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We study period doubling in a symmetric four-dimensional volume-preserving quadratic map, i.e.,
two symmetrically coupled two-dimensional area-preserving Henon maps. We must vary two pa-
rameters and thus obtain two Feigenbaum constants, 6& and 52. It is a very important point that for
each region of stability (belonging to some period-q orbit) in this parameter plane we find tlLlo re-
gions of stability for the period-2q orbit, four regions for the period-4q orbit, and so on. Hence we
have an infinite number of stability regions and infinities of bifurcation "paths" through these re-
gions. Almost all self-similar bifurcation paths fall into one of three possible "universality classes, "
i.e., each class is characterized by its own two Feigenbaum constants, 5& and 52. We find
62 ——+4.000. . . , —2.000. . . , —4.404. . . , respectively, for the three classes. These 62 values are also
recovered here from some approximate (numerical) renormalization scheme. The 5I is, in all cases,
the same as in two-dimensional area-preserving maps, 5~ ——8.721. . . . The 62 ———15.1. ~ . , reported
in an earlier paper [J. M. Mao, I. Satija, and B. Hu, Phys. Rev. A 32, 1927 (1985)], applies to only
two exceptional paths.

I. INTRODUCTION

The period-doubling transition to chaos has been exten-
sively studied for dissipative systems. ' Most of the results
on conservative systems exist only for two degrees of free-
dom, described by two-dimensional (2D) area-preserving
maps. ' Period doubling for conservative systems with
three degrees of freedom, described by four-dimensional
(4D) volume-preserving maps, has been studied more and
more in recent years. Clear evidence for an infinite
period-doubling sequence in a 4D "symplectic" map has
been reported ' (a symplectic map is a volume-preserving
map corresponding to a Hamiltonian system). That in-
finite period-doubling sequence was determined by follow-
ing a special bifurcation path in the parameter plane (the
map has two parameters). Here we find many additional
bifurcation paths and determine their scaling properties.

We investigate a 4D volume-preserving map which con-
sists of two coupled 2D area-preserving maps,

paper we will study the in-phase orbits only.
We must vary at least two parameters of f ( x, u ) in or-

der to find (follow) periodic orbits. The regions of stabili-
ty we find for each of the in-phase period-doubling orbits
are sketched in the parameter plane of Fig. 1. The region
of stability for the in-phase period-1 orbit is the large
parallelogram 1 in Fig. 1. Note that there are two param-
eter regions in which the period-2 orbit is stable (the
orientation of the upper region is reversed, compared to
that of the parallelogram), and so on. Hence, there is an
infinite bifurcation (tree) of stability regions in the parame
ter plane.

A specific sequence of stability regions (with increasing

U —ROUTE ~

x'= —y+f (x,u), E —ROUTE -~ =P -=C+E

u'= —v+ f(u, x),
V =Q

where we twice use the same quadratic function f (x,u),
with only its two arguments interchanged, i.e., this is a
"symmetric" 4D map. This symmetry of the map simpli-
fies calculating the periodic orbits and has other advan-
tages. Note, however, that (1.1) is not the most general
4D volume-preserving map.

One type of periodic orbit of our map (1.1) is an orbit
with u; =x; and U; =y;, i = 1,2, . . . , N, where N is the
period. This orbit is called an "in-phase" orbit. In this

L —ROUTE

PERIQDs: t16I—8~4, 2

FIG. 1. A sketch of the regions of stability in the PE-
parameter plane for the period-1, -2, -4, etc., orbits of our sym-
metric 4D quadratic volume-preserving map (1.1), (2.1), cf. Fig.
6. The actual regions are numerically plotted in Figs. 3—5.
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period) we call a bifurcation "route. " A specific one-
dimensional parameter curve within a route we call a bi-
furcation "path. "We find that all self-similar bifurcation
routes can be classified into three types: L, U, or E
routes. The L routes arise from always choosing the
upper (or always the lower) branch of the stable region
when the period doubles, whereas for the U (and E)
routes the subsequent regions of stability alternate be-
tween the upper and the lower branches. A typical exam-
ple of the L and U routes are indicated in Fig. 1 (there is,
however, only one E route, cf. Fig. 1). "Almost all" bi-
furcation paths within each type of bifurcation route have
the same Feigenbaum constants, 5~ and 52 (the 5~ and 52
are the asymptotic rates at which specific points in each
region of stability converge towards a point in the param-
eter plane, as we go to higher and higher periods). We ob-
tain three different values for 52, +4.000. . . , —2.000. . . ,
and —4.404. . . , corresponding to, respectively, the L„U,
and E routes. Nevertheless, in all cases, the other Feigen-
baum constant 5& has the same value as in 2D area-
preserving maps, 6&

——8.721 09. . .
Moreover, within each bifurcation route there is one ex-

ceptional (degenerate?), "irregular, " path with a totally
different 62. For the I. and U routes this exceptional 62 is
—15.1. . . . The exceptional path in the E route has no
5z value at all (it runs along a parameter axis correspond-
ing to two uncoupled 2D maps). The exceptional
62 ———15.1. . . was reported earlier in Refs. 6 and 7. It
may be another sign of degeneracy that this 52 (numerical-
ly) seems to be dependent solely on the other scaling con-
stants of 2D area-preserving maps, i.e., 52-(2al3)/5&, cf.
Ref. 7.

In Sec. IV we present some approximate (numerical) re-
normalization. It does yield 52 (and 5&) values which are
very close to the actual numerical values we find for the
regular paths. From this approximate renormalization,
however, we do not recover the 5z value ( —15.1. . . ) of the
exceptional paths. The approximate renormalization
scheme also gives the accumulation values for the four
eigenvalues of the Jacobian matrix of the in-phase period-
ic orbits. These are, respectively, (A, l, I /A, ~, 1, 1),
(Ai, I/A~, e' ~,e ' ~ ), and (A~, I/A|, A~, 1/A~) for the I, ,

U, and E routes, where k, (= —2.0575. . . , Ref. 9) is the
same as for 2D area-preserving maps. A more accurate
renormalization scheme' confirms these results. The
latter renormalization has also been extended to a class of
nonsymmetric maps [i.e., Eq. (2.1) with f&g] which is
much larger than the class of symmetric maps discussed
here. Nevertheless, it produces the same 6& and 6z value
as found here for the symmetric map.

The bifurcation tree of the stability regions will be dis-
cussed in Sec. II. The three types of bifurcation routes in
the tree are identified, and the scaling for their paths is
obtained in Sec. III. Numerical results of an approximate
renormalization calculation are given in Sec. IV. Section
V is a summary.

II. REGIONS OF STABILITY BIFURCATE
IN THE PARAMETER PLANE

Consider a symmetric quadratic (volume-preserving)
4D map which consists of two coupled 2D Henon maps:

x'= —y+f(x,u),

u'= —v+g(x, u),
(2.1)

v =u

where

f(x,u)=2[(Cx+x )+E(u +Fu +Gxu)],

g(x, u):—f(u, x) .

(2.2)

(2.3)

Here C, E, F, and G are parameters. When the coupling
parameter E vanishes, the two 2D maps uncouple. We
shall often use a new parameter P=—C +E.

From the obvious period-1 orbit (fixed point) at the ori-
gin of phase space, two period-2 orbits bifurcate. Here we
shall always consider only one of those two, the in-phase
orbit (to follow the jargon of Ref. 11 for coupled logistic
maps),

i =1,2, . . . , X
yt

(2.4)

where N is the period. (There also is an "opposite-phase"
orbit, with u; =x;+&&2, v; =y;+~~2, which we do not con-
sider here. )

The map (2. 1) is symplectic if

Bf Bg
Bu Bx

(2.5)

For any 4D symplectic map, eigenvalues of the Jacobian
matrix J come in pairs, and the Jacobian matrix has only
two independent invariants

(2.6)

(x,y, u, v) = (0,0,0,0), (2.7)

where the A.'s are the eigenvalues of J. Stability regions
for 4D symplectic maps in the T& T2 plane are sketched
in Fig. 2. The shaded region is stable. It is bounded by
three curves: the period-doubling bifurcation (PDB) line
segment AC [T2 ———2T& —2 between (0, —2) and
( —4, 6)], the tangent bifurcation (TB) line [T2 ——2T& —2
between (0, —2) and (4,6)], and the "complex" bifurcation
(CB) line (the parabola T2 ——T, /4+ 2).

The map (2. 1) is a volume preserving map, wh-ence
Det J= 1 (symplectic only if G =2F). Yet, for the in-
phase orbits, Eq. (2.5) is always satisfied due to the sym-
metry of the map, Eq. (2.3). Hence Fig. 2 also is the sta-
bility diagram for the in-phase orbits of the volume-
preserving map (2.1). Transferring the stability diagram
from the trace plane (T& T2 plane, Fig. 2) to our parame-
ter plane (the PE plane, Fig. 3, at fixed values of F and G;
remember P =C +E) will clarify the complicated period-
doubling picture.

For the obvious period-1 orbit at the origin of phase
space,
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FIG. 2. Stable regions in the "trace plane" for 4D symplectic
maps: the T& and T2 are defined in Eq. (2.6). In all figures, the
PDB line is denoted by a solid line, the TB line is denoted by a
dashed line, and the CB curve is denoted by a dotted curve.

we can express the PDB lines in our parameter plane (cf.
Fig. 3) as P = —1 and P 2E = —1.—The TB lines are
P =1 and P —2E=1, and the CB curve is E=0. That
is, the period-1 stable region is a parallelogram containing
two triangles, each of which is an image of the shaded re-
gion in Fig. 2. They have a common boundary, the CB
curve E =0.

There are two stable, quadrangular, regions
("branches") for the in-phase period-2 orbits, as calculated
in Appendix A. Note that the orientation of the upper
quadrangle is reversed, compared to that of the period-1
parallelogram. The stable regions of period 4 are also
analytically given in Appendix A. These regions have
four quadrangular branches. Figure 3 shows the period-1
stable region bifurcating into two period-2 stable regions,
and each of those bifurcating into two period-4 stable re-
gions, as well as those four period-4 regions, and so on.
That is, each "mother" region produces two "daughter"
regions when the period doubles. Since daughter regions
are much smaller in size than their mother region, stable
regions for very high periods will be nearly invisible. In
order to, nevertheless, see some details, we replot the hor-
izontal axis on a logarithmic scale in Fig. 4 for the upper
stable regions (of Fig. 3). In Fig. 5, we even replot both
axes logarithmically. Figure 6 is a schematic illustration
of the stable region bifurcation, which will be used fre-
quently. Figure 1 is a simplified version of Fig. 6.

In Figs. 3—6, the period-doubling bifurcation lines for
different periods (such as the line 'A

I 'CI, the lines

CI AI, A2 C2, etc. in Fig. 6) are parallel. Why this is
so is explained in Appendix B. It is also explained there
why E =0 is a CB curve.

—2
—2

I I I I r I

P =- C+E

FIG. 3. Stable regions in the parameter plane for the in-

phase orbits of the map (2.1) at F= 1 and G =2. The stable re-

gions are shown for the periods 1, 2, and 4. In all figures, the
images of the two end points of the period-doubhng bifurcation
line (A and C in Fig. 2) are labeled by A; and C;, where N is
the period, and i denumbers the different images,
i =1,2, . . . , N.
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FIG. 4. Singly logarithmic plot of the stable regions of our
map (2.1), at F =1 and G =2, for periods up to 64. Only the
"upper" stable regions are shown. The P on the horizontal
axis is the accumulation value of the parameter P,
P = —1.266 31127. . .
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For instance, the lowest route in Fig. 1 arises from al-
ways choosing the lower branches. It will be labeled as
( ——— ) or ( —)", where —(+ ) denotes choosing the
lower (upper) branch. Since we are interested only in the
asymptotic behavior of the period doubling, all routes la-
beled by . (+ )" or . ( —)" are numerically found to
have a similar asymptotic behavior, and will be called I
routes. That is, an I, route is followed if one always
chooses the upper branch at each bifurcation (or always
the lower branch), from some period on.

A U route is followed if we alternate forever the upper
and lower branches at consecutive bifurcations, from
some period on. It will be labeled . (+ —)". The
route marked U route in Fig. 1 is just an example.

One special U route is called the E route. Along it the
parameter E approaches zero. It has different scaling
properties from the other U routes.

Below we define bifurcation "points, " "paths, " and
"routes. "

FIG. 5. Doubly logarithmic plot of the stable regions of our
map (2.1), at F =1 and 6 =2, for periods up to 64. The E
on the vertical axis is the largest of the accumulation values of
E, E,„=0.0941870304. . .

III. PERIOD-DOUBLING BIFURCATION
ROUTES AND SCALING FACTORS

An enormous number of different bifurcation routes
(such as the three routes in Fig. 1) follow from the previ-
ous arguments (and from Fig. 6). We will classify them
into three types (the L, U, and E routes) in this section.

-C+E

8A3

A. Bifurcation points

We are interested only in period doublings that are
asymptotically self-similar. This self-similarity requires
that each higher-order bifurcation should occur at the
same point (the bifurcation point) on the period-doubling
line segment AC in Fig. 2. Any point on AC can be a bi-
furcation point. Such a bifurcation point on AC corre-
sponds to an eigenvalue configuration of the Jacobian ma-
trix,

(~f ~2 ~3 ~4)=( —1, —l,e', e '
) (3.1)

where the A, s are the eigenvalues, and 0 is the phase an-
gle of the second pair of eigenvalues, 0(0&+. Hence,
the 8 specifies a bifurcation point on AC. Bifurcation
points with 0&8&~/2 will be called Le points, while
points with m/2&8&sr will be called Ue points. The Le
points lie on the lower half of AC (in Fig. 2), whereas the
Uq points lie on the upper half. If t9 does not need to be
specified, the terms "I point" and "U point" wi11 be used.

We can always continue from one region of stability
(for period 2") into the next region of stability (for period
2"+') at any fixed value of 8, and do so forever. The
above constitutes a self-similar recipe for period doubling
(remember that we have a bifurcation line in 4D maps, in-
stead of a bifurcation point as in the 2D case, see Sec. II).
In Sec. IV, we study self-similarity under a renormaliza-
tion operation. Under that operation, working at a fixed
value of 0 does, however, not give a self-similar recipe.
The only fixed 0 values which yield a self-similar renor-
malization are 0=0, 2m/3, and ~. For the first two
values (8=0,2n/3), the second pair of eigenvalues in Eq.
(3.1) interchanges when the period doubles. In the E
route, the points with 8=m. are special (not so in the gen-
eral U routes) since the 4D map then separates into two
uncoupled 2D maps. Hence,

PERIODS:
ffsl-8 I 4 I 2 8=0,2m /3, m (n: for E =0) (3.2)

FIG. 6. Schematic illustration of the stable regions of the
map (2.1) for periods up to 16, cf. Figs. 1 and 3—5.

are the most important bifurcation points in the sense
mentioned above.
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B. Bifurcation paths

A bifurcation point on the trace (stability) plane (Fig. 2)
has N images in the PE-parameter plane (Fig. 6) for our
period-X in-phase orbit. The images of the two end
points (A and C) of the bifurcation line are labeled A;
and C; in Figs. 3—6, where N is the period, and i
denumbers the images (i = 1,2, . . . , X).

After the bifurcation point (specified by 8) has been
chosen, its images under period doubling form a self-
similar bifurcation path. For instance, if we choose the C
point (8=0} as the bifurcation point, then the first
period-doubling bifurcation occurs at its image C&, and
we are in the lower period-2 branch. A second bifurcation
occurs at the point Cz, and so on, obtaining the bifurca-
tion path ('C&, C2, C4, Cs, . . . ).

Furthermore, the top path in Fig. 6
('Ai, Ci, Ci, Ci, . . . ) is an asymptotically self-similar bi-
furcation path (here the self-similar period doubling starts
at second order) also with 8=0. Hence each bifurcation
point (fixed 8) corresponds to an infinity of (asymptotical-
ly} self-similar bifurcation paths. A bifurcation path with
0& 8& m. /2 will be called an Le path (or an L path if 8 is
not specified), while a path with ~/2 & 8 & m. will be called
a Us path (respectively, U path). In this notation,
('C„Cz, C4, Cs, . . . ) as well as ('Ai, Ci, Ci, Ci, . . . )

are Lo paths.

C. Bifurcation routes

Consider the lowest path ('C&, C2, Cq, . . . ), which is
an Lo path (8=0). gradually increasing 8 by small steps,
we have a set of bifurcation paths Ls (0 & 8 & n./2) in the
neighborhood of this Lo path. All those L q paths
(0(8&m./2) which can be continuously deformed into
our Lo path form the lowest route ("L route") in Fig. l.
Thus, an L route is a route formed by a particular L path
and all Le paths (0&8&m/2) in its neighborhood. Simi-
larly, we define the U route as the route formed by a par-
ticular Ue path and all Uz paths (m. /2&8&~) in its
neighborhood.

The particular U route containing the axis E =0 we
call the "E route, " as indicated in Fig. 1. For any path in
this E route (called Ee path), the coupling parameter
E~O when the period increases, and the 4D map will
asymptotically uncouple into two 2D maps. Numerical
calculations (see Secs. IIID and IIIE) show that this E
route has a special scaling.

These values turn out to be independent of the values of
the parameters F and G in the map (2.1), as shown in
Table I. One might hope so as we are considering a
codimension-two problem.

E. Scaling of period-doubling sequences

As an example, consider the lowest Lo path in Fig. 6
('Ci, Cz, C&, C8, . . . ). The nth period-doubling bifurca-
tion occurs at the point C~, where %=2". Let P„
(—=C„+E„)and E„be the coordinates of the point Cz.
Scaling behavior of the period-doubling sequence
[(P„,E„), n =1,2, . . . ] can be determined by matrix scal-
ing. One defines a 2X2 scaling matrix D„as follows:

P„—P„) P„+)
—P„

E —E —D~ E —E (3.5)
n n —1 n+1 n

where

D„~ D,
n~oo

(3.6)

due to the self-similarity. Here D is a constant matrix.
The eigenvalues of D, 5&, and 52, are the convergence rates
of the parameters. It yields

5) ——8.721 096. . . (3.7)

for all cases. This 5& value is the same as in the 2D area-
preserving maps. The 5z values, however, are different for
the three types of bifurcation routes (L, U, and E routes).
For all Le paths with 0 & 8 & m /2 (i.e., 8&0) we thus find

52 ——4.000. . . (3.8)

whereas for the exceptional L path (i.e., with 8=0) we
find

52 ———15.1. . . (8=0) . (3.9)

Similarly, all Us paths (m. /2 & 8 & m, 8&2m /3 ) have the
same 52 value,

5,= —2.OOO. . . , (3.10)

called the "contraction" rate (of the stable regions).
Numerical calculation indicates that the three types of

bifurcation routes have their own contraction rates:

yL —4.000. . . , y U
———2.000. . . , yg ———4.404. . .

(3.4)

n —1Xn-
n~op

(3.3)

D. The contraction rate of the stable regions

We define the "thickness" d„of each stable region (in a
bifurcation route) as the length of the image of the
period-doubling bifurcation line segment AC, cf. Figs.
2—6 (i.e., d„=—A C~, where X =2" is the period, m is
determined by the bifurcation route). For the lowest Lo
route (see Fig. 6), di ——'Ai 'Ci, d2 ——A2 C2,
d„= A& C&, This thickness vanishes geometri-N

cally at a rate

1

2
—4

1

1

2
4

—8

3
8

—4.403 924 9. . .
—4.403 793 9. . .
—4.403 981 0. . .
—4.403 760 3. . .
—4.403 862 4. . .

TABLE I. The contraction rate y, Eq. (3.3), of the thickness
of stable regions is given for the E route at some values of the
parameters F and G. Note that y seems to be virtually indepen-
dent of F and G.
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whereas for the exceptional U2 /3 path we find

52 ———15.1. . . (8=2tt/3) . (3.1 1)

Finally, all E~ paths with 0&~ have the same 6z value,

6,= —4.4O4. . . , (3.12)

whereas no 6z exists for the exceptional E path, since all
bifurcation points lie on the P axis (E„=O for all n). We
note that the 52's for the three types of regular bifurcation
paths (i.e., the nonexceptional paths) equal the contraction
rates y for the same route, cf. Table II. We also note that
the three types of exceptional paths correspond to the
three special values of 19,

t =t(c) . (4.1)

All curves t =t(c) for different periods in the ct plane
will asymptotically intersect at a critical point (c„,t ).
Consider a new map Fc, i.e. (Fc applied 2N times and),
at some other value, C, of the parameter c. Locally, near
the period-2X orbit, the new map again resembles F, .
This self-similarity therefore yields

der to describe our present renormalization method first
consider quadratic 2D area-preserving maps F„which
can depend on one parameter only, called c. The trace t
of the Jacobian matrix of a period-N orbit (i.e., of F, ) de-
pends on the c and X,

e=a, 2&'3'
mentioned in Eq. (3.2).

F. Orbital scaling factors

(3.13)
t (c)= T(C), (4.2)

where t is the trace of the Jacobian matrix of the map F,
at its fixed point, whereas T is the trace of the Jacobian
matrix of the Fc at its new fixed point. Solving Eq. (4.2)
for c gives a recursion relation for the parameter,

After making a linear transformation [see Eq. (A2) in
Appendix A), the Jacobian matrix of the map at the in-
phase orbit decomposes into two 2)&2 matrices, see Eq.
(A5). Hence the first two coordinates st and s2, in Eq.
(A2), of the in-phase orbit (i.e., d~ ——d2 ——0) are deter-
mined using the two-dimensional Henon map

c =c(C) . (4.3)

C„=c(C„). (4.4)

The critical value of the parameter is a fixed point of Eq.
(4 3) 12—14

s 1 s2+fi(&»0»

$2 $1
(3.14) Jc

dC
(4.5)

The convergence rate of the parameters is determined by

That is, the $~ and $2 scale with the usual 2D orbital scal-
ing factors' a = —4.018. . . and P= 16.36. . . . Further-
more, according to the definition of st and s2 [i.e., Eq.
(Al)], the coordinates x and y (or u and v) of the in-phase
orbit also with the same scale 2D factors a and /3.

IV. AN APPROXIMATE
RENORMALIZATION CALCULATION

Our actual 4D map (2.1) has two parameters (P =C +E
and E). Note that we fix the values of the other two pa-
rameters F and G. This 4D map has two independent in-
variants of the Jacobian matrix T& and T2, as defined in
Eq. (2.6). Hence, we work with two vectors C=(P,E),
T=—( T&, Tz), and Eqs. (4.2)—(4.5) are used in vector-
matrix forms.

A. Eigenvalue-matching renormalization B. First-order approximation

Based on the self-similarity of period doubling, many
renormalization methods have been invented. ' ' In or-

In Appendix A we apply the map twice and analytically
obtain the "first-order" results (from period 1 to 2) as

TABLE II. Numerical results. The convergence rates {ofthe parameters) 6& and 6&, Eqs. (3.6)—(3.8),
and the contraction rate y for the three types of bifurcation routes. The 0 is defined in Eq. (3.1). Also
note Table III.

Route

L route

U route

0&0&-fr

2
0=0

—&0(~, 0~ 2&
2

'
3

0 277

3

8.721 096. . .

4.000. . .

—15.1. . .

—2.000. . .

4.000. . .

—2.000. . .

E route —&0&~
2

0=~
—4.404. . .

nonexistent

—4.404. ~ .
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p= —2P +4P+7,
e = 2E [2—+2E+4(P,E)] .

(4.7)

The critical fixed point values of the parameters, deter-
mined by setting p =P =P and e =E =E in Eq. (4.7),
are P„=—1.2656. . . (the same as in 2D maps) and (at
most) four different solutions for E, which we can solve
numerically when necessary. In order to calculate the
convergence rates of the parameters from Eq. (4.5), we use

~P ~J
aP aE

Be
aP BE

(4.8)

evaluated at (P,E ). Using Eq. (4.7), we finds its eigen-
values

5i ——4(1 P)=9.06—. . .

5p ———4 —8E +(3P +1)H 1 EH-F+G
"2F+G

+4(P + 1)E 2H (1 H)—
EH (1 2—H )—2F+ G

(4.9)

We see, however, from Eq. (4.9) that this 52 varies with F
and 6, i.e., for every new choice of F and G, we would
get another 52 value, contrary to our numerical evidence.

t&
——+4(p —e),

t 2
——4(p —2pe) +2,

(4.6)
T, = 4(—2P 4P——7)+16E+16E +8E@(P,E),
Tp 4(2——P 4P—7—) I (2P 4P—7)—

4E—[2+2E+4(P,E)]I,
where 4(P,E):H(P—+ 1)(P 2E—4+—2H), H = (2F
+G)l(1+EF+EG), see Eq. (All). Setting t&

——T& and
t2 ——T2 in Eq. (4.6), and solving for p and e simultaneous-
ly, we obtain the recursion relations for the parameters

Hence we do not (numerically) evaluate these results
(above). Instead, we numerically proceed to higher-order
approximations. It turns out that the higher the order at
which we start the renormalization, the less dependence
there is on F and G. A more complete renormalization
including renormalization equations for F and G, will be
published elsewhere.

52 ——4.00. . . , —2.00. . . —4.35. ~ . (4.10)

Note that these renormalization values are (approximate-
ly) the same as found numerically in Eqs. (3.8), (3.10), and
(3.12) for the regular paths, but do not include the
62 ———15.1. . . value for the exceptional paths.

The eigenvalues of the Jacobian matrix limit on one of
three eigenvalue configurations (for the three types of bi-
furcations routes). These configurations are listed in
Table III. The first two eigen values are always
X&

———2.0575. . . and 1/A, ], which are the same as those
for 2D area-preserving maps. However, the second pair
of eigenvalues for the L and U route is on the unit circle
with phase angle 8=0 and 2~/3, respectively, (remember
that these Lo and Up /3 paths are the exceptional L and
U paths). The second pair of eigenvalues for the E route
(E =0, remember that the axis E =0 is the exceptional
path in the E route) are the same as in the 2D area-
preserving map. Both numerically and in the renormali-
zation approximation, we find that all regular paths in
each route limit on the special path of that route.
Nevertheless the numerical and renormalization values of
52, for the regular paths, appear not to limit on the 62

C. Renormalization at higher periods

The same renormalization calculation can numerically
be done starting at higher periods (e.g., from period 2 to 4,
4 to 8, etc.). We have done this up to period 32, i.e., from
the period 32 to 64. All results in this subsection are for
the 32-64 renormalization (cf. Table III).

The critical value of the parameter P is the usual 2D
one, P = —1.263113.. . , and 5&

——8.72109. . . , i.e., the
same as those in 2D area-preserving maps.

There might be (at most) 128 different 5z's, correspond-
ing to 128 different E s in this 32-64 renormalization,
cf. Eq. (4.7). All 52 values we checked, however, are
equal to one of the following three values:

TABLE III. Some fixed-point results of the approximate renorrnalization calculation of Sec. IV C.
The A, I, . . . , A,4 are the eigenvalues of the Jacobian matrix. The k~ value is the same as in 2D maps
(A. ~

———2.0575. . . ). Note that the numerical results of Table II are recovered here (except for the excep-
tional paths with 62 ———15.1 ~ . . ) to a very good approximation.

Route

L route 8.721. . . 4.00. . .

Eigenvalues (A. &, k2, A. 3 A4)

X1,—,1, 1
1

1

Av3+ A4

2.00. . .

U route 8.721. . . —2.00. . . i 2m/3 —i 2m/31
l~

—1.00. . .

E route 8.721. . . —4.35. . . 1 1
~1& ~1~

A l

—- 2.54. . .
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values of the special ("degenerate") paths, cf. Tables II
and III.

For this 32-64 renormalization calculation, the results
seem to be nearly independent of F and G (values chosen
between —10 and 10).

V. SUMMARY

s l
= —,(x +u)(1+EF +EG),

d l
= —,(x —u)(1+EF+EG),

sz = —,(y+U)(1+EF+EG),

dz = —,(y —U)(1 +EF +-EG),

(Al)

All the scaling behavior in period-doubling of 2D area-
preserving maps is observed in our symmetric quadratic
4D map. From this, one might already infer that asymp-
totically (as the period goes to infinity) our 4D map un-
couples into two 2D maps. Furthermore, we conclude the
following.

1. Stable regions in the parameter plane bifurcate into
two regions when the period doubles. All such stable re-
gions form a bifurcation tree in the parameter plane.

2. There are only three types of bifurcation routes (L,
U, E routes). All bifurcation paths (with one exception
for each route) in all L (U, E) routes have a second
Feigenbaum constant (the convergence rate of the parame-
ters) 5z of 4.000. . . ( —2.000. . . , —4.404. . . ), which is
equal to the "contraction rate" y for the L ( U, E) routes.

3. The exceptional bifurcation path in the L (U, E)
route corresponds to a bifurcation point with 8=0 (2m/3,
ir). The value of 5z for the exceptional L and U route is
—15.1. . . , which is the same as that found earlier in a
nonsymmetric 4D map, cf. Ref. 6. The 62 for the excep-
tional path in the E route does not exist because this path
is along the P axis (i.e., E„—=0) in the parameter plane.

4. An eigenvalue-matching renormalization shows that
all regular paths limit on the three exceptional paths, at
the rates 4.00. . . , —2.00. . . , and —4.35. . . for the L, U,
and E routes, respectively. These rates are equal to the
three 62 values for the regular paths, but not to the 62
values of the exceptional paths.

Note that we have not studied the "opposite-phase" or-
bits of our 4D symmetric volume-preserving map. A
more complete renormalization study, ' including the re-
normalization of the parameters F and G, will be pub-
lished elsewhere. That renormalization has been extended
to a class of nonsymmetric maps [i.e., Eq. (2.1) with f&g]
which is much larger than the class of symmetric maps
discussed here. Nevertheless, it produces the same 6& and
62 value as found here for the symmetric maps.
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APPENDIX A

In this appendix we indicate how to explicitly calculate
the boundaries of the regions of stability, in the PE plane,
for the orbits of period 2 and 4.

Introducing new coordinates (s l, d l, sz, dz) defined by

our map (2.1) becomes

s 1
— $2+f1(sl, dl ),

$2 =S]

d i ———dz+fz(si, di),
(A2)

where

f l (sl, d l ) =—2(Psl +s i +pd i ),
fz(sl, dl )—:2[(P —2E)di+2psldl],

with

1+EF—EGP=C+E, p= 1+EF+EG
2F+Gp=1 —EH, H=-

1+EF+EG

(A3)

(A4)

Ji 0

0 J2 (A5)

where J& and J2 are 2&(2 matrices. The matrix J& is the
same as the one for period doubling in 2D area-preserving
maps, cf. Eqs. (A2) and (A3), with dl ——dz ——0. The two
invariants of the Jacobian matrix J of Eq. (2.6) can now
be expressed as

T] ——Trj]+TrJ2,
Tz ——(TrJl)(TrJz)+2 .

(A6)

Hence the equations for, respectively, the PDB curve,
TB curve, and CB curve (the three boundaries of the
stable region) are

TrJl ———2 or TrJz ———2 (PDB),

TrJl ——2 or TrJz ——2 (TB),
TrJ, =TrJz (CB) .

(A7)

(A8)

(A9)

Substituting the coordinates of the period-2 orbit (cf. Ap-
pendix B), we find

TrJl ———2(P 4P —7), —
TrJz ——TrJl +8E[2+2E+4(P,E)], (A 10)

The in-phase orbits of our map (2.1) become orbits of
the new map (A2) with dl ——dz ——0. The Jacobian matrix
of the map (A2) at the in-phase orbit is

2P +4s] —1 0 0

0 0 0
0 2(P 2E) +4ps i

——1
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where

@(P,E)=H(P+1)(P 2—E 4—+2H) . (Al 1)

Substituting Eqs. (A10) and (All) into Eqs. (A7)—(A9),
one obtains explicit expressions for those three boundaries

I

of the stable regions of the period-2 orbits.
Explicit expressions for the three boundaries of the

period-4 stable regions can also be given. The traces of J&
and Jz for the period-4 orbits are

TrJt ———16D(D —2v D )+2,
TrJz ——16[2E EHP—+(1 EH)~—D] [P (1 2EH) —4E (1—HP)——2(1 EH) (—P+~D )]

+4E [2E EHP——(1 EH)v—D ](2—HP),

(A12)

where D =P(P —2). Substituting Eq. (A12) into Eqs.
(A7)—(A9) gives explicit equations for the three boun-
daries of the period-4 stable regions.

APPENDIX 8

The coordinates x and y (or u and U) of the in-phase
orbits satisfy Eq. (2.1). Hence they can be solved from

x'= —y+2[(C+E)x+(1+EF+EG)x ], y'=x . (Bl)

The coordinate transformation

X—=(1+EF+EG)x, Y—=(1+EF+EG)y,

P—:C+E . (B4)

T& ———4cosg, T~ =2(1+2c soP) .

Therefore we have

(B5)

That is, a bifurcation point on the P axis for the 2D map
(B3) becomes a period-doubling bifurcation line (B4) in
the PE-parameter plane for the 4D map (2.1).

We now show that E =0 is a CB curve on the PE
plane: for E =0 the 4D map (2.1) uncouples into two 2D
maps, and the eigenvalues of Jacobian matrix of the map
are (e'~, e '~, e'~, e '~). The invariants of its Jacobian
matrix are

puts the map (Bl) in the standard form'

X'= —Y+2(PX+X'), Y'=X

where

(B3)
Ti

T = '+2,
4

which is indeed the CB curve of Fig. 2, cf. Sec. II.

(B6)
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