state | 1) which is driven by a classical light
field and coupled to a bath of modes of the radiation field.
The Hamiltonian for the combined system atom and radi-
ation field is

H=Ho,+Hop+H,(t) . . (1)
Setting #i=1,
Hoq=wy0ala (2)

is the free atomic Hamiltonian with ;o the atomic transi-
tion frequency and a,=|0)(1| the atomic lowering
operator. Denoting by by, (blx) the destruction
(creation) operator of the mode k of the radiation field
with polarization €,; (A=1,2), the Hamiltonian of the
free radiation field is

Hop= 3, f d*k 0ablabia - (3)
)

Most of the time the atom emits

The interaction part is

Hi()=—plo [ 8L (x=0)+ &} (x=0,0]a,

—p10 [Er(x=0)+ & (x=0,)]a] “
with p o the atomic dipole matrix element,
s 172 ;
&h(x)=i d3k €e’® b (5)
! 2 f 260(21r)3 h K

the positive frequency part of the quantized electromag-
netic field; x=0 denotes the position of the atom. The in-
cident laser field is described by a classical light wave
with positive frequency part &.(x=0,t)=& ;ee ~ir with
@ being the laser frequency.

We define a reduced atomic density operator in the sub-
space containing exactly n =0,1,2, ... scattered photons
according to '

P =Trp{P"p(1)) (6)

with p(¢) the density operator of the combined atom-field
system,

m_ 1 3 ...
"_n!%‘,fark1

S [ d*kubly, - blt,,x,, |0)
x'l

X{0]bya, - bxp, (D

the projection operator onto the n-photon subspace, and
Trp indicating the trace over the radiation modes. The
probability of finding exactly » photons in the field at
time ¢ is given by

P(t)=Tr4p' (1) =p@(1) +p{2(2) (8)

with Tr, a trace over the atomic variables. As has been
shown by Mollow? (see also Blatt et al.®), p(”’(t) obeys the
equation

d

L )= —i(H iy~ H )

+K1a1p(,;'—“ T(l— nO) 9)

Here
He = (w10—itky)ala,
~[p10 & (x=0,0a] +H.c.] (10)

is an effective non-Hermitian atomic Hamiltonian with «;
the spontaneous decay rate of the upper state in the two-
level system. Summing over the n-photon contributions,
Eq. (9) reduces to the familiar optical Bloch equations”?

d .
"‘Epa=—l(HeffPA —paHY) +r101p4a] (1
for the reduced atomic density operator

palt)= zp"“(t). (12)
n=0

The n-photon density matrix p'?() is seen to obey an in-
homogeneous equation of motion [Eq. (9)] for n =1,2, ...
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with |0){0|kp{}(2) as a source term. The solution of
Eq. (9) can be written in the form

P =S, pa(to=0) (13a)
with the initial condition p 4(z=0)= | 0){0| and
t
pIO= [, _dt'Sydipi V) (n=12,...)  (13b)

where we have defined a time-evolution operator of the
homogeneous part of Eq. (9),

S,,,Op(,;')(to)
= T[exp [—i ft;dt'Heff(t') ] ]p(j‘)(to)
T [exp [i ft;dt'Hlff(t') ] ] (14)

with T denoting the time ordering, which can be inter-
preted as the time evolution confined to a particular sub-
space containing exactly n photons, i.e., the time evolu-
|

t t, t
P 0= [ldt, ["dty i [T dtTra (S0 DS, .,

for n=1,2,.... Equation (16) may be interpreted in
terms of the time evolution of an atom in a time interval
[0,z) which emits exactly n photons at the times
ti,...,t,. Each spontaneous emission is accompanied by
a reduction of the atomic density operator to a pure atom-
ic state |0)(0| as described by the operator J; in Eq.
(16) (reduction of the wave packet). The time evolution
between the spontaneous emission events is governed by
the non-Hermitian Hamiltonian H . which describes the
reexcitation of the atom to the upper state of the atom by
the laser field. Equation (16) has a structure which is ex-
pected for an n-photon probability from continuous mea-
surement theory as applied to the theory of photon count-
ing by Srinivas and Davies.!® In particular this theory
supports the interpretation of

(17a)

Proo(ts - ty)=Tr (S, J1 -+ J1S:, 0p4(0)}

as an elementary probability density that the atom emits n
photons at times ¢, ...,%, (and no other photons) in the
time interval [0,7). According to the definition of S,

and J; we can rewrite Eq. (17) as
|

o0 t t, t,
Tto,OpA(O)z 2 fo dt, fO dty, - fo dtlSt,thIStn,tn_l T JIStl,OPA(O) .
: n=0

Using Eq. (13), Eq. (20) can be expressed as
T, pa0)= 3 pP(D)=p4(1) . 1)
n=0

This shows that T,, is identical to the time-evolution
operator U for the optical Bloch equations (11),
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tion between two photon emissions. In addition we have
written the source term in Eq. (9) in terms of the operator
J acting on p‘,{'_” as

-1 (n—1) —1
):Klalpf aI=K1|0>(0|P(1'f -

Jip'7 (15)
Equation (13) describes a situation where atoms in the
ground state with n photons in the field are created at
time ¢’ at a rate which is the product of the decay rate k;
times and the excited-state population p(u“” with n —1
scattered photons in the radiation field. The time evolu-
tion following the spontaneous emission (until the next
photon is emitted) is described by the non-Hermitian
Hamiltonian H.; according to Eq. (13). Solving the
hierarchy (13) recursively we obtain for the n-photon
probabilities

PO(4)=Tr,{S;00.4(0)} (16a)
and
.o JIS,I,QpA(O)} (16b)
I
p[O,t)(th oo 9tn)
n
=[poolt | ta)+p11(t [ t)] TT <Pty [2,—1) ,  (17D)
r=1
where we have defined two functions
Pyt [20)={(Jj| (S,,,0 [0X<0|)]|j>
=p(t |ty) (j=0,1). (18)

By definition these functions satisfy the initial conditions
Poolto | to)=1 and py(2g|2o)=0. We note that—again
following the general argument of Srinivas and Davies—
the quantity

Try {JlSzl,tOJITto,(}OA(O)}
Tr {11 T1,004(0)}

¢ty | tg)= =kipp(t|t,) (19)
may be identified with the conditional probability that,
given a photon was emitted at ¢, the next photon is emit-
ted at time #;. Since for this quantity it is of no impor-
tance how many photon emissions have occurred at times
previous to ty, a summation over all possible previous
counts is involved and hence leads to the appearance of a
time-evolution operator

(20)

[

pp,v(t)E[Tt,topA(tO)]pv= 2 Upv,v‘r(tsto)pa‘r(to) (22)

with the Greek indices labeling atomic states.

It is not difficult to convince ourselves that Eq. (19) is
consistent with the interpretation of xp1,(¢; | to) as a con-
ditional probability density for the emission of the next
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photon at time ¢; given that one was emitted at time ¢,.
First we note that in view of

Kip11(t | to)= —%[ﬁm(t | to)+p11(t | 20)] (23)
we have | |
ft;d‘l'a(1'| to)=1—[Foolt | o) +Puilt | f0)]
=x€[0,1] (24)

with x a number in the interval between zero and one. If
the driving field is monochromatic than py(¢ |¢,) and
P11(t | o), and hence T(t |t,), are functions of the time
difference only. Equation (21) expresses the intuitively
obvious result that the probability of emission of a photon
in the time interval [0, #)—given the last photon emission
occurred at time to=0—equals the population left in the
atom at time ¢ when it evolves according to the Hamil-
tonian H .. In particular Eq. (21) implies the normaliza-
tion condition

[ dretr|)=1. (25)
0

To summarize, the elementary probability density pj
can be written in the form

P[O,t)(tls o ’tn)

[1_f dre(r|e, >] TLet |6 0 (t5=0)

r=1
(26)

which is the product of conditional densities describing
photon emission at times ¢y, .. .,¢, times the probability
that no photon is emitted during [¢,,z). Equation (26)
expresses the fact that the elementary probability density
satisfies the Markov property.

The conditional probability density (7 |0) is the basis
for simulating sample photon emission data which can be
observed in fluorescence of a single atom. Choosing x a

random number, equally distributed in the interval be-

tween zero and one, gives according to Eq. (21) the (ran-
dom) decay time ¢ for the time delay between two succes-
sive photon emissions. Note that ¢(¢, |ty)=0 which re-
flects the antibunching property of the emitted light.!!

What is usually considered in studies of photon count
statistics are coincidence probability densities that a pho-
ton is emitted at times ¢y, ...,t, together with possible
emissions in between,

h[O,t)(tl’ PN ,tn)::TI'A{T,’th] e Jth’QOA(O)} . (27)

In particular the conditional probability that given a pho-
ton is emitted at #, another (not necessarily the next)
emission occurs at ¢, is, using Eq. (22), given by

Try{J, Trl,zOJI TtO,QOA(O)}
Tr4{J1T;,004(0)}

C(tl lt())=

=Kk1Uy1,00(t1,520) » (28)

which in the case of resonance fluorescence is just the in-

tensity correlation function calculated when studying anti-
bunching.!! Equation (28) agrees with the result obtained
with the help of the quantum fluctuation regression
theorem.

B. Three-level theory

Finally, we turn.to generalizing the foregoing discus-
sion to describe the photon statistics of resonance fluores-
cence for the three-level system of Fig. 1(a). To the extent
the atomic transition frequencies w;y and w,, are widely
separated, it is meaningful to define separate photon
count distributions for both photons emitted on the strong
and weak transition line. In the following we focus on
photon - emission probabilities of the strong transition
|1)-]0) which are quantities of immediate physical in-
terest. Following our treatment in the two-level case we
define P'™(¢) as the probability that exactly n =O0,1, .
photons are emitted on the strong transition line. An ex-
pression for P"(¢) can be derived by again defining a re-
duced atomic density matrix as in Eq. (6) with the excep-
tion that P is a prOJectlon operator on a frequency band
around wjo which is broad compared with the characteris-
tic frequencies associated with the transition |0)-|1)
(the Rabi frequency, the spontaneous decay rate and de-
tuning of the laser) but much smaller than w;o—w,g, the
difference between the atomic transition frequencies
(Mathematically we interpret this as introducing two heat
baths of radiation modes, one for the first and one for the
second transition line.) We obtain the equation of motion

d
_&_P(/;l)—l(Heffpfzn)—'P(;) Te)

+ 10 +J1p' " (1-8,0) , (29)

where

2
1 T
Heff': 2 (cojo—-ykj)ajaj
j=1

2
— 2 [1jo&j(te
j=1

e 4t Hee ] (30)

is an effective Hamiltonian with a;=|0){;j | the atomic
lowering operators, k; the spontaneous decay rates, and
Kjo the atomic dipole matrix elements; & ;(¢) are (slowly
varying) laser amplitudes and w; laser frequencies for the
first and second transition, respectively (j =1,2). The
operators J; are defined by

e P =kja;pPaf=k; 100 (j=1,2), (31

and describe the collapse of the atomic density operator to
a pure ground state |0){0| following the emission of a
photon. Note that the source term Jp'f ~" in Eq. (26)
describes the creation of atoms in the ground state with n
photons havmg been emitted on the transition |1)-|0),
while J,p'f corresponds to the recycling of the atomic
electron to the ground state after emitting a photon on the
weak transition (which, of course, does not change n, the
number of photons emitted on the first line).

Equation (23) from our discussion of the two-level sys-
tem remains valid in the present case except that the con-
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ditional densities ¢(z | ¢y) are now given by

cl(t ltO)ZKlﬁll(t Ito) (32)

with p]; defined as the solution of the homogeneous part
of Eq. (29), which for coherent driving fields
[&.;(t)=const] in the rotating frame has the form

d_ i~
dtPoo=K2P22+%’ 2 Q;pjo+c.c. ,
Jj=1

d ~ iy~ .
EPH: ”‘KJP_U”%IQJP]O“’C-C' (] =1,2) ’
d. . ~ o~ o~ oy ~
EP10=(1A1—%K1)P10 +3iQ4(Poo—P11) — TiQoP12 »

(33)

d . . - . - - P~
E;on=(lA2,— $K2)P20+ 51 D(Poo—P22) — 3iQ1Pa1 »

d _ . . - i~ i~
——pra=iA|—iDy— Tk — TK)P12— TiQoPro+ 7iQ1Pos

dt
with pp,(t | to) =pp.(t —1) satisfying the initial condition
Pun(0)=38,08,0. Here Q;,Q, and A}, A; are the Rabi fre-
quencies and laser detunings for the first and second tran-
sitions, respectively. Note that Eq. (33) differs from the
usual density matrix equation for a three-level system
only by the missing “recycling” term k,py, on the right-
hand side of the equation for poo. From Egs. (32) and (33)
it follows that ¢(z |ty)=¢(t —1t,) is positive (¢>0) and
normalized since

t 2
[ dretn=1- j§0,7,-,-<t)

=1-Tr {p4(t)}=x€[0,1]. (34)

According to Egs. (32) and (33) the conditional density
has the form
9
0= 3 d;re '
j=1

9
>4
j=1

where the coefficients 4; and the eigenvalues A; follow
from the solution of Eq. (33).

A finite bandwidth b; and b, of the first and second
laser according to the phase diffusion model is easily in-
corporated in the present calculation.!? It can be shown
that an ensemble average over phase fluctuations (indicat-
ed by the angular brackets) of the elementary probability
density po, again leads to an equation of the form (26)
with the conditional densities ¢ replaced by
(e(t | 29))=K1{p1i(t | t)). The averages {p,.(t |to))
obey the system of equatlons obtalned from Eq (33) with
the substitutions 2 SK1— % Lk +b, K2——> Lk+b,, and
—ZI—K1+%K2—+%K1+ >K1+b1+by. In the large-bandwidth
limit an adiabatic elimination of the off-diagonal elements
becomes possible which allows a reduction of the system
(33) to a set of rate equations for the average populations.

=1] , (35)

III. QUANTUM JUMPS IN THREE-LEVEL
SYSTEMS

In this section we explicitly calculate and interpret the
conditional probability density (¢ | #y) and the elementa-
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ry probability density pio, for the three-level systems
shown in Fig. 1. Our starting point is Egs. (32) and (33).
To obtain physical insight we concentrate on two limiting
cases where simple analytical solutions are possible: (i)
reduction of the system (33) to a set of rate equations in
the limit of a broad-bandwidth field for the weak transi-
tion and strong saturation of the first transition and. (ii)
coherent excitation for both transitions.

A. Incoherent excitation

1. V system

Following Cook and Kimble, a simple analytical treat-
ment is possible in the limit where the transition |0)-|1)
is strongly saturated and the weak excitation of |2) is in-
coherent with a transition rate Wy, (assuming b, >>,).
We define 2" =g (1) +517(¢) and 22 =p33)(t) as the
probabilities that n photons have been emltted on the
atomic transition | 1)-|0) and the electron is in the two-
level system { |0), | 1)} or state |2), respectively. From
Eq. (29) we derive

;t.@‘") _R_PP4_R,P™, (36a)
%@‘:”=R_@‘:>—(§K1+R+)ﬂ‘:”
+ 31,27 D(1-8,,) (36b)

with R, =+ Wy, the excitation rate { |0),|1)}-|2) and
R _=K,+ Wy, the decay rate from the metastable state
back to the active two-level system. Note that

PP (t)=2 ")+ 2" (1)

is the probability of finding n scattered photons of fre-
quency ~jg in the field. The derivation of Eq. (36) im-
plies that 1/k;, 1/R4, and 1/k, are the slowest time
scales in our problem.

Summing over n in Eq. (36) we obtain the rate equa-
tions

(37)

%.@+(t)=—R_.@+(t)+R+.@_(t), (38a)
4% )=R_Z.,0—R,Z_(1), (38b)

where &7, are the occupation numbers of the electron in
the system { |0), | 1)} and state |2), respectively. Note
that Eq. (38) is independent of «;.

To assist in the interpretation of Eq. (36) we solve this
equation with the result

PP =p+_(1) (39a)
for n =0 and

ZP) f dt'ps_(t —t) 5 227 0) (39b)
for n =1,2,... . Here p4_(¢) are solutions of the homo-
geneous part of Eq. (36) [compare Eq. (33)],
%p* ()=—R_p,_+R,p__(0), (40a)
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%~_~(n= —R_F._ (D= (2k+R P _(1)
with the initial conditions p__(0)=1 and p,_(0)=0.
We identify p,_(z—t') with the probability that the
electron—starting at time ¢’ in the system {|0),1)}—is
excited to state |2) and has not yet emitted another pho-
ton on the strong transition line; p_ _ (¢ —¢’) is the analo-
gous probability for the electron staying in { |0),|1)}.
Thus we interpret Eq. (39) as describing the creation of
atoms in the (ground state of the) active two-level system
at a rate '%‘K]:@(_f—l) at time t', which is subsequently
redistributed by the incident field between { |0), | 1)} and
12).

Moments of the photon numbers are readily calculated
generating from Eq. (36) by defining generation functions.
In particular we derive the intuitively obvious result
%(n =3 n%P‘”’(f):%K,R_/(R+ +R_)=xpy

n=0

(40b)

(41)

for the mean emission rate | 1)-|0) with p;;=+ 2 _ the
population of | 1). In a similar way we can show

An?/{n)y=(n?)—(n)?)/(n)=1 42)

which indicates that there are no deviations from Pois-
sonian statistics in the rate-equation approximation.

Following analogous arguments to those given in Sec. II
leading there to Eqgs. (17) and (19) we find the correspond-
ing similar expressions

Proo(tis - s t))=[F4 _(t —t,)+P__(t—1,)]
X IT sxP—— (& | £, 1) 43)
r=1

and

c(r)=5Kkp__(7) . (44a)

Again following the reasoning of Sec. II, it is easy to
prove that ¢(7) as given by (44a) is a genuine normalized
conditional probability, too, and that the Markov property
(26) is still valid. Inserting the solution p __(7) we find

Fr)=Ah e 4 BA_e T (44b)
with
A=1-B=[A,—(R, +R_)1/(A,—A_) (4,B>0)
(44c¢)
and
Ae= 3(R 4 +R_+7K)
+[+(R, +R_++x)*—R_ 31", (44d)

which clearly is of the form (35). The mean time between
the successive photon emissions is

TI= fowdTTg(T)=1/(Klﬁll) @9

which is just the inverse mean emission rate (41) for

Wp=0 (no excitation of level |2)) we have
~, 1 —KyT/2 .. .
c(r)=7Ke ; this is the expected exponential decay
law with a rate KlﬁHZ%Kl. Note that the antibunching
property of the fluorescence light [which implies ¢(0)=0,
see Ref. 11] is lost in the present approximation which as-
sumes that the populations of |0) and |1) equalize in-
stantaneously, after an emission event has prepared the
electron in the ground state.

The remarkable feature ¢(7) is that it is the sum of two
exponential functions. Of particular interest is the case
when the two decay rates A and A_ differ substantially.
This happens, for example, when k; >>R 4, so that

Ay~+Ki+R,, A_=~R_,

1 (46)
B=1—-A=R, /tk ~

to lowest order in R+ /+k;. The fast decay rate %KI is
associated with the rapid emission of photons on the tran-
sition |1)-|0). The slow rate R_ is the sum of the
spontaneous and induced emission rates |2)-|0). As we
show below, it is the presence of the slowly decaying ex-
ponential function in ¢(7) [Eq. (44b)] which is responsible
for the appearance of emission windows on the strong
transition line.

In Fig. 2 we plot the logarithm of ¢(7) as a function of
Sk for Wo, =0 (curve a), ky=Wq, =107k, (curve b),
and Kk, = Wy, =10"%, with ;=2 (curve ¢). In Fig. 3 the
logarithm of the quantity

[ ewar=p__(n+p5, (0
—de M4BT =|x€[0,1]] 4D

which is the probability that the emission time is in the
interval [7, ) (i.e., longer than 7) is plotted for the same
parameters. In both figures the existence of two decay
rates is clearly apparent. ,

According to Eq. (47) the probability of decay in the
time interval [7, o0 ) equals the population left at time 7 in
the three-level system, p__(7)+p, _(7). We can define

1

0 50
1/2 KT

FIG. 2. The conditional probability density c(7) that—given
a count has occurred at time 7=0-—the next one will occur at
time 7 is plotted as a function of «;7 in a logarithmic scale for
the parameters Wy, =k,=0 (curve a), Wy, =k,=10"1k; (curve
b), and Wy, =k, =102, (curve c).

7100
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a critical decay time 7,
T.=In(4/B)/(A L —A_)=2In(«;/2R . ) /Ky , (48)

which marks the transition region in Fig. 3 which is
characterized by A, and A_, respectively. For A >>A_
we, therefore, identify the probability that an emission
window of duration longer than 7, occurs with the popula-
tion trapped in the metastable state |2):

[T amdr ~p,_(n) (r>>70) . (49)

On the basis of Eq. (47) we can calculate samples of
photon emission data of a single atom. Given a sequence
of random numbers x which are uniformly distributed in
the interval [0,1], we obtain a sequence of random decay
times according to Eq. (47). We may visualize this pro-
cess of simulating decay times graphically in Fig. 3 by
choosing a sequence of uniform random numbers on the
ordinate and reading off the corresponding decay times
from the x axis. Figure 4 shows examples of such numer-
ical simulations which clearly demonstrate the existence
of emission windows, i.e., that bright and dark periods of
light emissions alternate.

The definition of on and off times of the light in Fig. 4
is meaningful only to the extent the decay times A, and
A_ differ significantly. For «;>>R. we may identify
A~1 and B<<1 in Eq. (44) as the probability that—
given a photon has been emitted at time 7=0—the next
photon will decay according to the exponential decay laws
1 kiexp(— +x,7) or R _exp(—R _7), respectively. In oth-
er words, 4 and B are the probabilities for a fast decay as

if from a strongly driven isolated two-level system .

{]10),]1)} or for the occurrence of an emission window,
due to the electron being shelved in the metastable state
| 2), respectively. Clearly the probability distributions for
windows of length 7 is '

—R_ 71

Poﬂ‘(T) =Be (50)

Since the occurrence of only one rapid decay according to

log,, (§d 7" €(7")]
N

R

FIG. 3. Case of incoherent excitation: The probability that
the time elapsed between two emissions lies in the interval
[7, ) is shown as a function of k7 in a logarithmic scale for
the parameters Wy, =x,=0 (curve a), Wo,=k,=10""'k; (curve
b), and Wy, =K,=10"%, (curve c).

0
(a) KT
A
0 50 100 150 200 250
(b) KT

0 500 1000

1500 2000
(c) V2 KiT

FIG. 4. Simulations of the photon emission on the transition
|0)-]1). A vertical line (of arbitrarily chosen height) corre-
sponds to the emission of one photon. The number of simula-
tions in the respective plots is denoted by n. (a) n =250; k;=1,
K;=0, Wy, =0, i.e., photon emission in absence of the metatable

level [2). (b) n=250; k;=1, k,=0.01,
n=2000; K1=1,K2—_——0.01, W02=001

W, =0.01. (c)

—KkT/2 . .
%Kle """ cannot be a macroscopic “on period” of the

fluorescence, one rather has to integrate-all rapid decays
with no emission window in between to form a unit, i.e.,
an on period of overall length 7. Making use of the ele-
mentary probability densities (43) we find, for the proba-
bility distribution for such on periods of duration 7,

P, (7)
0 T t, t .
=3 fo dt, fo dt, - fo dt\pron(ty, - - sty s
n=0

(51)

where the index F (“fast”) denotes the requirement that
all time intervals between two photon counts have to be
smaller than 7., i.e., that we have no window in between.
Upon insertion of the approximate expression

n
Prom(t, - ta)pmde "+ [[ Ahye T (52)
r=1
for |t,—t,_1| <7, and r =1, ...,n the summing of the
right-hand side of Eq. (51) yields the result

—-BA.+1' —R

P, (7)=Ae ~Ade "+, (53)

In the limit x; >>R 4+ the probability distribution for dura-
tions 7 among dark or light periods is thus given by
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.@(,ff(r)=e_R‘T and .@on(f)=e_R+T , (54)
respectively, a result which agrees with the predictions of
Cook and Kimble! which is based on the assumption that
the on and off times are associated with the hopping
(quantum jump) of the electron between { |0),]1)} and
12).

2. A system

Similar arguments can be given for the A system de-
picted in Fig. 1(b). Quantum jumps in this system have
recently been discussed by Schenzle et al.,? Javanainen,?
and Pegg et al* The transition |0)-|1) is again driven
by a strong classical field & . The level | 1) decays spon-
taneously at a rate kp; to the ground state or at a rate k,;
to a metastable state |2) which itself decays to “the
ground state at the rate kp. We assume kp; to be much
larger than both other decay rates.

In this case Eq. (29) has to be replaced by

d

P4 = i(H epl" —p' P H [i5) + T 00

+J21p0 +J01p't (1 —8,0) (55)
with
Hy= 3 (0,—3x)ala,
v(ED
~ [ Bate " ad +He], (56)
where I={(0,1),(0,2),(2,1)} in a notation similar to the

one adopted before. An analogous procedure as for the
V' configuration, justified by a large Rabi frequency or a
broadband field on the transition |0)-]1) leads upon
replacement of R+——>RJr to the same rate equatlons for
the probabilities 7" defined as before where

R 4+ = 7K21 and R + =Kp - (57)

Comparing R4 and ﬁi we notice that, of course, they
differ inasmuch as the transition |0)-|2) is not driven
any more, thus there is no depopulation of |0) to |2),
but there is new loss rate | 1)-]2) at a rate «,; instead.
(Note that R+ <<Kp1.) With this simple replacement all
conclusions drawn for the V configuration, in particular
the existence of windows in the emission in the observed
fluorescence of transition |0)-|1), hold for the A sys-
tem, too.

B. Coherent excitation

Quantum mechanics implies the existence of (coherent)
superposition states of the atom. For incoherent excita-
tion the fluctuations in the light field destroy the
quantum-mechanical coherence. This is implict in the
reduction of density-matrix-type equations to a system of
rate equations for the atomic populations (Sec. IIIA).
These rate equations can be interpreted in terms of a (clas-
sical) probability of finding the electron in one of the
atomic states. The main result of the preceding section
was the prediction of the existence of photon emission

windows on the strong line for incoherent excitation
which we identified with the electronic population being
trapped in the metastable state |2). It is, therefore, in-
teresting to investigate to what extent excitation by a
coherent (monochromatic) field (which allows atomic
coherences to develop) might change the conclusions of
Sec. IIT A.

We consider again the case of a V configuration [Fig.
1(a)] where the first laser is tuned to exact resonance
(A;=0), the Rabi frequency {1, is much larger than «, k»,
and Qz and both lasers are monochromatic. A large Rabi
frequency €, implies fast Rabi oscillations of the atomic
populations between levels [0) and |1). Due to the ac
Stark splitting of the atomic transition line |0)-|1) the
population of the metastable state |2) as a function of A,
will show peaks for Ay=++Q,. This corresponds to tun-
ing the second laser into resonance with one of the dressed
eigenstates of the transition |0)-|1). For large Q, the
time evolution of g,,(¢) [Eq. (33)] is conveniently calculat-
ed in a basis of these dressed states. Defining dressed-
state populations

P+ +=7Poo+Por+P10+P11) 5

_ .. _ _ _ (58a)
P——=75(Poo—Po1 —P10o+pP11)
and coherences
ﬁi — 2—1/2( =~ i’ﬁ ) ,
2 P02EP12 (58b)

P — =7 Poo+Po1—Pro—P11)
we find that for Q;>>k;, and Ay= +Q, the equations
(33) decouple approximately according to

d _

PHrT TK P4+ iz QP —P4a)

d ot ~ . . ~
E;P+2=( —iAy— K1~ TR 425 (P —P 4 1)

(59)
d o il e~ ~
Pr= K= 7 0Pry —P12)
and
L = tp__, (60)
d . 1\~
g;p+_=(tﬂl~—71c1)p+_ . (61)

Equations (59) describe the coupling of the resonant
dressed-state component with level |2)  with
Ay=A,—+Q; and Q5=0Q,/V2.

For k;>>Q,,k; and A3=0 it is straightforward to in-
tegrate Egs. (59)—(61). We obtain for the probability that
the atom emits a photon in the time interval [7, ) pro-
vided the last photon was emitted at time 7=0,

o __ —Kq1/2 —KT/4
f crdr=e VWi, /4kie !
r

—(ky+ W'+2)'r

-+ W’+2 /Kle (62)

with W' ,= %Q%/(%Kl) an induced transition rate from
the dressed state | 4+ ) to level [2). In Eq. (62) only the
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FIG. 5. Case of coherent excitation: The probability that the
time elapsed between two emissions lies in the interval [7, «0 ) is
plotted as a function of +«;7 on a logarithmic scale for the pa-
rameters «;=2, ,=20, A;=0, «,=0.1, A,=0, ,=0.1 (curve
a), 0.3 (curve b), and 1 (curve ¢).

dominant (leading) terms of each of the prefactors and de-
cay rates of each of the exponential functions according to
a series expansion in k; 5/ << 1 has been written out; in
addition we have dropped rapidly oscillating terms. Note
that the last term in Eq. (62) is again a slowly decaying
exponential function which is responsible for the appear-
ance of emission windows even in the case of coherent ex-
citation. Comparison with Eq. (47) shows that the first
term in Eq. (60) is connected with the decay of the atomic
population in {|0),|1)} while the second term [which
was missing in Eq. (47)] is due to atomic coherences
which are seen to decay with a rate «,/4. For long times
x17>>1 Eq. (54) implies

[ adr =putn) (kr>>1) (63)

i.e., the appearance of emission windows is again related
to the electron being trapped in the metastable state.

In Fig. 5 we show the probability (62) as a function of
Sy for k=2, Q;=20, A,=0, k,=0.01, A}=0, and
Q,=0.1 (curve a), 0.3 (curve b), and 1 (curve c¢). The
curves were calculated numerically as solutions of Eq. (33)
assuming that both lasers are monochromatic. The ex-
istence of a long-time tail in Fig. 5 is clearly visible.

IV. CONCLUSIONS

We have analyzed the photoemission from a three-level
atom driven strongly on one transition and weakly on the
other. The atom is taken to be in the V configuration
and the excited state on the weak transition is assumed to
be metastable. We give an analysis of the fluorescence
from the strong transition in terms of the elementary

probability density pio,,(t1, . . .,t,) which gives the prob-
ability density that exactly n photons are emitted at times
ty,...,t, by the atom in the time interval [0,¢). These
techniques are equivalent to those of the continuous mea-
surement theory developed by Srinivas and Davies.'°

We have calculated the conditional probability density
¢(7) that given a photon is emitted at time zero the next
photon on the strong line is emitted at time 7. This is in
contrast to calculations of g‘®(), the conditional proba-
bility that given a photon is emitted at time zero another
photon but not necessarily the next one is emitted at time
T

The probability that the emission time is in the interval
[t,0) is then “dré(r)=x. On the basis of this
relation we can calculate a sequence of photon emissions
from a single atom. Given a sequence of random numbers
X1,X3, ... which are uniformly distributed in the interval
[0,1] we obtain a sequence of random decay times
ti,t3,... . A plot of the individual photon emissions as a
function of time shows directly the existence of prolonged
dark windows in the fluorescence corresponding to the
shelving of the electron in the metastable state or “quan-
tum jumps.”

The condition for the observation of prolonged dark
windows in the fluorescence is that the decay rate on the
strong transition greatly exceeds the decay and excitation
rates of the weak transition. Similar conclusions hold for
the atom in the A configuration. The dark windows in
the emission also occur for coherent driving fields when
the laser on the weak transition is detuned to compensate
for the Rabi splitting of the levels. ,

Note added. After this work was completed we became
aware of the paper by Cohen-Tannoudji and Dalibard.!?
They introduce for coherent excitation a conditional prob-
ability density for the ‘“emission of the next photon”
which is analogous to our conditional probability ¢(7) for
the “emission of the next photon on the strong line.” A
calculation of the complete photon count statistics has
been reported in unpublished work by Schenzle and
Brewer.!* Recently, experimental evidence for the ex-
istence of quantum jumps has been reported by Nagour-
ney et al.,'® Sauter et al.,'® and Bergquist et al.!’
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