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We propose to look at first-return maps into a specified region of phase space as a basis for a uni-
fied renormalization scheme for dynamical systems. The choice of the region for first return is dic-
tated by the symbolic dynamics (e.g. , kneading sequence) of the relevant trajectories. The renormali-
zation group can be formulated on the symbolic level, but once translated to maps it yields the said
renormalization scheme. We show how the well-studied examples of the onset of chaos via period
doubling and quasiperiodicity fit into this approach, and argue that these problems get in fact uni-
fied. The unification leads also to a generalization that allows us to study the onset of chaos in
maps that belong to larger spaces of functions than those usually considered. In these maps we dis-
cover a host of new scenarios for the onset of chaos. These scenarios are physically relevant since
the maps considered are reductions of simple flows. We present a theoretical analysis of some of
these new scenarios, and report universal results. Finally we show that all the available renormali-
zation groups can be found using symbolic manipulations only.

I. INTRODUCTION

The success of renormalization techniques in providing
a theoretical framework for understanding the universali-
ty observed in dynamical systems at the onset of chaos, '

has been quite remarkable. This success should be con-
fronted, however, with the fact that up to now one had to
come up with ingenious new approaches for every prob-
lem studied. One could not, for example, pick the tech-
niques developed for period doubling ' and apply them
automatically to quasiperiodicity. ' In some sense one
still feels that there should be an underlying theory which
might be more general and more powerful than the im-
plementations seen so far.

In this paper we wish to describe an approach that goes
in the direction of finding such a unified theory The
purpose is to find a method that could be applied in the
very same way to a large number of different continuous
flows in phase space which can be reduced to a one-
dimensional map by Poincare section. The basic idea is to
use first-return maps (or "induced" map in the language
of ergodic theory) as the foundation of a renormalization
scheme. To understand this consider Fig. 1, for example,
in which we see a limit cycle a that underwent a period
doubling yielding a cycle b. The core of any renormaliza-
tion is the attempt to do something that will transform
the orbit b such as to resemble orbit a. The usual ap-
proach is to consider the Poincare map on a transversal
section through the orbit and then compare an iterate of
this map, properly rescaled, with the original one. Alter-
natively, we suggest here to consider a first-return map
into a subset J of the surface of section (see Fig 1) on.
which the situation is similar to that seen on the complete
section through the orbit a. Of course, in this example
the two approaches coincide; we shall see in the following
that in other instances one is led to return maps that are
not simple iterates of the original mapping.

Clearly, the crucial questions are how to choose the re-
gion J (this, in fact, is also a crucial question in the usual

approaches) and whether by repeating a procedure of this
kind one generates a renormalization group. The answers
to these questions in the context of dynamical systems
that can be reduced to one-dimensional maps are the sub-
ject of this paper.

We shall show that the choice of the return region J for
any given problem is dictated by the topology of the
relevant orbits. This topology, represented as usual by
symbolic dynamics, will allow the introduction of blocks
of symbols, which are somewhat reminiscent of spin
blocks in solid-state critical phenomena. The renaming of
these blocks of symbols by a single symbol defines the re-
normalization group, but also determines the first-return

FIG. 1. First-return map for a limit cycle after period dou-
bling. Reducing the surface of section from I to a subset J gen-
erates a first-return map of the double cycle b which is similar
to the one of the original cycle a.
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region J, as is shown below. This idea allows us to
describe in a unified fashion the onset of chaos in continu-
ous circle maps and one-hump maps of the interval as
well as discontinuous maps featuring new scenarios for
the onset of chaos.

It will be shown that one is led to the study of discon-
tinuous maps. These maps appear as natural reductions
of simple fiows and exhibit a rich dynamical behavior in-
cluding an infinity of different scenarios for the onset of
chaos. It will be shown, however, that all these scenarios,
which include also period doubling and quasiperiodicity,
can be treated in a unified fashion with the ideas
developed here.

It should be stressed from the start that we do not
claim that the functional approach that has been
developed for renormalizing dynamical systems should be
discarded. Quite on the contrary, whenever we want to
calculate universal numbers we turn to functional equa-
tions. It is our contention, however, that it becomes very
clear what functional equation one should choose after the
present approach has been dealt with. In all that follows
the emphasis is on the formulation of the renormalization
group rather than on questions like the existence of a
fixed point, etc.

In Sec. II we introduce these ideas with the-help of the
familiar example of period doubling. Section III deals
with circle maps. In Sec. IV we discuss the formal unifi-
cation of circle maps and quadratic maps. An additional
result of this unification is an enlargement of the space of
functions that can be considered. We examine the new
scenarios that are available in this space of functions and
focus on a few of them. We present a detailed theory of
period tripling. The functional equations are set and
solved in e expansion. Section V offers numerical tests of
the theory of Sec. IV, with applications to the onset of
chaos in maps and in fiows. Section VI presents the tools
needed for constructing a theory for any of the infinity of
scenarios found in Sec. IV. In Sec. VII we present a glo-
bal theory for the location of "good" renormalization
groups, based on the encoding furnished by symbolic
dynamics. The abundance of nongeometric "scaling"
behavior will be stressed and linked to the existence of de-
generate fixed points of the renormalization groups. A
summary and discussion is given in Sec. VIII.

II. PERIOD DOUBLING AND RETURN-MAP
RENORMALIZATION

xc

FICx. 2. First-return map for a one-hump map of the interval.
The first-return map into the subinterval J is similar to the orig-
inal one. The dashed lines indicate the relation between x„x*
and the features of the return map. Here the first-return map is
the second iterate (dotted line) restricted to J. Note that its as-
cending branch corresponds to RR in the original map and its
descending branch to RI..

x &xc

X(x)= C, x =x, (2.1)

RLRRRLRC for 2

RLRRRLRLRLRRRLRC for 2

RLRRRLRLRLRRRLRRRLRRRLRLRLRRRLRC

(2.2)

for 2',

R, x&x, .

Picking any initial point xo in I, the itinerary I(xo) of
xo is defined by [X(xo),X(f(xo)),X(f (xo)), . . . ]. The
itinerary of f(x, ) truncated after the first C is called the
kneading sequence of the map. All cycles containing x,
are termed superstable. Thus a 2 superstable period is C.
A 2 superstable periodic orbit is RC. As is well known,
to obtain the kneading sequence of the 2" superstable orbit
we copy the kneading sequence of the superstable 2" ' or-
bit twice, and change the C in the middle to R or L in an
alternating fashion. Thus the kneading sequences of the
next superstable 2"-periodic orbits are
RLRC for 2

Consider a map f&(x) of the interval I as shown in Fig.
2. Assume that as a function of the parameter p, this map
exhibits a cascade of period doublings, and that the graph
shown pertains to the parameter value p=p, at the
point of accumulation of period doublings (i.e., this is the
map f„). We wish to define a first-return map into
some interval JC:I with the aim of using it as a generator
of a renormalization group. In order to do so we first
remind ourselves of the kneading sequences of the 2"-
periodic superstable orbits. For unimodal maps, where
f'(x, ) =0, one defines X(x) where x is any point in the in-
terval by

etc. , where the underbar marks the alternating R or L
that appears in this construction. Clearly, the head of the
kneading sequence of the map f„ is represented by the
sequences (2.2), truncated before the C. Considering now
this kneading sequence we ask the following question: Is
there a way to define blocks of symbols such that there
are only two types of blocks (corresponding to the fact
that there are two original symbols R and L) which can
be then renamed R and L? As we shall see, this question
will return in all the examples treated below. In a sense
this question reminds one of the spin-block idea in the
context of renormalization groups of critical phenomena.
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It is easy to see that in the case considered here picking
two-symbol blocks leads to the generation of two types of
blocks: RL and RR (.The block RC occurs only once,
and only due to the finiteness of the sequence. ) If we
rename now the blocks according to RL~R, RR~L
(RC—+C), we see that the sequence of the 2" cycle gets re-
duced to the sequence of the 2" ' cycle. Clearly, the
kneading sequence of f& will remain invariant. We
stress already here that invariance under the block-
renaming procedure will not be required below. However,
its existence is a minimal condition for the availability of
a simple fixed-point theory (i.e., instead of, e.g. , a
periodic-point phenomenon).

We turn now to the meaning of the block-renaming
procedure in terms of the first-return maps. A first-
return map is a map of a subinterval JHI to itself, which
is obtained by iterating the map with initial points x in J,
and associating with each x the first point of its forward
orbit which belongs to J. The reader recognizes that this
is the map analog of the Poincare first-return map for
flows. The key idea now is that we shall interpret a block
which appears in the block-renaming procedure as actual
itinerary of the image of a point belonging to the interval
J and the trajectory of which is truncated after it returns
to the interval J for the first time. Every R will mean an
iteration with a right branch (i.e., f„restricted to x & x, ),
and an L with a left branch (i.e., f„restricted to x & x, ).
Since our blocks in this case start with R, J has to lie to
the right of x, . It cannot be, however, the whole right in-
terval, because points near the fixed point x* would re-
turn after one R. Therefore, J must lie either to the right
or to the left of x*. Since no point between x, and x'
has an itinerary RL. . . , J must lie to the right of x*. In
order to return after at most two iterations to the right of
x* the initial point must lie to the left of the second
preimage of x* which is larger than x*. This leads to a
choice of J as shown in Fig. 2. One can check now that
every point in this interval J returns after two iterations
either RR or RL. The graph of the first-return map that
we are after will appear therefore in the box J&J shown
in Fig. 2. One should stress that this choice of the inter-
val J is not unique. A smaller interval could do as we11.
There is in fact a range of J's between the minimal and
maximal ones which yield return maps which are
equivalent from the renormalization-group (RG) point of
view. The somewhat nonsystematic way that J was
chosen above could be replaced by an algorithm. We
chose not to do it here since later we shall see that in a
space of functions where period doubling gets unified
with quasiperiodicity such an algorithm appears in a very
natural and simple way.

This first-return map on J is, of course, nothing else
but the second iterate of the map f„,restricted to J. It
has again right and left branches separated by the right
preimage of x„which becomes the new C. Of course,
this point separates J into two segments, the right one,
leading to RL~R, and the left one, which is responsible
for RR~L.

As an example of f„, consider the quadratic map
x =(3.5699) . x(1—x). The nonzero fixed point of this

map is x*=0.7198. . . . The right boundary of J is
0.9141. . . . The point 0.8315. . . , which is the right
preimage of x„separates RL —+R from RR ~L.

In order to repeat the procedure we can rescale J to size
unity. The scaling factor here is P"'=5.1467. . . . The
new map has the same kneading sequence as the first one,
and the procedure can be iterated. The next J interval can
be found easily, and its scaling ratio to the first J gives
P'2'=6. 5864. . . . This scaling factor goes asymptotically
to /3, which is a in the language of Ref. 3.

We recognize the following facts.
(i) The procedure obtained here is identical in results, if

not in spirit, to the one perceived in Ref. 4.
(ii) The return maps in the smaller and smaller J inter-

vals will converge to a universal function once rescaled
properly. Notice that in this first-return box the universal
function is not symmetric.

(iii) We can examine first-return maps into J whose
right edge is the fixed point x* and whose left edge is the
left preimage of x*. This generates a scheme whose scal-
ing numbers P'"' converge to a. This is the most usual re-
normalization considered in the literature. This scheme is
obtained by dropping the first R symbol in the kneading
sequences (2.2), and then considering the blocks LR and
RR in the kneading sequences. By renaming LR~R,
RR ~L we obtain the interval J' shown in Fig. 3. In this
interval the resulting fixed-point map is even, in contrast
to the skew one that one gets in the process in Fig. 2.

(iv) The two choices of J intervals discussed above lead
to order preserving (positive scaling number u ) and order
reversing (negative a), respectively. This could be read
directly from the block renaming. In the language of Ref.

X

FIG. 3. Alternative choice of the return interval for one-
hump maps. Iterating the return-map construction with this
choice of the return interval leads asymptotically to a symmetric
function even if the original map is not symmetric.
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7, RL &RR &LR, R &L for unimodal maps. [In gen-
eral, "order" for symbolic sequences is defined by requir-
ing that for x &y, I(x)&I(z)]. Therefore [RL~R,
RR~L] is order preserving, whereas [LR~R, RR~L]
is order reversing.

III. CIRCLE MAPS

In this section we consider subcritical and critical
smooth circle maps G(x). By "subcritical" we mean
maps of the circle whose slope G'(x) is positive every-
where. Critical maps have points where G'(x) =0, but are
still monotonic. We begin by examining general proper-
ties of kneading sequences for such maps. Discontinuous
maps of the circle will be considered in Sec. IV.

The easiest way to carry over the kneading techniques
to circle maps is to represent the maps G(x) as discon-
tinuous maps g(x) from the interval to itself. Denoting
the point of discontinuity by x„we shall adopt the con-
vention that g(x, ) is lim„,„g(x). Thus we can define left

C

and right branches as before as the restriction of g (x) to
[O,x, ] and (x„l), respectively. Note that this is slightly
different from the usual definition using a reduction
mod 1. We remember that for continuous circle maps

g (0)=g(1), (3.1)

see Fig. 4.
We define an itinerary of a point x as before, and two

kneading sequences K+ and K as the itineraries of 1

and 0, respectively. Due to Eq. (3.1) K+ and K are the
same except for the first symbol. Hence, the use of two
kneading sequences is not mandatory here; one can con-
struct a consistent theory with only one. The reason that
we define two kneading sequences is that it becomes
essential in the sequel and is convenient here also. We can

maxI n; ] =minI n; I + 1 . (3.2)

Thus the only values assumed by n; are of the form n and
n + l. A similar conclusion is obtained for the case
w & —,'. The kneading sequences have therefore natural
block structures with two blocks. These block structures
will be preserved under different types of block renaming.
In order to present these various possibilities without
compromising transparency we do not split the discussion
to the case w & 2 and w & 2i, but only specify where one
cuts the kneading sequence to produce blocks. One can
either cut after each L„a procedure that we cali an opera-
tor l,

define the winding (or rotation) number w of a point as
the limit of the ratio of R's to the total number of sym-
bols in longer and longer truncations of its itinerary. As
is well known, in the monotonic case this limit exists and
does not depend on the initial point. We thus can refer to
the winding number of the map. Of course, this defini-
tion of winding number is equivalent to the one adopted
usually.

The block structure of the kneading sequence' can be
found for the following two cases: (i) g(0)=x, and (ii)
g(0)&x, . In ease (i) g(x) exchanges R and L in every
iteration, and the kneading E + and E will be
RLRLRL. . . and LLRLRLR. . . , respectively. In case
(ii) there will always be a branch whose domain is mapped
completely into the domain of the other, see Fig. 5(a).
Consequently, the kneading sequence K+ can have the
structure R 'LR 'LR 'L for w & —,', and K has the
structure L 'RL 'RI 'R for w & —,'. In the case w = —,

'

one can have either (K,K+)=(L(RL),(RL) ) or
(K,K+)=((LR),R(LR) ); we will also include the
first (second) case when dealing with w & —, (w & —, ).
Taking the case w & —,, we notice that g(0) iterates on the
right branch a minimal number of times before coming
back, and this is the minimal n; in the kneading sequence.
The point x, iterates the maximal number of times, giving
the maximal value of n; How. ever, g (x, )=g(0) and
therefore

R +'L Rl:-
R L~L, (3.3)

g
(0)

/
1

/

X

FIG. 4. Continuous circle maps. The reduction of the con-
tinuous map 6 (long dashes) leads to a discontinuous map of the
interval [0,1]. The trajectories of 0 (dotted) and 1 (short dashes)
meet after one iteration continuing on the same path (dash dot-
ted). Hence the kneading sequences EC+ and EC differ in the
first symbol, on1y.

L +'R ~L
p+ ~

L R~R, (3.4)

where again m can be zero. Notice that both l and r are
order-preserving, since contrary to the one-hump maps
[see remark (iv) of Sec. II] the natural ordering here is
R +'L &R L, L R &L +'R, and R &L. The order-
reversing case is discussed below.

The consequences of this block renaming for first-
return maps will be drawn shortly. Before that, however,
we discuss the transformation on the winding number that
is implied.

Consider the operator l. For concreteness examine X+
for w & —,. The kneading sequence looks like

where m can be zero, or after every R, yielding an opera-
tor r,
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R"+ L R"+ L R "L R"+ I. R "L
R R L R L (3.5)

where the block renaming has been performed. Suppose
also that w =p/q. What is the new w=p/q?

We recognize that w =p/q means that within a period
of the symbolic sequence we have a total of q symbols, p
of which are R's. We thus have q —p L's. Since each L
defines a block,

(3.6)

F =I —(q —s)b /(q —s»] .

Accordingly,

(3.7)

Now p is the number of R's in the new sequence, which
is the number of times that n; =n+ 1. To get this num-
ber we realize that [p/(q —p)] (where [ ] denotes the in-
teger part) is the number of R's that can be distributed
evenly among the blocks. Thus the number of times
n;=n+1is

I /q =I /(q I ) =—I /(q s') —[p/—(q —u) ] .

More generally,

w =w/(1 —w) —[m/(I —w)] .

(3.8)

(3.9)

In fact, the hypothesis tU & —,
' is not needed for deriving

Eq. (3.9), and it is the general consequence of the operator
l. [If w (—,', 1 leads to w=w/(I —w)]. Similarly, treat-
ing the operator r one gets the general formula

w =2—I /w + [(1—w)/w], (3.10)

Xc
I'

/
/

/
/

/
I

FIG. 5. First-return maps for a circle map with m ) 2. The
domain of the left branch is mapped completely into the domain
of the right one. Therefore itineraries cannot contain two or
more consecutive L's. (a) I operator: Choosing J as intersection
of the range of the left branch with the domain of the right one
leads to a first-return map with branches corresponding to RL
(second iterate) and RRL (third iterate). (b) r operator: Apply-
ing the r operator onto the same map leads to the return interval
J' as shown. Hence the branches of the return map are parts of
the second and first iterate.

which reduces to w =2—1/w for w & —,'. Notice that the
golden mean wG —(~5—1)/2 is one of the fixed points of
(3.9) whereas 1 —wg is one of the fixed points of (3.10).
We remark that the transformations (3.9) and (3.10) are
different from the Gauss map w = I/w —[I/w] which
corresponds to a shift of the coefficients in the continued
fraction representation and played a central role in the
formulations of the RG of circle maps. In the language
developed here the Gauss map is obtained from the
order-reversing operator s,

Lm+'R ~R
5: L R~L .

(3.11)

At this point we can return to the issue of return maps.
Choosing the l operator and considering the resulting
blocks as actual itineraries that start with R (i.e., the first
iteration is on the right branch) and return after one L,
one finds J as the intersection of the domain of the right
branch with the range of the left branch. We thus want to
consider first-return maps into the interval J shown in
Fig. 5(a). Similarly the operator r leads to J' as shown in
Fig. 5(b). Notice that here the choice of return intervals is
clearly determined once the blocks are specified.

As a simple demonstration of these considerations we
examine circle maps with a golden-mean winding number.
The golden mean wG is the limit of F„/F„+i where F„
are Fibonacci numbers, defined by F„+&

——F„+F„
Fo =F~ = l. . . F /F +1 and F„+&/F„+2 are Farey
neighbors; p/q and p'/q' are referred to as Farey neigh-
bors if

(3.12)

If the kneading sequence of a map with w =p/q is A

where A is a sequence of R's and L's, and for w =p'/q'
the kneading sequence is 8, then one can prove that the
map with w =(p+p')/(q+q') has kneading sequence
(AB) if p/q &p'/q' and p/q and p'/q' are Farey neigh-
bors. Accordingly, the kneading sequences K+ for m= 1,

1 2 3 5 8 13—etc. are2 7 3 ~ 5 7 8 7 13 7 21 7
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1 R
RL
R RL
RRL RL
RRL RRLRL

$ 3 RRLRRLRL RRLRL
RRLRRLRL RRIRRLRIRRLRL

(3.13)

that this difference can be surmounted. (i) The RG theory
for one-hump maps can be done in the interval J' of Fig.
3, which leads to even fixed-point maps. Thus one loses
nothing by restricting oneself to even maps. ' I.et
then f:[——,, —,]~[——,, —,] be an even unimodal map
with f (0)= —,

' . Construct now the associated map
u(x):[ ——,, —,]~[——,, —, ] which is defined by

Using the 1 operator we find the blocks RRL and RL
which are renamed RRL —~R, RL~L. This leaves the
kneading sequence K+ for w =wG invariant. In terms of
maps we can denote by gz and gL the map g restricted to
R and L, respectively, and deduce the functional equa-
tions

gL (x)=agz (x /a ),
(3.15a)

(3.15b)

with a negative a. At the fixed point we write
gL, (x/a) =ag„(x/a ) which substituted in Eq. (3.15a)
gives

gR (x) agR agR (x /a (3.16)

This is the functional equation considered and solved in
Refs. 4 and 5.

IV. UNIFYING ONE-HUMP MAPS
WITH CIRCLE MAPS

(3.14)
gl. (x) agL gR (x /a )

where a is the positive rescaling ratio of J to the interval.
The usual functional equation is obtained from

the order-reversing operator s [Eq. (3.11)], with m=0,
which turns K for the golden mean, i e.,
LRLRRLRLRRLRRLRLRRLRL. . . , into the corre-
sponding K+. This operator yields blocks LR, R, which
are renamed LR ~R, R ~L resulting in functional equa-
tions

f(x), x ~0
u(x)= '

f(x),—x &0, (4.1)

g (0)= —,, lim g (x)= ——,
xgo

g( ——,
' )=g( —, ) .

(iii) If one suppresses the antisymmetry condition

u( —x) = —u(x)

(4.2a)

(4.2b)

(4.3)

for maps of remark (i) or the second boundary condition
(4.2b) for the maps of remark (ii), one ends up with the

I 1same space U of piecewise increasing maps from [——,, —,]
to itself. A typical example of a two-parameter family of
maps in the space of functions U is u„(x),

1 2
—, —px, ——, &x &0

see Fig. 6. We shall see below that the knowledge of the
dynamics of u yields the dynamics off uniquely (and vice
versa).

(ii) We observe the fact that the renormalization-group
transformation does not preserve the smoothness of the
circle map. Since a transformed map has two branches
which can be different iterates of the original one, the
derivatives are in general discontinuous at the ends of
these branches. Thus a natural space of functions which
allows application of the renormalization group is the
space of piecewise increasing smooth maps g from the in-
terval [——, , —, ] to itself, with a single discontinuity at 0
and with the boundary conditions

The discussion of Secs. II and III shows that the formu-
lation of the renormalization group for unimodal and cir-
cle maps is actually unified by the concept of return map;
the unification is realized by understanding the encoding
furnished by symbolic dynamics. " In this section we pur-
sue the unification further, and show how it can be
achieved also on the level of operators acting on maps
rather than on sequences.

In the process of unification we shall enlarge the space
of functions under discussion. In this space of functions
there are new scenarios for the onset of chaos. It is
worthwhile to study these scenarios because the maps liv-
ing in the larger space of functions appear as natural
reductions of certain flows. Thus analyzing these new
scenarios will allow us to offer new predictions for physi-
cal systems.

up ~(x)= ——, +vx, 0&x( —,
(4.4)

A. General remarks

Unimodal maps of an interval and circle maps look
very different and there is no way to deform one case to
the other. However, the following three remarks indicate

FIG. 6. The first-return map for antisymmetric maps u with
RL ~R, LR ~L.
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with p, vH [0,4j. We notice that the choice p =v leads to
maps of the type of u, Eq. (4.1), which are equivalent to
one-hump maps, whereas p=4 —v leads to continuous
circle maps. More generally the space U has two
codimension-1 subspaces, one for continuous circle maps
and one for maps which are equivalent to one-hump
maps. It turns out that the space U does not contain all
the available fixed points of renormalization groups that
occur in it. It is necessary to enlarge U to the space U de-
fined by dropping the condition that the discontinuity of
the graph has to be in the center of the interval (x, =0).
The codimension-1 subspaces of U corresponding to one-
hump maps and continuous circle maps will be called
"first diagonal" and "second-diagonal, " respectively, in
analogy to their role in U. In Sec. IVC we examine the
scenarios for the onset of chaos for functions in the space
U. As a preparation we first discuss kneading sequences.
In all that follows we will consider maps in U as maps of
the circle or of the interval according to the problem at
hand.

g "(xo)=sgn[(df"/dx)„, ]f"(xo) . (4.5)

This relation allows us to go from an itinerary If of a
point under the map f to I„of the same poin-t under u,

B. Kneading sequences for maps in U

The essential difference between the kneading sequences
of continuous circle maps and other maps in U is that for
the former IC+ and K differ in only one symbol,
whereas for the latter K+ and K can be totally dif-
ferent. For antisymmetric maps of the type of Eq. (4.1)
the situation is simple. The sequences K+ and K go to
one another simply by replacing R and L and vice versa.
We can find the kneading sequences of these maps by
realizing that there is a simple relation between the
dynamics of u(x) and f (x). This relation is"

and vice versa. Notice that both for f and u the sign of a
point indicates in the same way where it is on R or on L.
Consequently, if f"(x) and u "(x) have the same sign, it
means that the nth symbol in the itineraries If(x) and
I„(x)-are the same. However, from Eq. (4.1) we see that
if the sign of u "(x) and f"(x) coincide, then
d(f")/dx &0. Since f has negative derivatives on R
only, we conclude using the chain rule that among the
first n symbols of the itinerary If there was an even num-
ber of R's. Similarly, the nth symbol of If and I„- will
differ if the number of preceding R s in If is odd. Conse-
quently, we can give the following rules for transforming
If to I„- and vice versa.

Having If, we copy its symbols, switching R~L when-
ever the number of preceding R's in If is odd, and leav-
ing the symbol as it is if the number of preceding R's in
If is even. Having I„-, we copy the symbols switching
R~L if the number of R's already existing in the result-
ing If is odd, and leaving the symbol unchanged if the
number of generated R's is even. In all cases a C remains
invariant.

Example:

RLR RLLRRRLLLC for If,
RRLRRRLRLLLLC for I„- .

(4.6)

C. Unifying known RG's on the level of maps

In U we have a codimension-1 subspace of continuous
(critical) circle maps. The discussion of Sec. III is im-
mediately adoptable to maps of this subspace and there is
no need for further discussion. On the other hand the
codimension-1 subspace of maps of the type of u(x) needs
further analysis. Transforming the last kneading se-
quence in (2.2) according to the rules obtained in Sec.
IIIB we find the kneading sequence of a 2 cycle for the
function u:

R RL, RL, LR RL, LR LR RL RL, LR L,R RL LR RI RL, LR C . (4.7)

Dropping the first R we find that the shortest blocks are
obtained by bunching pairs of symbols together to give
RL, and LR. For a cycle of length 2" with n ~~, renarri-

ing RL ~R, LR ~L gives an invariant kneading se-
quence. In terms of first-return maps this procedure
yields the box shown in Fig. 6, as is explained in Sec.
IVD. In contrast to the unimodal formulation there ap-
pears no second region J' for generating a RG scheme. In
a similar way one can rephrase in terms of u all the n-
tuplings seen for one-hump maps. ' ' In all these cases
one can perform the usual functional RG. If one wants to
have a single unstable eigenvalue one has to limit the
functional perturbations to the subspace of codimension 1

of antisymmetric functions. More general perturbations
give rise to two unstable eigenvalues.

D. Determination of the return interval

In contrast to one-hump maps one can determine the
return interval associated with a given block renaming for

maps in U as systematically as one did it for continuous
circle maps. The ideas is to look at the two given blocks,
say block BL of I symbols and block Bz of n symbols.
We know that the return map will contain two branches,
being the mth and nth iterate of the map, respectively, re-
stricted to appropriate subintervals. These two branches
form a discontinuity which is the new x, for the return
map. Thus the return interval is naturally subdivided into
two subintervals separated by the point x, . We can use
this fact for finding x„realizing that the two subintervals
correspond to points whose itineraries start with the sym-
bols that appear in the blocks, the common point x, has
to have an itinerary consisting of the common head of the
blocks terminated by a C. Thus, for example, if
B~ ——RRL, BL ——RL, we look for the x, whose itinerary is
RC. (We remark that in order to guarantee the unique-
ness of x, one has to restrict the class of maps that we
consider, for example, to the class of C maps with nega-
tive Schwarzian derivative, i.e., [( u "'/u ')
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——,(u"/u') ]&0.) Once x, has been found the boun-
daries of the return interval are determined as the left lim-
it of the mth and the right limit of the nth iterate of the
map as x goes to x, .

E. New scenarios in U space

1. Preliminaries

To demonstrate the richness of dynamical behavior of
maps in the space U we select a particular two-parameter
family of the form

+v —x ) x +02

u „(x)= '

—p+x, x )0,2 (4.8)

from the interval [—p, ,v] to itself. The parameters p, v
are chosen such that

—p+v &v,

V—P )—P ~

2
(4.9)

see Fig. 7. The condition p, =v corresponding to the first
diagonal yields antisymmetric maps equivalent to unimo-
dal ones, whereas the condition

V —V =P —P (4.10)

corresponding to the "second diagonal, "yields continuous
circle maps.

The notion of winding number introduced above con-
tinues to be useful for maps in this family, since left and
right branches always exist. For values p, v below and on
the line termed the second diagonal (see Fig. 8) the maps
have a unique winding number. An easy way to see this
fact is to recognize that for these values of p, v the maps
can be considered as inverses of continuous circle maps
with a flat part in their graph, see Fig. 9. Consequently,
this region of the (p, v) plane is naturally partitioned into
subregions which are characterized by their rotation num-
bers. This is similar to the partition of the (K,Q) plane of
the more familiar' ' sine-circle map 8' =8+0

FIG. 8. Global structure of the phase diagram.

—( K/2m )sin(2@8), mod 1, for values of K & 1. Irrational
winding numbers in this region are living on lines, again
similarly to the sine-circle map. An advantage of the
present family compared to sine-circle maps is the fact
that maps in the family are always monotonically increas-
ing so that kneading theory can be formulated with essen-
tially two symbols. Consequently, it is easier to order the
kneading sequences in the present case. One can show,
for example, that the winding number (which can be read
off the kneading sequence) is monotonically decreasing
with p, and monotonically increasing with v. ' Above the
second diagonal one can lose the uniqueness of the wind-
ing number, but one can define a winding or rotation in-
terval' ' R (u& „) comprising all w for which there is a
u& orbit with rotation number w. Below the second di-
agonal the rotation interval contracts to a point, which is
the winding number. The monotonic dependence of w on
p, v below the second diagonal turns to a monotonic
dependence of the boundaries of the rotation interval all
over the (p, , v) space.

Essential questions are where is the borderline for
chaotic behavior, and what is the dynamic behavior for

Up, v

FIG. 7. Graph of a typical function u„„.

FIG. 9. u„„below the second diagonal. The inverse function
can be considered as a continuous circle map with a flat part in
it.
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maps on the borderline. In most physical applications,
chaos is defined as the positivity of a Lyapunov exponent

~ ~ 2Ifor "most" orbits (i.e., sensitivity to initial conditions).
A necessary condition for this "strong" chaos is the posi-
tivity of the topological entropy. In our case this is23

22equivalent to the existence of horseshoes. For one-
dimensional maps the map H has a horseshoe if there ex-
ists an interval 3 and two disjoint subintervals A ~, A2 of
A such that for some positive n both h "(Ai) and h "(Az)
cover A. An example of this situation is shown in Fig.
10(a) for some nth iterate of a map. We also show in
Figs. 10(b) and 10(c) the relevant parts of the graphs of
(h") and (h") where one sees that the number of inter-
sections with the diagonal grows at least as 2 for (h")
This means that there is an essentially exponential growth
(in the sense of lim sup) of the number of orbits of increas-
ing length. For maps in U whenever there is a nontrivial
rotation interval the topological entropy is positive. The
way to see this is to think about an interval whose two end
points have two different rotation numbers. After a suffi-
cient number of iterations the image of this interval will
cover the whole circle many times. In particular it cov-23

h (x)

(h ) (x)

(h') ()()

FIG. 10. Horseshoe in one-dimensional mappings. If h" has
at least two branches mapping AI and A~ to the whole interval,
the number of branches increases at least exponentially because
the number of preimages of A~ and A2 is doubled with each
iteration of h".

ers it at least twice, and therefore we have a horseshoe.
In analogy to continuous circle maps we define Arnold

tongues and frequency-locked regions as the regions M
such that (p, v)HM„ if and only if w&R(u„„) and W„
such that (p, v)HW if and only if R(u„)—= IwI,
respectively. A qualitative sketch of such regions is
displayed in Fig. 8, where both regions are shown for ra-
tional and an irrational w.

Examining more closely the structure of locking we
realize that the lines where the winding number is well de-
fined and irrational terminate at the second diagonal, and
one can always approach the intersection point from
above via maps that have winding intervals. Thus, all
the intersections of the irrational lines with the second di-
agonal belong to the boundary of chaos. To gain further
understanding of the boundary of chaos we have, howev-
er, to examine more closely the structure of rational Ar-
nold tongues.

2. Structure of rational Arnold tongues

To describe the rational tongues, let us denote by
(IC &,K+& ) the kneading sequences of the rotation by an
angle p/q. One can show that the lines K =Kp/q and
E+ =&~~~ in the (p, v) parameter space cross at a point
on the second diagonal, forming a pair of opposite wedges
[see Fig. 11(a)]. This region belongs to W~&~ but does not
exhaust it. In fact, the upper wedge is surrounded by a
line. This line corresponds to a saddle-node bifurcation,
except at the tips where one has a (symmetry-breaking)
pitchfork bifurcation. The number of available orbits
with rotation number p/q and the right itineraries is
shown in Fig. 11(a).

Another line inside Wp/q plays a fundamental role; it is
the line A & which separates W~&q from the rest ofp/q
M~~~ (i.e., crossing it leads to the establishment of a non-
trivial rotation interval). Now, the two pieces of the
boundary of M / above the second diagonal and whichp/q
bound also W~~~ belong to the boundary of chaos [see
Fig. 1 1(b)].

At this stage we can already say that the line formed by
such pieces for all p/q, all A ~q~'s, and the irrational
points on the second diagonal form a first approximation
to the boundary of chaos. Above this line, the rotation in-
terval is nowhere reduced to a single point.

To proceed, let us, for each p/q denote by Wp/q the
curvilinear quadrilateral formed by A p/q and the lines
K =Kp/q, K+=Kp+/q. Then the two pieces of A p/q
which do not penetrate to Ap/q belong to the boundary of
chaos. In Wz~z, (uz )~ restricted to a properly chosen
subinterval yields a problem identical in form to the origi-
nal problem. Therefore, there will be similar Arnold
tongues, frequency-locked regions, first and second diago-
nals, etc. As a consequence, the global aspects of the
boundary of chaos will repeat themselves on smaller scales
in each frequency-locked region, in all secondary
frequency-locked regions inside them, and so on ad infini
turn.

As a consequence, the global features of the phase dia-
gram, sketched in Fig. 8, repeat themselves in each Wp/q,
yielding inductively a hierarchical structure. At each lev-
el of this hierarchy going from W to the rest of M
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when w is irrational, or leaving Wz/~ from the region
which is neither in ~~/~ nor in A~/~ is tantamount to a
transition to chaos. Analogous transitions can also be
found in continuous circle maps.

There are, however, new codimension-2 scenarios gen-
erated by following paths from ~&/q to A&/z at each lev-
el of the hierarchy. Such a step is referred to as
M(p/quito) to indicate in which locking one enters at
the next level of the hierarchy. The generic path of this

kind will therefore be characterized by M (p ~ /q ~~p 2 /q 2 )M (p 2 /'q 2 ~p 3 /'q 3 )M (p 3 /'q 3 ~p 4 /q 4 )

sponding to successive q2, q3, q4, . . . -furcations. The sim-
plest ones correspond to cases where p„/q„does not de-
pend on n. These are the ones which will yield a fixed
point under renormalization.

F. Physical relevance of the space U: Connection to flows

It has been shown' ' ' that simple flows of the type
of the Lorenz model, which have a linearized form

X =A. )X

y = —A.~,
z = —A2z,

(4.11)

with A.2&A.3, under Poincare section may reduce to one-
dimensional maps of the form f:[—p, ,v]~[—p, v],

+v b~ x —
~

~+higher-order terms, x &0
f(x)= '

—p+ax ~+higher-order terms, x & 0 .
(4.12)

The exponent g is shown to be

/=A. 2/A. ) . (4.13)

rat[ono I case

i%~ A.
Yzi R.

[rrational case

IJ
) zePrjP. ~P(

, &r.~z~iz~. ~i~ir ™~~
I l.kl'. 1J.y. f

kPiR~P&4P

*rQ' qr-
~I 4/K/

4/ second
diag

All the arguments concerning the family (4.8) go over to
these functions which belong to U, as long as g& l. (The
case /&1 corresponds to the Lorenz model). We stress
that g need not be an integer in general, and in particular
g can be quite close to unity. The theory that we present
next takes advantage of this fact. We examine now the
scenario of trifurcations towards chaos. Clearly, any oth-
er scenario can be dealt with using similar methods.

It is worth noting that from the symbolic point of view
the flows and the associated maps can be treated on the
same footing. R and L for the flow simply mean loops of
orbits on the rights and left sides, respectively, of the
stable manifold of the origin.

G. Period tripling towards chaos

irrationa I

point

FIG. 11. (a) Structure of Arnold tongues near the second di-
agonal. The solid lines are defined by constant kneading se-
quences K+ and E that terminate with a C. They intersect on
the second diagonal (dashed). Above the inverted wedge (dotted)
there is no mode locking. The saddle-node line (dash dotted)
separates the two regions with trivial rotation intervals above
and below the second diagonal. We have also indicated the
number of distinct orbits with period q and rotation number
p/q, with rotation-compatible itineraries. (b) M denotes the
Arnold tongue, i.e., where there exists an orbit with winding
number u. W denotes the region of frequency locking, i.e., all
orbits have winding number w. ~ denotes the region of M
below the second diagonal. W is the region where the q iterate
of the map properly restricted belongs again to U. A
separates W from the rest of M

1. Deriuing the functional equations

A first step in constructing a theory of period tripling is
the derivation of the kneading sequences. We note that
period tripling occurs a the point of intersection of the
second diagonal with the homoclinic lines defined by
K =LRR and K+ =RRL. Above the second diagonal we
enter the tongue where the third iterate, restricted to an
interval, again has winding number —, (i.e., we follow the
path M2/3M2/3M2/3 ). That tongue has homoclinic
boundaries and the kneading sequences can be obtained as
combinations of the kneading sequences of the order-3 cy-
cles. These are ( RRL )

" and ( LRR ) . The condition
that x, belongs to the cycle changes them to RRC and
LRC. The easiest way to obtain the kneading sequences
of the order-9 cycles is to glue three order-3 cycles togeth-
er. This procedure is clarified and generalized in Sec. VI.
We pick the largest, e.g. , RRL, increase it to RRR and
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glue to it twice LRR, decreasing the last one to LRL. We
obtain

(RRRLRRLRL)" . (4.14a)
This is E+. E is obtained as the minimal permutation,
1.e.,

(LRLRRRLRR ) (4.14b)

The condition that x, belongs to the cycle changes these
to RRRLRRLRC and LRLRRRLRC, respectively. The
next pair of 27-cycles is obtained similarly,

(RRR LRR LRR LRL RRR LRR LRL RRR LRL)" for E+,
(LRL RRR LRL RRR LRR LRR LRL RRR LRR) for E

(4.15)

This process can be continued an infinitum
Dropping the first R in K+ we identify the blocks

RRL, RI R, such that the blocking renaming

(4.16)

leaves the asymptotic sequence invariant. Another block
renaming is obtained by dropping the first two symbols
and identifying the blocks RLR and LRR and rename

The recursion relations are therefore

a =a2b,

V= p[ p—+a—( p+a—»1 —
2b=a b.—p+a (v bp)—

1.0

(4.23)

RLR~R, LRR~L . (4.17)

This leaves the sequence invariant as well.
These two block-renaming procedures are consistent

with the two boxes of return intervals shown in Fig. 12.
It is also straightforward to derive the functional equa-
tions defined by this RG. Denoting the right branch by
uz and the left branch by ul we get for (4.17) [which is
slightly more convenient than (4.16)] the functional equa-
tion of period tripling,

f (x}

0.5

0.0

u~ (x)=aug & uL, 0 u~ (x /a),
u~ (x) =aug 0 up 0 uL (x/a)

(4.18) —0.5

2. Approximate solutions

Gne ean solve Eqs. (4.18) for the family (4.8). However,
in view of the fact that natural reductions of flows lead to
(4.12), with /&2 in general, we prefer to solve (4.18) ap-
proximately for the ease /= 1+@, with e small. '

The equations to be considered are therefore

—p+ax~=a( —p+a I v b[p, —a (x/a)—&]~}~),

(4.19)

v —bx&=a( —p+a I p+a[v b(—x/a)~]~}—~) .

The rescaling parameter a is found by noticing that the
return box dictated by the block renaming (4.17) is bound-
ed on the left by —p+a (v bp~)&. Since the—left boun-
dary of the original interval is at —p, we have

CX= (4.20)—p+a (v bp~)~—
Solutions for /= 1. When g= 1 we have

t (x}

—1.0
—1

1.0

—0.5

—0.5

—p
—p+a (v bp)— (4.21)

—1.0-1 -0.5 0.5
The functional equations (4.19) read in this case

—p, +ax =a[ —p+a(v bp)+a b(x/a—)],
v bx =a[—p+a( —p+av) ——a b(x/a)] .

(4.22)
X

FIG. 12. Return maps for the block renaming rules. (a)
RLR —+L, RRL~R, (b) LRR ~L, RLR —+R.
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We can conveniently take @=1, and find the fixed-
point solution

A, 2
——3 —2/lny", (4.39}

a'=b*=1, v*=2, a= oo . (4.24) A.g
——3/y (4 40)

Linearizing Eqs. (4.23) we find the three eigenvalues

A( ——0, Ap
——3, Ag

——oo . (4.25)

Solution for g= 1 +e Fo.r $=1+e we are interested in
the corrections to the relevant eigenvalues. We shall write

Using (4.36}we can evaluate these eigenvalues for given e,
as long as e & y.

In Sec. V we compare numerical calculations to the pre-
dictions of this simple estimate of the eigenvalues. In the
figures results of an e expansion up to 0 (e) are shown in
addition to the lowest-order results reported here.

v=2+g, b =1+@ (4.26)

a=
1 —a (v b)'+'— (4.27)

and we expect g~O, y —+0 when e~O.
It turns out that the freedom to choose @= 1 continues

in this case as well. We can thus write the rescaling ratio
a as

V. NUMERICAL RESULTS

We performed numerical computations to illustrate our
theoretical results and to check the range of validity of the
e expansion in the RG calculation.

As an example for a discrete map we used

a= —1/g . (4.28)

Using (4.26) and expanding to lowest order in e we find +v —2x&, x&0
—p+2x~, x )0. (5.1)

3y+n+2 1 2
(1 3 )( },—vl

(4.29)

We write v= 2+g, a = 1+y we find the fixed-point equa-
tions

1+y* =(1+3y" )( —g" )',
—ri* =y*+(2e ln2)/3 .

Substituting Eq. (4.31) in (4.30) we find

(1+y*)/(1+3y*)=[y*+ (2mln2)/3]

We write this as

(4.30)

(4.31)

(4.32)

The other recursion relations that we find upon expansion
are

First, we computed the boundaries of the p /q =2/3
tongues and their intersection points (vertices) in the (p, v)
phase diagram. We made use of the fact that each line is
defined in terms of a kneading sequence K+-and that
these sequences are monotonic functions of p and v. The
symbol C at the end of the respective sequence was real-
ized by adjusting the parameters such that the correspond-
ing iterate of —p or v was zero. Specifying a pair of
block-renaming rules we generated a series of sequence
pairs (K„,K„+), n =0, 1,2, . . . . The intersections of the
corresponding boundary lines yield a series of vertices
(p„,v„), n =0, 1,2, . . . accumulating at a point (p„,v ).
Defining the length of the nth resonance tongue between
the ( n —1)th and nth vertex by

(5.2)

1 —2y* =exp [ e ln[y" +(2e ln2) /3] ]

or

(I +y*) ' '=y' =(2eln2)/3 =exp( —2y* /~) .

(4.33)

(4.34)

we estimated

l„ i
—l„

5( ——lim
n l„—l„+,

(5.3)

To the same order Eq. (4.33) yields

ln(1 —2y* ) 2y'
1ny' lny*

(4.36)

To get the eigenvalues around this fixed point we rewrite
Eqs. (4.29) as

a =(3a —2)(2 —v)', (4.37)

3(a —1)+(v—2)
(2—v)

(4.38)

Linearizing and solving the resulting matrix we find final-
ly that the two relevant eigenvalues A,z, kz read now

Since for e~O the left-hand side approaches 0, e goes to
zero faster than y*. Accordingly, Eq. (4.31) reads, to
lowest order,

(4.35)

5~ may be thought of as describing "longitudinal" scaling
properties in the phase diagram.

To obtain a corresponding number describing the
"transversal" scaling we measured the breadths b„of the
resonance tongue n =1,2, 3. . . and estimated

b„ i
—b„

sb —lim
n~oo bn bn+]

(5.4)

The results are summarized in Table I, and Fig. 13(a).
The value of a was computed from the ratios of the
lengths of the intervals J in which the first return maps
were restricted. In Fig. 13(b) we present the values of a
from Table V, together with the results of the e expansion
of Sec. IV. Shown are both the lowest-order calculations
presented above and the next-order calculations (i.e., up to
terms linear in e). From the numerical results of Table I
it is tempting to conclude that the relevant eigenvalues A,2
and A, & of Eqs. (4.39) and (4.40) are closely related to 5~
and 5~, respectively.
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TABLE E. Numerical results for 51,5b, a. VI. THE INFINITY OF SELF-SIMILAR
STRUCTURES IN PARAMETER SPACE

1.02
1.05
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

100

3.90+2
4.16+0.11
4.52+0.07
5.10+0.01
5.62+0.01
6.11+0.01
6.61+0.03
7.11+0.06
7.64+0. 11
8.29+0.21
8.95+0.45
9.91+1

123 +4
66.4 +41.2
43.4 +0.5
29.95+0.04
24.94+0.01
22.34+0.01
20.82+0.01
19.92+0.05
19.46+0. 15
19.38+0.38
18.89+0.6
18.34+0.6

39.8 +0.5
20.5 +0. 1

12.82 +0.04
8.195+0.003
6.394+0.003
5.401+0.005
4.765+0.007
4.32 +0.03
4.00 +0.05
3.78 +0. 10
3.68 +0.24
3.28 +0.5

1

0

0
0

0 El
C3 Cl

40 —x

I

(b)

order

1 1.5 2

Period tripling is but a particular example of the rich
behavior seen while moving in parameter space. In this
section we treat the general theory of q-tupling as well as
mixed-tupling bifurcations, taking full advantage of the
self-similarity of parameter space as discussed in Sec. IV.
As has been advocated in this paper, we know how to
build a theory, once we know the symbolic dynamics. In
this context the crucial observation is that whenever a E+
homoclinic sequence coexists with a E homoclinic one
(i.e., at the points of intersection of homoclinic lines in pa-
rameter space) there ensues an infinite number of bifurca-
tions. The simplest such point is p=v=O (see Fig. 8).
Near this point (for positive p and v) all pairs of kneading
sequences are of the form of a rotation and are naturally
partitioned into blocks, as explained in Sec. III. Each
such pair corresponds to one winding number.

To get the kneading sequences in vertices formed by the
crossings of homoclinic lines in parameter space it is con-
venient to represent the dynamics near p, v=O as the
itinerary of x =x, in addition to those of E+ and E
To do that we simply use K+ (homoclinic), and shift the
C at the end to the beginning and make it an L. For the
E we do the same but change C to R. (See examples
below. )

To obtain kneading sequences at other vertices we pick
any rotation number and consider the two corresponding
itineraries of x =x, as constructed above. These
itineraries are now used as a mold where each symbol is
substituted by a group of symbols, according to E+ and
E of the vertex. The only additional trick is that these
substitutions are made such that if the folloteing symbol is
R or L we finish the substitution with R or L, respective-
ly. We give now a few examples to make the procedure
clear.

Examples.
(i) 4/5 rotation number in the 2/3 vertex. The 2/3 ver-

tex is the intersection of E2/3 —RRC and K2/3 —LRC.
The 4/5 rotation number is consistent with

E4&& ——RRRRC and E4&5 ——LRRRC. The 4/5 itineraries
of x =x, are therefore LRRRR and RLRRR. Rewrite
them as

20—
rms up to

r order in t.'

x x x x

l.5

(LRRRR)", (RLRRR)
Now perform the substitution

L —+RRC, R ~LRC .

(6.1)

(6.2)

FICx. 13. (a) Results for 5I and 5b in the case of period tri-
pling. The numerical values for 5I (diamonds) and 5b (squares)
are obtained by extrapolation from the first five bifurcations
along the period-tripling cascade defined by RLR ~L,
LRR ~R. For $~1 the numerical values approach those ob-
tained by e expansion around /=1. The dotted line represents
A, 2 as given in (4.39) and the dashed one A.3 according to (4.40).
(b) Results for a in the case of period tripling. The numerical
values are denoted with x. The lower curve is the result of e ex-
pansion to lowest order, and the higher curve to order linear in

(RRR LRR LRR LRR LRL )

(LRL RRR LRR LRR LRR)
(6.3)

Notice that these sequences have winding number 2/3, but
after block renaming they will be decimated to E&&5 and
E4/5 ~

(ii) Period tripling with rotation number 2/3. The se-
quences RRC and LRC yield

Substituting in Eq. (6.1) we follow the rule that if L is fol-
lowed by R, then L =RRR, whereas if R is followed by
L, then R =LRL. This gives the pair
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(L R R }", (R L R)" . (6.4)

Substituting L ~RRC, R ~LRC we get

(RRR LRR LRL)",
(LRL RRR I.RR)

(6.&)

and compare Eq. (4.14).
Any other more or less esoteric combination can be

treated with the same ease. One always get kneading se-
quences that have a natural block structure and are there-
fore amenable to the RG procedure that has been dis-
cussed in this paper. If one likes simple fixed points one
has to simply iterate the process, starting with itineraries
of x, corresponding to the vertex one is looking at. With
complicated RG's one can study many different scenarios
for the onset of chaos, but this generally requires a lot of
hard work.

As a final remark we note, that all examples of n
tuplings (n&2) which were discussed before for maps of
the interval correspond to the vertices on the first diago-
nal in (p, v} space. Additional points in (p, , v) space away
from the boundary of chaos in which there exist self-
similar kneading sequences can be found. These points
are treated with the help of the global theory built in Sec.
VII.

R —+ 8'i,
(7.1)

L —+ 8'2,
where 8'~ and 8'2 are blocks of R's and L's. In this
language the previously defined block renamings can be
thought of as deflation" rules.

By "inflation process" we mean performing an infinite
sequence of inflations. For instance, iterating (7.1) is a
special inflation process in which a pair of sequences is
generated. If one uses a "good" inflation rule this pair
corresponds asymptotically to the two addresses of x, .
For concreteness we shall consider only order-preserving
inflation rules. Thus all rules will be of the form

L ~LA,
R~RB .

(7.2)

An obvious necessary condition is that A and B are such
that A(LA)" is the upper bound on all its shifts and
B(RB)" is the lower bound on all its shifts. Later we
shall see that these conditions are not sufficient.

As examples we rederive some sequences that were ob-
tained in previous sections.

(i) Period doubling The r. ule is

L ~LR,
(7.3)

R~RL .

VII. GLOBAL THEORY OF RENORMALIZATION
GROUPS IN U SPACE

The inflation process is

L LR LRRL LRRRLRLLR
R RL RLRR RLLRLRRL (7.4)

In Sec. VI we observed that given a scenario, we were
able to construct the symbolic dynamics of the relevant
orbits. Identifying the blocks in such sequences yielded a
renormalization group, as has been demonstrated
throughout this paper. In this section we show that sym-
bolic manipulations allow us to get complete understand-
ing of the types of RG's which exist and where to look for
them in parameter space. We also describe briefly, using
RG ideas, the fate of orbits whose itinerary does have a
good block structure but where at least one of the knead-
ing sequences (of the map) does not have the same block
structure. In these cases the map is not renormalizable
but in some sense the orbit is.

In the process we shall use the itineraries of x, instead
of the kneading sequences themselves. [We remember,
however, that the kneading sequences can always be ob-
tained from I(x, )=(LA)" or I(x,+)=(RB) simply as
K+=(AL)" and K =(BR)".] The reason for this
change is that we want to discuss symbolic sequences in
some generality; we do not follow a prescribed scenario as
we did in the previous sections. It turns out that for this
general discussion it is more natural to consider the above
itineraries as will become clear in the sequel. Also, the
main reasons for using kneading sequences before, i.e.,
their monotonicity in U space and their traditional use in
dynamical system theory would not be crucial for the fol-
lowing discussion.

To derive itineraries of x, we shall employ "inflation"
rules which are also common in current theories of 1D
quasicrystals. By an inflation rule we simply mean the
"inverse" renaming rule,

etc., and compare Eq. (4.7).
(ii) Golden mean rotation The inf. lation rule is

L ~LR,
R~RLR .

The inflation process is

LR LRRLR
R RLR RLRLRRLR

(7.5)

T

L —+LRRRR I ~LRR
R RLRRR R RLR (7.7)

the inflation goes

L LRRRR LRRRLRRLRRLRRLR
R RLRRR RLRLRRRLRRLRRLR (7.8)

and cf. Eq. (6.3).
The power of this approach can be demonstrated now

by inverting the process. We can choose an inflation rule
(or a set of them), and examine the significance of the pair
of sequences obtained by iterating the inflation starting
from the seed (R).

(iv) Example. We have

LRRLRRLRLRRLR
RLRLRRLRLRRIRRLRLRRLR

(7.6)
etc. , cf. Eq. (3.13).

(ii) 4/5 rotation in the 2/3 uertex. Combining
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L ~LRR,
R ~RL,

(7.9)

LRR
R RL

LRRRLRL
RLLRR

LRRRLRIRLLRRRLLRR
RLLRRLRRRLRL (7.10)

IRRLRLLRRLRLLRRL. . . ,

RLLRRLLRRRLRLLRL. . . .
(7.1 1)

This pair corresponds to the golden-mean line which lives
below the secondary second diagonal inside the I/2
frequency-locking region.

Notice that one can inflate using a different rule at each
step. All proper asymptotic itineraries are produced by
using infinitely many steps of type (i), or infinitely many
steps of type (ii), or a finite number of steps of type (i)
starting from an asymptotic state of type (ii).

This finishes the symbolic part of the discussion and we
can turn now to questions of renormalization. For simpli-
city we focus on symbolic sequences obtained by iterating
a single inflation rule and which have therefore a fixed

etc.
A common feature of examples (i) and (iv) [and also of

the single step of (iii)] is that at each step of the inflation
the pair obtained corresponds to an actual itinerary of x,
of a map in U space. The way to see this is to realize that
in these examples A (LA) and B(RB) are the upper
and lower bounds, respectively, on all the shifts obtained
on these two words. From general results about kneading
sequences in U space one can show that this is a sufficient
condition for the pair of sequences to correspond at each
step to itineraries of x, of some actual map in U.

This property is by no means trivial, and is certainly
not satisfied by an arbitrary pair (A,B). Furthermore, it
is not even a necessary condition for building up asymp-
totically a pair of itineraries of an actual map. For in-
stance, see example (ii). In this case one has at each finite
step itineraries of two different maps, corresponding to
different winding numbers. Since these winding numbers
are Farey neighbors, and they converge eventually to the
golden mean, asymptotically one has the two itineraries of
x, for a map in U.

In fact, we conjecture that in general either one of the
two following conditions should be met by a proper infla-
tion in order to generate asymptotically nontrivial '

itineraries of an actual map.
(i) A (LA) and B(RB) are maximal and minimal,

respectively.
(ii) (LA) and (RB)" are, respectively, K and K+

for two rotations whose winding numbers are Farey
neighbors. Consequently inflation rules of this type
should be continued ad infinitum

Notice that one can obtain proper inflations by first
iterating type (ii) ad infinitum and then inflating the result
according to rules of type (i). For instance, inflating the
golden-mean pair (7.6) according to the period-doubling
rule (7.3) leads to the pair

point under block renaming. The rest of the discussion
will be essentially conjectural; proving some of the state-
ments involves difficult issues concerning, e.g. , functional
equations, etc.

We shall refer to fixed points of type (i) [(ii)] as those
fixed points associated with itineraries obtained by infla-
tions of type (i) [(ii)]. In a typical two-parameter family
in U space, fixed points of type (i) live at the tips of ver-
tices whose edges are defined by constant kneading se-
quences, which are K+ and E of the tip. These tips are
accumulation points of series of tips of similar vertices,
corresponding to pairs of itineraries obtained by a finite
number of inflation steps. Near such accumulation points
we expect usual geometric scalings in parameter space as
well as geometric scaling of the orbits at the tip. An in-
verse cascade will appear at reversed vertices (cf. Fig. 8).
As usual (i.e., like in period doubling), scaling of the topo-
logical entropy is given by the same exponents as for the
direct cascade.

In the rest of the vertex one can find trajectories which
have an itinerary like one of kneading sequences at the tip.
However, their scaling properties are quite different.
Rather than having closest return which scale exponen-
tially, their closest returns scale as exponentials of ex-
ponentials. Similarly, we can consider a path in parame-
ter space that ends at a point on one of the edges of an
asymptotic vertex. If this line cuts transversely through
the corresponding edges of the approximating vertices, the
points of cuts will converge again by an exp(exp) scaling
law. The reason for these "superfast" convergences will
be given shortly.

Fixed points of type (ii) will live on the fundamental
second diagonal at the points where it is cut by quadratic
irrational lines. These points are simultaneously tips of
vertices in the chaotic regime and ends of lines in the sub-
critical regime. [See Fig. 11(b).] The discussion of the tip
and its vertex follow precisely the analysis of type (i). The
irrational "tails" call for further analysis.

The situation on subcritical irrational lines that ter-
minate on the second diagonal is interesting; the orbits ob-
served have the same ordering as usual rotations, but they
do not fill up the interval. In fact, their closures are
stable Cantor sets. This phenomenon is interesting as an
example of stable Cantor sets far from the chaotic regime.
We point out that such orbits were never observed (to our
knowledge) in dynamical experiments, and it appears
worthwhile to look for them in flows of the type con-
sidered in Sec. IV.

From the point of view of scaling behavior we expect
that these orbits will again show superfast [exp(exp)] con-
vergences in phase space. In addition, rational approxi-
mants corresponding to finite inflations will again con-
verge in a superfast fashion.

The reason for all those superfast scaling behaviors is
the following: although the orbits have good symbolic
itineraries that are invariant under block renaming, the as-
sociated maps are not globally renormalizable. This is the
case both in the subcritical and in the chaotic regimes.

In the subcritical region there is a gap in the image of
the function. Therefore the inverse map has flat parts.
(See Fig. 9.) Consequently, the inverse map belongs to the
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stable manifold of a degenerate fixed point of the renor-
malization group, which is flat everywhere. (The same
conclusion is reached by considering the map itself, but
this way of looking at the problem unifies the superfast
behavior on both sides of the second diagonal. )

In the chaotic regime one is led to maps with fiat parts
as well, but it is less straightforward to see this. Consider
as an example the trajectory whose itinerary is the K+ of
the golden-mean rotation, for a map which lives on the
first diagonal, see Fig. 14. There are two interesting pos-
sibilities: (i) The map lives on the edge of the vertex (the
point 8), or (ii) the map belongs anywhere on the first di-
agonal inside the vertex. In case (i) K+ of the map is the
same as K+ of the golden mean. Denoting the map by
u (x), we note then that the orbit never visits points lower
then u(1) on the left branch. This is clear since K+
comes from a rotation, and the sequence obtained by de-
leting the first symbol of K+ is the lower bound for all
sequences obtained by shifting up to any L. Accordingly,
the map can be cut as in Fig. 15, yielding the map (b).
This map is a continuous circle map with a flat part. For
an analysis of the superfast behavior in such cases, see
Sec. 4.4 of Ref. 32. Note that this analysis is done specifi-
cally for the golden-mean rotation number, and without a
fixed-point theory. Combining this, however, with known
results concerning RG for trapezoidal maps in the
period-doubling case, we are led to the conjecture that su-
perfast behavior would be the rule for any RG scheme
whenever flat parts instead of critical points appear in the
map. One expects having a degenerate fixed point which
leads to superfast behavior in phase space and which
possesses an infinite eigenvalue which dictates superfast
convergence in parameter space.

If we are inside the vertex the situation is that of Fig.
(16), with a point xo chosen such that I(xo) =Kii . One

can see that the orbit is restricted to the box shown. An
analysis of maps of this kind, having no critical points,
has been presented for the golden-mean case in Sec. 4.3 of
Ref. 32. Notice that the fine details of the superfast con-
vergence are nonuniversal and depend on whether or not

u (x) u(x)
(b)

FIG. 15. Typical map at the point B of Fig. 14, and (b) the
reduction to a map with a flat part.

there is a critical point. The phenomenon itself appears,
however, to be superuniversal. It is also quite relevant be-
cause it is a stable phenomenon and can be found in an
open region of parameter space. Obviously identical
behavior exists in unimodal maps because of the
equivalence discussed in Sec. III. It has also been ob-
served in cubic continuous maps of the interval. Even
more importantly such behavior will persist if one per-
turbs such 1D maps to diffeomorphisms of the plane,
which are cross sections of physical flows.

VIII. SUMMARY AND DISCUSSION

The basic idea of this paper is that first-return maps to-
gether with topology are the crucial aspects underlying re-
normalization. In all renormalizable cases, understanding
the topology via symbolic dynamics facilitates enormously
the construction of a renormalization group. From this
work it appears that "good" symbolic dynamics is essen-
tial for turning the unifying idea of first-return map,
which was introduced here, into an operative procedure.
We note that the idea of using first-return maps to cap-
ture the universal aspect of the dynamics is implicit al-
ready in Poincare's use of such maps; defined for flows
the first-return map eliminates the shape of the trajectory
which is a priori irrelevant for topological and metric
universality.

In the context of 1D maps we were able to go beyond
the conceptual unification by introducing a space of func-
tions that contained as particular cases all previously

U (x) U (x)

FICx. 14. The crossing of the line of fixed K+ with the first
G

diagonal. See text for explanation.

Xp

FICs. 16. The same as Fig. 15, for a typical map whose pa-
rameters are as those on the heavy segment of the first diagonal
in Fig. 14.
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known scenarios for the transition to chaos. This space
displayed uncountably many new scenarios. All old and
new scenarios which enjoy self-similarity can be treated in
a unified fashion as shown above.

The issue of renormalization off the borderline of chaos
was treated making full use of the symbolic dynamics.
One of the conclusions is that there exists superuniversali-
ty in the superfast character of the convergence of orbits
with good symbolic properties, as well as in the conver-
gence in parameter space except at special points where
both kneading sequences admit the same block structures.
The final comment is that it appears that a proper
renormalization-group theory should encompass all the
available universal behaviors so that one would not have
to solve infinitely many independent functional equations
one by one.

We finish this paper with some bibliographical refer-
ences. It seems that the first time that the symbolic se-
quence (7.4) appeared was in 1851, in the work of Prouhet

in the context of arithmetics. Systematic studies of such
sequences started with the work of Thue at the turn of
the century. The first recognition of their roles in dynam-
ics appears to go back to Morse in 1921. Since then
they became quite important in ergodic theory as well as
in other branches of mathematics. Further references can
be found in Ref. 36. Inflation rules can also be considered
as automata and the role of such automate in the renor-
malization of unimodal maps has been recognized.
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