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Using the Lowdin a-function method with a computer-generated C-matrix associated with a dis-
placed Slater-type orbital, an exact closed formula as well as a Taylor series with exact coefficients is
produced for the overlap integral over two 7gy orbitals. It is shown how ten-decimal-digit accuracy
is achieved throughout the entire range of parameter values. A noteworthy development is the great
simplification of this overlap formula made possible by factoring out (1—t) by means of computer
algebra.

I. INTRODUCTION

There is still discussion and disagreement in the litera-
ture' as to how best to evaluate two-center overlap in-
tegrals over Slater-type orbitals (STO's). Everyone agrees
that two different methods must be used for integral
evaluation depending on the relative values of the screen-
ing constants (exponential scaling factors) and the dis-
tance between orbitals.

The present author showed how to evaluate the overlap
integral ( ls, ls), i.e., (100,100), over a full range of param-
eter values to 12-decimal-digit accuracy by use of a closed
formula and a Taylor series. In this paper this method is
extended to an example of orbitals with large quantum
numbers, namely, two 7g y orbitals, i.e.,
(N =7,L =4,M =4), to obtain the formulas S(744,744)
and T(744, 744). As was pointed out by Weniger and
Steinborn, it is not obvious that this can be done without
unwanted complications. Here, by a more careful analysis
of errors, we demonstrate the feasibility of extending our
original method.

II. DERIVATION OF THE OVERLAP FORMULA

We will quickly summarize our derivation of the over-
lap formula. ' Our approach is based on the Lowdin a-
function method of expanding an orbital about a dis-
placed center in terms of spherical harmonics. We call
the coefficients of the spherical harmonics (which are

We place the STO Q„=A,r 'e ~ "YL (8, ) at the
origin and the displaced STO itis =AbR 'e ~ YL (O, ip)
at a distance a along the z axis. A, and Ab are normali-
zation constants. The expansion of the displaced orbital
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functions of the radial distance) a functions, and each or-
bital has a "C-matrix" associated with it obtained by use
of computer algebra. '

The overlap integral is given by

S= f Qgfsdu
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TABLE I. The fortnula for the overlap integral S(744, 744). p =(g'+g)(a/2) and t =(g' —g)/(g'+g). The expression t~ t-
means that the polynomial is obtained from the first polynomial by replacing t by —t.

( 1 t2 )15/2
S(744, 744)= e t'[et"[t "(—99324225/p' —99324225/p' —42567525/p' —9459540/p —945945/p')

2002
' (+99324225/p +99324225/p +42567525/p6+9459450/p +945945/p )

'
( 147 349 125/p + 147 349 125p + 19 646 550/p

—29 469 825/p —17 307 675/p —4 209 975/p —436 590/p )

+ t '
( —147 349 125/p —147 349 125/p —52 754 625/p

—3 63»50/p'+ 3 118500/p 4+1056 825/p'+ &21275/p')

+ t "(—147349125/p —147349125/p +49116375/p +244755QQ/p +4828950/p

+56 700/p —149 625/p —22 050/p)

+ t ' (147349125/p +147349125/p +49116375/p

—4 683 420/p —1 408 995/p —150255/p +7560/p +2646)

(99 324225/p +99324225/p —19 646 550/p

—52 754625/p —24475 500/p —4683 420/p + 178 605/p +32 130/p +1190—196p)

( —99 324 225/p —99 324 225/p —29 469 825/p

+3 638 25Q/p +4 828 95Q/p + 1 4Q8 995/p + 178 6Q5/p 2 835 245p +7p )

(42567525/p +42 567525/p + 17 3Q7675/p

+ 3 118500/p —56 700/p —150255/p —32 130/p —2 835+ 15p')

+ t ( —9 459 450/p —9 459 450/p —4 209 975/p —1 056 825/p

—149 625/p —7560/p + 1190+245p + 150p )

(945945/p +945945/p +436590/p +121275/p

+22050/p+2646+196p +7p')]+e ~'[(t ~—t)) j

and

e
—&'[( —i)'e&"—e-&"], r &aH"= '

&J fr[( l )I $0 e
—ga]—

Invoking the orthogonality properties of spherical har-
monics, we conclude that M'=M and that only one a
function is needed. Using the results of an integral table,
we are able to program the formula for 5, in terms of an

in house version of computer algebra, and obtain func-
tions in terms of g', g and a. Now we make a change in
variables using Mulliken's notation:"

P =(4'+0)
2

and

to get the final formula
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TABLE II. The Taylor series to the t power, with the requisite powers in p, give for the overlap integral the formula T(744, 744).

T(744, 744)=(1—t )' e 1+p+,~, p + 3003p + 39039p

307 5 3587 6 64 7 1 8 59 9 10+ 65065 P + 6441435 P + 1288287 P + 306735 P + 405810405 P + 289864575 P

2 1 2 1 3 51 4 250 5 569 6+ 22 P + 22 P + 2366 P + 39039 P + 429429 P

41 7 991 8 16 9 59 1p 1 12+ 204490P + 43801758 P + 8423415 P + 511020510P + 212270058 P + 9855395550P

4 1 4 1 5 43 6 19 7 181 8+ t 1144 P + 1144 P + 104104P + 156156P + 7300293 P

1069 9 2209 10 2 11 12 71 13 1 14+ 292011720P + 5548222680 P + 63047985 P + 20561060520P + 1048614086520P + 74901061800P

6 1 6 1 7 81 8 1 9+ 102960P + 102960P + 17697680P + 5972967 P

2693 1p 1423+ 9986800824P + 166446680400P + 3456969516P

8 13 1 14 1 15 1 16+ 25534433925 P + 59920804944P + 1715913959760P + 94375267786800 P

N+L+L' N+L' m+=I(, (l+r)~'+~~2(l r)
—~L' —L —~&2e —p g y y „,CRIM(, )( l ~ m!

&'=p J=p ( —p ()n —l)!l!

X e p
( —l)'
2n+1

1 utl
2n+i p

( —l)' „( ( —l)'
k~p (n —k)! 2"+' 2&+'

where

m =i+j,
n =N' —L'+j,
r=l —n —1,
u =N' —2L' —L+m —n —1,
U =N' —2L' —L +m —k —1,
m=i —k —1,

and

l M (2L + 1)(2L'+ l )(L +M)!(L' M)!—
(2N')l(2N)t(L '+M)!(L —M)!

III. EXAMINATION OF THE OVERLAP
BETWEEN 7g y ORBITALS

As an example using high quantum numbers, we gen-
erate the exact overlap formula between two 7gy orbitals,

TABLE III. Above the jagged lined pt (0.1 the numbers are produced by the Taylor series T(744, 744). Below the line pt &0. 1

the numbers are produced by evaluation of the closed formula S(744,744). The table is accurate to ten decimal digits.

t =0.01 t =0.02 t =0.05 t =0.10 t =0.20 t =0.50 t =0.90

0.01
0.02
0.05
0.10
0.20
0.50
1.00
2.00
5.00

10.00
20.00
50.00

0.999 247 898 3

0.999 240 862 0
0.999 191 609 6
0.999015 729 6
0.998 312 544 2

0.993 405 1962

0.976 090 600 4
0.910022 607 3

0.563 074 787 4
0 1 1 5 070 643 1

0.000 647 1148

0.000 000 000 0

0.997001 558 3

0.996 994 542 0
0.996 945 428 8

0.996 770 046 2

0.996068 848 9
0.991 175 366 6

0.973 909 567 6
0.908 025 934 9
0.561 991 607 5

0.114949 568 6

0.000 648 430 8

0.000 000 000 0

0.981 399 354 6
0.981 382 476 2

0.981 344 328 3

0.981 172 392 6

0.980 484 975 3

0.975 687 598 1

0.958 760028 1

0.894 154410 7

0.554456 732 4
0.114 102 866 4
0.000 657 667 7

0.000 000 000 0

0.927 391 176 7

0.927 384 771 6

0.927 339 937 3

0.927 179 8340
0.926 539 7190
0.922 072 253 3

0.906 305 899 0
0.846090003 6

0.528 2114649 1

0.111091 1600
0.000 690 995 9
0.000 000 000 0

0.736 263 561 3

0.736 258 777 5

0.736 225 291 4
0.736 105 711 7

0.735 627 601 8

0.732 290 171. 5

0.720 503 1106
0.675 356 533 3

0.433 154062 9

0.099 272 620 5

0.000 828 571 8

0.000 000 000 0

0.115600 296 9
0.115 599 876 8

0.115596936 3

0.115586435 0
0.115 544437 7
0.115250 802 9
0.114207 072 8

0.110110477 8

0.084 966 982 3

0.034 151040 7

0.001 602 358 9
0.000 000 005 7

0.000 003 896 3

0.000003 896 3

0.000003 896 4
0.000003 896 8

0.000003 898 4
0.000 003 909 3

0.000 003 948 0
0.000 004 099 5

0.000 005 030 3

0.000007 138 5

0.000 008 914 8

0.000002 751 5
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i.e., S(744, 744), and present it in Table I. The expression
t~ —t in the second part of the formula means that the
polynomial for this part is obtained from the first polyno-
mial by replacing I; by —t. In the development of this
formula we were able to effect a remarkable simplification
by factoring out the binomial 1 —t 20 times in the origi-
nally generated formula. This step undoubtedly makes
for a rapidly convergent Taylor series. We should antici-
pate this factorization because the S(744,744) formula
must be independent of the interchange of orbitals. In un-
symmetric cases, 1+t might also be factored out of the
polynomials. The expression of this formula in a Taylor
series T(744, 744) is presented in Table II. Because the C
matrix elements are integers, we were able to use integer

arithmetic to arrive at exact coefficients for the expan-
sion. We note that if we set t =0 we obtain the polynomi-
al in p that gives the formula for the equal zeta case. The
expansion is carried to t which automatically produces
terms up to p

An important consideration is to decide which expres-
sion to use when required to produce a value for given pa-
rameters and to estimate the error. Let us consider the
case p =0.01 and t =0.01. Using the formula
S(744,744) we obtain the number 0.495 87)& 10 for the
positive part of the evaluation and —0.495 87& 10-' for
the negative part. Actually, these numbers are identical to
all the machine digits and we get the absurd result
S(744,744)= —72536&&10 . On the other hand, we find
T(744, 744)=0.9992478983. We find the t term to be
0.97051X10 . Hence, the Taylor series is obviously
converged, assuming we are seeking an accuracy of
+10 ' . We now state a criterion corresponding to this
accuracy for the evaluation of the formula S(744, 744):
Using double precision accurate to 28 decimal digits, the

absolute value of the positive and negative evaluations
must not exceed 10', and for single precision accurate to
14 decimal digits, the absolute values must not exceed 10 .
The criteria are easy to arrive at since all overlap values
must be equal to or less than 1.0. Investigation has shown
that a more convenient criterion is as follows: for pt & 0. 1

use the Taylor series, evaluated to t, and for pt & 0. 1 use
the S formula with double precision arithmetic (see Table
III). If S is evaluated in single precision, then the Taylor
series must be evaluated to t' and the dividing line is
pt = 1.0. Addition study has shown that one must be very
cautious in going beyond this line, even if using more
terms for the Taylor series.

IV. CONCLUSION

The Lowdin e-function method implemented by com-
puter algebra and the C-matrix characterization of a dis-
placed STO is capable of accurately evaluating all overlap
integrals between orbitals up to 7gy. The accuracy of
evaluation is readily determined and simple criteria can be
used to select the method of evaluation, i.e., closed formu-
la or Taylor series. Additional efforts will determine if
this method is suitable for computer programs for molec-
ular computations.
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