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Using the Lowdin a-function method with a computer-generated C-matrix associated with a dis-
placed Slater-type orbital, an exact closed formula as well as a Taylor series with exact coefficients is
produced for the overlap integral over two 7gy orbitals. It is shown how ten-decimal-digit accuracy
is achieved throughout the entire range of parameter values. A noteworthy development is the great
simplification of this overlap formula made possible by factoring out (1— ¢)*° by means of computer

algebra.

I. INTRODUCTION

There is still discussion and disagreement in the litera-
ture! =7 as to how best to evaluate two-center overlap in-
tegrals over Slater-type orbitals (STO’s). Everyone agrees
that two different methods must be used for integral
evaluation depending on the relative values of the screen-
ing constants (exponential scaling factors) and the dis-
tance between orbitals.

The present author® showed how to evaluate the overlap
integral (1s,1s), i.e., (100,100), over a full range of param-
eter values to 12-decimal-digit accuracy by use of a closed
formula and a Taylor series. In this paper this method is
extended to an example of orbitals with large quantum
numbers, namely, two 4% orbitals, i.e.,
(N=17,L =4,M =4), to obtain the formulas S(744,744)
and T(744,744). As was pointed out by Weniger and
Steinborn,* it is not obvious that this can be done without
unwanted complications. Here, by a more careful analysis
of errors, we demonstrate the feasibility of extending our
original method.

II. DERIVATION OF THE OVERLAP FORMULA

We will quickly summarize our derivation of the over-
lap formula.>® Our approach is based on the Léwdin a-
function method of expanding an orbital about a dis-
placed center in terms of spherical harmonics. We call
the coefficients of the spherical harmonics (which are
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functions of the radial distance) a functions, and each or-
bital has a “C-matrix” associated with it obtained by use
of computer algebra.®1°

The overlap integral is given by

S= [ ¢ivgdv . (1

We place the STO ¢, =A,rV'"'e =57Y¥ (9,¢p) at the
origin and the displaced STO 9 =A4,RY ~le “RYM(6,¢)
at a distance a along the z axis. A, and A4, are normali-

zation constants. The expansion of the displaced orbital
:9,10
is”
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TABLE 1. The formula for the overlap integral S(744,744). p =({'+¢)Xa/2) and ¢t =(&'—&) /(&' +&). The expression t— —t
means that the polynomial is obtained from the first polynomial by replacing ¢ by —z.

241572
S(744,744)= %e ~P{eP'[t15(—99324225/p° 99324225 /p®—42567525/p7 —9 459 540 /p®— 945945 /p")

+ 1714 +99324225/p%+99324 225 /p7+42 567 525 /p°+9 459450 /p°+ 945945 /p*)
+171%(147349 125/p°+ 147 349 125p® + 19 646 550 /p”
—29469825/p°—17307675/p>—4209975/p*—436590/p?)
+1t71%(—147349125/p%— 147349125 /p” — 52754625 /p°®
—3638250/p>+3118500/p*4-1056 825/p>+121275/p?)
+ 17— 147349 125/p° — 147 349 125 /p® +49 116 375 /p®+24 475 500/p >+ 4 828 950 /p*
+56700/p>—149 625 /p>—22050/p)
+1719(147349 125 /p®+ 147349125 /p" +49 116 375 /p®
—4683420/p*—1408995/p3—150255/p2+7560/p +2646)
+17°(99324225/p°+99 324225 /p* — 19 646 550 /p’
—52754625/p®—24475500/p°>—4683420/p*+178 605/p>+32130/p + 1190 —196p)
+178—99324225/p%—99324225/p"— 29469825 /p®
+3638250/p°+4828950/p*+ 1408995 /p>+ 178 605 /p>—2 835—245p +Tp?)
+177(42567525/p7 +42567525/p%+17307675/p°
+3118500/p*—56700/p>—150255/p*—32130/p —2 835+ 15p?)
+17%—9459450/p°—9459450/p°—4209975/p*— 1056825 /p>
—149625/p*—7560/p + 1190+ 245p +150p?)
+17°(945945 /p° 1 945945 /p* 1+ 436 590/p >+ 121275 /p2

+22050/p +2646+196p +7p*)]+e ~P[(t——1)]}

in house version of computer algebra, and obtain func-

and
) o tions in terms of £’,§ and a. Now we make a change in
e 5[(—1Yet —e ], r<a variables using Mulliken’s notation:!
=1 _ . ¢ , a
U et I(—DeR e, r>a. P=E+8)5
Invoking the orthogonality properties of spherical har- and L
monics, we conclude that M'=M and that only one a t=£——£§,+ c

function is needed. Using the results of an integral table,
we are able to program the formula for S, in terms of an to get the final formula
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TABLE II. The Taylor series to the ¢® power, with the requisite powers in p, give for the overlap integral the formula 7(744,744).

T(744,744) = (1 —12)!32% P [1+p +

307
+ %5063

21 2, 1 3, 51 4, 250 5, 569 ¢
+1 [’ZTP +23P + 5366 P+ 5039P + 3945 P

voorP>+ 307P° +

430

3587

991

180 4
39039 P

5 6 64 7 1 59 9 1 10
P+ saa1435P + Tamga7 P+ 306755 P t+ w058i0405 P+ 789863575 P

41 7
~+ 2450 P+ T801758

4 1 4 1 5 43 6 19 7 181 8
+1 [1144P + TP+ Toai0a P+ 1156 P+ T30 P

069

8 16 9 59 10 1 11 1 12
P+ g3z34i5P + STTo20510P  + 21227005 P+ 5855395550 P

1 9 2209 10 2 11 37 12 71 13 1 14
+ 3011720 + 55a8222680P T 63047985 P + 0561000520 P T+ Todseiaoses0 P t Tas01061800 P l

6 1 6 1 7 81 8 1 9
+1 [mz%op + 10350 P + 169760 P+ S9m2967 P

2693 10 6497 11 1423
+ 9986800824p + 166446680400p + 3456969516p

12

8 13 1 14 1 15 1 16
+ 35533433955 P 1+ 952080494 P T 1715913959760 P+ 94375267786800 P

S =K(1 +t)N'+1/2( 1 _t)—ZL’—L —l/2e -p

where

n=N'—-L'+j,

r=l—n-—-1,

u=N'-2L'—-L+m—n-—1,
v=N'-2L'"—-L+m—k—1,

w=Il—-k—1,

i=0 j=

N+L+L' N+

L' m
nICNEM (i jy(— 1y —mL
0 1§o £ J (m — DI
(=1 ur_ 1.
X e | TP = Syt ¢!
- S 1 (—1)1 vl (—l)-’
+e P §0 (n —k) | ok+1 pt — SEr pot? ] )
T
and

K =2N'+N(_1)M

QN NZNMNL'+MNL —M)!

(2L +1)(2L"'+1)(L +M)!(L'_M>!"/2

III. EXAMINATION OF THE OVERLAP
BETWEEN 7gy ORBITALS

As an example using high quantum numbers, we gen-
erate the exact overlap formula between two 7gy orbitals,

TABLE III. Above the jagged lined pt <0.1 the numbers are produced by the Taylor series T(744,744). Below the line pt > 0.1
the numbers are produced by evaluation of the closed formula S(744,744). The table is accurate to ten decimal digits.

P t =0.01 t=0.02 t =0.05 t=0.10 t=0.20 t=0.50 t=0.90
0.01 0.9992478983 0.9970015583 0.9813993546 0.9273911767 0.7362635613 0.1156002969  0.000003 896 3
0.02 0.9992408620 0.9969945420 0.9813824762 0.9273847716 0.7362587775 0.1155998768  0.000003 8963
0.05 0.9991916096 0.9969454288 0.9813443283 0.9273399373 0.7362252914 0.1155969363  0.000003 896 4
0.10 0.9990157296 0.9967700462 0.9811723926 0.9271798340 0.7361057117 0.1155864350 0.000003 896 8
0.20 0.9983125442 0.9960688489 0.9804849753 0.9265397190 0.7356276018 0.1155444377 | 0.000003 8984
0.50 0.9934051962 0.9911753666 0.9756875981 0.9220722533 0.7322901715 | 0.1152508029 0.000003 909 3
1.00 09760906004 0.9739095676 0.9587600281  0.906 3058990 0.7205031106  0.1142070728  0.000003 9480
2.00 0.9100226073 0.9080259349 0.8941544107 | 0.846090003 6 0.6753565333 0.1101104778  0.000004099 5
5.00 0.5630747874 0.5619916075 | 0.5544567324 0.528211/46491 0.4331540629 0.0849669823 0.0000050303
10.00  0.1150706431 | 0.1149495686 0.1141028664 0.1110911600 0.0992726205 0.0341510407 0.000007 1385
20.00 0.0006471148 0.0006484308 0.0006576677  0.0006909959 0.0008285718 0.0016023589 0.000008914 8
50.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000057 0.0000027515
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i.e,, S(744,744), and present it in Table I. The expression
t— —t in the second part of the formula means that the
polynomial for this part is obtained from the first polyno-
mial by replacing ¢t by —¢. In the development of this
formula we were able to effect a remarkable simplification
by factoring out the binomial 1—¢ 20 times in the origi-
nally generated formula. This step undoubtedly makes
for a rapidly convergent Taylor series. We should antici-
pate this factorization because the S(744,744) formula
must be independent of the interchange of orbitals. In un-
symmetric cases, 1+ ¢ might also be factored out of the
polynomials. The expression of this formula in a Taylor
series 7(744,744) is presented in Table II. Because the C
matrix elements are integers, we were able to use integer
arithmetic to arrive at exact coefficients for the expan-
sion. We note that if we set ¢ =0 we obtain the polynomi-
al in p that gives the formula for the equal zeta case. The
expansion is carried to t® which automatically produces
terms up to p'S.

An important consideration is to decide which expres-
sion to use when required to produce a value for given pa-
rameters and to estimate the error. Let us consider the
case p=0.01 and ¢=0.01. Using the formula
S(744,744) we obtain the number 0.49587x 10** for the
positive part of the evaluation and —0.49587x10% for
the negative part. Actually, these numbers are identical to
all the machine digits and we get the absurd result
S(744,744)= —72 536X 10*. On the other hand, we find
T (744,744)=0.999 247 898 3. We find the ¢°® term to be
0.97051x 10~2°. Hence, the Taylor series is obviously
converged, assuming we are seeking an accuracy of
+10~ !9, We now state a criterion corresponding to this
accuracy for the evaluation of the formula S(744,744):
Using double precision accurate to 28 decimal digits, the

absolute value of the positive and negative evaluations
must not exceed 10'7, and for single precision accurate to
14 decimal digits, the absolute values must not exceed 10°.
The criteria are easy to arrive at since all overlap values
must be equal to or less than 1.0. Investigation has shown
that a more convenient criterion is as follows: for pt 0.1
use the Taylor series, evaluated to t8, and for pt >0.1 use
the S formula with double precision arithmetic (see Table
IID). If S is evaluated in single precision, then the Taylor
series must be evaluated to t!2 and the dividing line is
pt =1.0. Addition study has shown that one must be very
cautious in going beyond this line, even if using more
terms for the Taylor series.

IV. CONCLUSION

The Léwdin a-function method implemented by com-
puter algebra and the C-matrix characterization of a dis-
placed STO is capable of accurately evaluating all overlap
integrals between orbitals up to 7gy. The accuracy of
evaluation is readily determined and simple criteria can be
used to select the method of evaluation, i.e., closed formu-
la or Taylor series. Additional efforts will determine if
this method is suitable for computer programs for molec-
ular computations.

ACKNOWLEDGMENTS

Some of the early part of this work was done under the
auspices of the Department of Chemistry and the
Academic Research Computing Center of Jackson State
University; partial support has been obtained from the Air
Force Office of Scientific Research Grant No. 86-0149.

IE. J. Weniger, J. Grotendorst, and E. O. Steinborn, Phys. Rev.
A 33, 3688 (1986); J. Grotendorst, E. J. Weniger, and E. O.
Steinborn, ibid. 33, 3706 (1986).

2H. Tai, Phys. Rev. A 33, 3657 (1986).

3A. K. Bhattacharya and S. C. Dhabal, J. Chem. Phys. 84, 1598
(1986).

4E. J. Weniger and E. O. Steinborn, Phys. Rev. A 28, 2026
(1983).

SH. W. Jones, Int. J. Quantum Chem. 21, 1079 (1982).

6D. Antolovi¢ and J. Delhalle, Phys. Rev. A 21, 1815 (1980).

7H. D. Todd, K. G. Kay, and H. J. Silverstone, J. Chem. Phys.
53, 3951 (1970).

8H. W. Jones, Int. J. Quantum Chem. 18, 709 (1980).

SH. W. Jones, Phys. Rev. A 30, 1 (1984).

10H. W. Jones and C. A. Weatherford, Int. J. Quantum Chem.
Symp. 12, 483 (1978).

HR, S. Mulliken, C. A. Rieke, D. Orloff, and H. Orloff, J.
Chem. Phys. 17, 1248 (1949).



