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Wavelength selection in Benard-Marangoni convection
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The influence of the vessel form, the aspect ratio I, and the heating gradient on the wavelength-
selection mechanism in a hexagonal pattern, corresponding to Benard-Marangoni convection, are
studied experimentally. The pattern changes in an almost continuous way and shows a wavelength
increase when I becomes greater. The wavelengths for a container where I ~ 70 and for an infinite
extended layer are nearly identical.

I. INTRODUCTION

Wavelength selection in dissipative structures is a prob-
lem of great interest, which has been solved only in some
cases. In recent years, much research has been devoted to
it, especially in Rayleigh-Benard (RB) convection and
Belouzov-Zhabotinsky reaction. ' The RB problem deals
with a shallow horizontal pool of liquid contained be-
tween rigid boundaries and heated from below. When
slightly heated, the fluid remains at rest, but when a criti-
cal heating is reached, convective motions start. These
motions form a structured pattern that in most cases is a
pattern of rolls parallel to the shorter side of the vessel.
Buoyancy forces create this instability mechanism.

When the upper surface of the liquid pool is free,
surface-tension variations with temperature also act as a
destabilizing mechanism. Then, as shown theoretically by
Nield, convective motions occur because of buoyancy and
surface-tension forces. In this particular case, known as
Benard-Marangoni (BM) instability, convective motions
form a hexagonal pattern.

Although some defects always exist, roll and hexagonal
patterns can be characterized, because of their regularity,
by a wave number k (similar to that of a crystalline struc-
ture). A first idea of its value is obtained when applying
the normal-mode expansion to the linearized set of equa-
tions describing the corresponding instability. This
makes it possible to obtain the so-called critical wave
number k and the Rayleigh (R) and the Marangoni (M)
numbers. (These nondimensional numbers R and M are
not independent. Their definition and the relation be-
tween them can be found in Ref. 5.) The values of those
critical numbers are obtained from the minimum of the
marginal stability curve. Beyond this critical point,
weakly nonlinear analysis shows that a finite bandwidth
of possible wave numbers k (or wavelength A, = 2m /k) ex-
ists.

For RB convection numerica1 calculations made by
Busse and co-workers give the stability region in the R, P
(the Prandtl number), and k parameter space. This re-
gion has the form of a duck head (see Fig. 19 in Ref. 7).
It is limited by several kinds of instabilities (cross-roll,
zig-zag, oscillatory, etc.) that have been observed and clas-
sified by Busse and Whitehead who used a shadowgraph

technique that enables a definite wavelength to be im-
posed.

Schliiter et al. studied the stability of a roll pattern in
RB convection. In the case of a fluid enclosed in a con-
tainer with an infinite horizontal extent, they concluded
that a finite bandwidth of wave numbers proportional to
( R —Rc )

' is stable. Segel' reached the same con-
clusion. However, following a similar analysis, Cross"
and Pomeau and Manneville' showed that in finite
vessels the interval of stable wave numbers reduces to a
band proportional to (R —Rc).

Koschmieder, ' in a review paper, quoted experimental
results on wavelength variations as a function of the dis-
tance to the threshold e = (R —Rc ) /R c in spontaneous
(nonforced) roll patterns. Taking into consideration
several liquids with a high P (P ) 350), he concluded that
the dimensionless wavelength A, increases with e in all
cases. For small e, A. increases linearly. In some experi-
ments this linear range rises to 5Rc. The slope is dif-
ferent in each experiment but its average value is
(1+0.2) &(10 ' K '. More recently, Martinet et al. '

have published results about the wavelength-selection
problem in RB convection in air, which has a very low P
(P=0.71). They also observe that A, increases linearly
with e until it reaches a saturation limit. These results are
similar for several aspect ratios and only the saturation
limit changes slightly. Croquette and Pocheau' studied
the evolution of a dislocation in a forced roll pattern, and
observed that this evolution always tends to an increase of
k with e. The same conclusion follows from works by
Ahlers et al. ' and Kolodner et al. ' Those experiments
suggest that the obtained dispersion in the data is not due
primarily to experimental uncertainties, but mainly to ini-
tial conditions, to the nature of walls, to the vessel form,
to the aspect ratio [the ratio between the lateral length L„
or L„and the liquid depth (I „=L„/d,I ~ =Ly /d)], and
to the Prandtl number P. Often hysteresis of changes be-
tween possible wave numbers is observed. '

It is more difficult to obtain experimental or theoretical
results on BM convection because it involves a more com-
plex instability mechanism. Therefore, the mathematical
problem is also more complicated. Experiments showed
that a hexagonal pattern spontaneously develops, and
weakly nonlinear analysis makes it possible to determine
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TABLE I. Characteristics of hexagonal containers. I is the side length of the hexagon, I is the as-
pect ratio (corresponding to a layer depth 0.140 cm), N is the number of complete convective cells (mar-
ginal cells are excluded).

I (cm)
r
N

12.5
82

530

9.2
60

252

8.0
52

195

7.3
42

160

6.4
32

110

4.7
19
57

2.9
13
21

the stability region near the threshold. ' However, the
number of works devoted to BM convection is consider-
ably lower than that devoted to RB. As far as we know,
no work, either theoretical or experimental, has been pub-
lished on the wavelength-selection problem for this insta-
bility.

Our goal in the present work is to study experimentally
the influence of the aspect ratio I and of the distance to
the threshold e [defined in BM convection by
E=(R —Rc)/Rc ——(M —Mc)/Mc as justified in Ref. 5]
on the selected wavelength. In Sec. II the measurement
method is described. Experimental results and a compar-
ison with those obtained in RB convection are presented
in Sec. III. Conclusions are given in Sec. IV.

II. EXPERIMENTAL PROCEDURE

The general characteristics of the experimental setup
have already been published. ' The fluid used is a silicon
oil (Rhodorsil 47V100) which has a viscosity of 1 P
(P=880) at 25'C.

For the present work seven regular hexagonal con-
tainers are used to study the influence of the aspect ratio
I on A. . Hexagonal vessels are used, because it has been
observed that this geometrical form induces a minimum
disorder. The aspect ratio I is defined as I =&S/d,
where S is the surface of each of these vessels, the charac-
teristics of which are gathered in Table I, for a liquid
depth d=0. 140 cm; N stands for the number of complete

convective cells in the vessel (the cells in contact with the
walls are excluded because they are incomplete).

In the case of a high aspect ratio (I =85), a square and
a circular vessel are also used to find out what influence
the form has on wavelength variations. In all cases the
walls are made of Plexiglass, except for the circular one
which is made of glass. (The thermal conductivity of
glass is of the same order of magnitude as the Plexiglass. )

To study variations of A versus e, measurements have
been made in the hexagonal vessel with a side length
i=12.5 cm for two liquid depths, d] ——0.162 cm and
d2 ——0.407 cm, that correspond to aspect ratios I

&

——71.6
and I 2

——28.5, respectively. These two values are selected
because for a shallow pool (i.e., for d ~ ) surface-tension ef-
fects prevail, while for thicker layers (for d~, for instance)
buoyancy forces dominate the surface-tension ones.

For each experiment e is fixed (in practice it is the
mean-vertical temperature difference). Then the liquid
depth and the two temperatures of the upper T„and T~
lower surfaces are measured, respectively, with a sensor
and two thermocouples. As a consequence the convective
structure is slightly perturbed in these places. Preliminary
experiments showed that a steady regime is reached after
only a few hours. So 12 hours, at least, after measuring d,
T„,and T&, photographs of the fluid pattern [Fig. 1(a)]
are taken every 15 min. Then they are digitalized using a
Voronoi reconstruction with a PDP ll computer [Fig.
1(b)]. From this information the average distance r be-

FICx. 1. Benard-Marangoni convective structure for @=0.5. (a) Photograph of the pattern, (b) cell boundaries of (a) reconstructed
by a computer program from the experimental positions of cell centers. The marginal cells are not taken into account. +, heptago-
nal cells; 0, pentagonal cells.
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tween neighboring cell centers, related to the wavelength A,

through the relation r =2k.~3, can be calculated. In this
calculation we do not take into account the defects
(pentagon-heptagon, "flower" defect, etc. ) but only the
regular or irregular hexagonal cells.

III. EXPERIMENTAL RESULTS: COMPARISON
WITH RB CONVECTION

3.0
0

~O
Taking photographs for 12 hours or so, we have ob-

served that A, fluctuates randomly around a fixed value in
all the considered cases. This phenomenon is related to
the structural defects always existing in the pattern that
evolve with time and provoke local variations on the hexa-
gons. The amplitude of these fluctuations does not exceed
2%. The main results are summarized in the following.

A. Influence of the aspect ratio

For this experience the seven vessels (Table I) are filled
with a liquid to a depth d& ——0.140 cm. The distance to
the threshold is fixed at @=0.05.

The main results can be seen in Fig. 2. The dimension-
less wavelength X=A.„/d increases for slow I until it
reaches a limiting value for an aspect ratio about I =70.
This limit is A, =3.01, which corresponds to k =2.08
which is very close to the value obtained by the linear
theory ( k=2.1).

For another depth d=0.162 cm, the wavelength limit
(A, =2.96 corresponding to k=2.12) for high aspect ratio
(I =72.5) is in good agreement with the preceding one
taking into account the experimental uncertainties. So
beyond the value I =70, the liquid layer can be considered
as an infinite layer.

In circular (I =88) and square (I =85) big boxes and
for the same distance to the threshold @=0.05, A. is 3.01
and only shows a small discrepancy (less than 2%) with
the value found for a hexagonal container (A, =2.98) with
a similar aspect ratio ( I =83). Therefore, as expected, for
high aspect ratios the particular form of the walls seems
to have no significant influence on the wavelength-
selection mechanism.

B. Influence of the distance to the threshold

The main results are quoted in Fig. 3 from which it is

3.25—

2.50—

FIG. 3. Variation of the dimensionless wavelength A, as a
function of the distance to the threshold e, in a hexagonal con-
tainer. Layer depth: ~, 0.162 cm (I =72); A, O, 0.407 cm
(I =29).

obvious that, in the considered range, A, increases with e.
Beyond @=7 the number of defects becomes important
()45%) and the motions are rather erratic. Therefore, it
is no longer feasible to talk about the wavelength of a hex-
agonal pattern.

For the two liquid depths under consideration, A, in-
creases linearly with e. The difference in the instability
mechanism (surface tension prevailing for di', buoyancy
for dz) does not influence the corresponding slope, which
has in both cases the same value dA, /de=0. 06. It can be
noticed that this is of the order of magnitude of the value
d A. /de=0. 1 (Refs. 13 and 14) obtained for roll patterns in
RB convection.

Extrapolation to a~0 gives for I i and I z, A, , =2.96
and k2 ——2.64 corresponding to wave numbers k& ——2.12
and k2 ——2.37, which are in good agreement with the re-
sults given by Pantaloni et al.

For fixed vessels, a change in d leads to changes in I
and in the Biot number L =hd (where h accounts for the
heat transport across the free surface) and, as seen in this
work, it also changes the value of A, at the threshold
(Table II).

When d increases in a fixed vessel, I diminishes, and,
when I is below 70, wave numbers obtained in experi-
ments must be higher than those found in linear analysis
for infinite vessels. This fact could explain the apparent
disagreement between linear calculations and some experi-
mental results of Pantaloni et al. obtained in circular
containers with small aspect ratios (Table II). In the
present study we have obtained A, =2.96 for I =70, while

3.0

2.75—

2.50—

TABLE II. Wavelengths for various liquid depths (d) at the
threshold. L is the Biot number, k, and k, are the wave num-
bers, respectively, obtained from the linear theory (Ref. 3) and
experimentally in a circular vessel (Ref. 25), I is the aspect ra-
tio.

2.25—

20 40 60 80 r
FICx. 2. Variation of the dimensionless wavelength X as a

function of the aspect ratio I, in a hexagonal container, for
6=0.05.

d (cm)

r
L
k,
k,

0.36

34.9
0.13
2.05
2.01

0.50

25.2
0.3
2.10
2.17

0.80

15.7
0.45
2.16
2.23
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linear theory gives k=2.94 for L=0.45 and an infinite
vessel. This comparison also confirms that from a practi-
cal point of view containers with I )70 may be con-
sidered as infinite.

C. Comparison with RB convective patterns

In all experiments described here the realized hexagonal
pattern corresponds to a fixed wavelength (fluctuations
apart) for fixed external conditions. So no hysteresis was
observed between experiments in which A. was raised and
those in which it was lowered. On the contrary, in RB
convection, patterns of rolls with different A, seem to be
stable for the same external conditions, and hysteresis
phenomena between these A, 's might also occur.

These differences between RB and BM conventions can
be explained by the fact that in our experiments the struc-
ture is slightly perturbed by the measurement of d and T
but above all by the important differences between the
pattern natures of these two instabilities.

The number of hexagonal cells filling a vessel is far
greater than the number of rolls in a similar container. A
new roll appearing in the pattern causes an abrupt and
discontinuous variation of A, whereas the "birth" of a new
cell in a hexagonal pattern only induces small, almost con-
tinuous changes on A, . These continuous variations of A, in
hexagonal patterns are also favored by the elasticity of
parietal cells (i.e., those incomplete cells in contact with
side walls), which do not seem to have a well-defined
shape. Those facts make hexagonal patterns less "rigid"
and more adaptable than roll patterns. In this case it
seems that the pattern chooses a well-defined mean A, (I

and e being fixed) and no hysteretic changes can be seen
(see also the conclusion in Ref. 26).

By means of a "thermal technique" developed recent-
ly, hexagonal cells with an imposed side can be generat-
ed. The present work may be completed studying the
wavelength evolution of such an imposed pattern (in big
and in small boxes). We think that the corresponding fi-
nal value of A, will coincide with that of spontaneous pat-
terns considered in the present work.

IV. CONCLUSION

The aspect ratio I has a strong influence of the
wavelength-selection mechanism is hexagonal patterns
(BM convection). Two different regions can be dis-
tinguished. For small boxes the selected A. is a function of
1, whereas for big ones (I &70), A, reaches a saturation
value that (for small F. ) approaches the value given by the
linear theory. As in RB convection, A, increases with e.
In the present case A. depends linearly on e in the range
under consideration.
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