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Analytic study of pulse broadening in dispersive optical fibers
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It is demonstrated that for an optical pulse propagating along an optical fiber the rms pulse width
varies parabolically with distance, irrespective of initial pulse form and frequency chirp variation.
Furthermore, the result is true to arbitrary dispersive order and should prove a very useful tool in
determining the information-carrying capability of long-distance optical-fiber transmission systems.

I. INTRODUCTION cording to

An optical-fiber communication system for high-bit-
rate transmission over long distances requires short pulses
with small pulse broadening during propagation.
Chromatic dispersion is an inherent property of optical
fibers and leads to increasing pulse widths. This may
severely limit the performance of the optical transmission
system.

Thus, from the point of view of the transmission capa-
bility of an optical communication system, the variation
of pulse width with distance of propagation is the most
important single-pulse characteristic. Most analytical in-
vestigations of the effect of dispersion on pulse propaga-
tion in optical fibers have modeled the pulse envelope
variation as Gaussian and have assumed a linearly varying
chirp frequency. ' This is an analytically convenient as-
sumption which makes it possible to evaluate explicitly
the resulting pulse form at the output end of the fiber.
On the other hand, for initially non-Gaussian pulses resort
is mostly taken to numerical computations.

The purpose of the present work is to provide a
shortcut to the problem of linear dispersive pulse broaden-
ing by concentrating on, the variation of the pulse width,
leaving the detailed form of the pulse envelope aside. It is
possible to show that the pulse width, defined in the rms
sense, has a parabolic variation with distance of propaga-
tion irrespective of dispersive order and initial pulse form,
which only affects the propagation characteristics by
determining the coefficients of the parabola. The analysis
is carried through to third dispersive order to allow for
the possibility of propagation at the zero-dispersion wave-
length. Explicit expressions are given for super-Gaussian
initial pulse forms with arbitrary rectangularity, index,
and linewidth enhancement factors, cf. Ref. 6. The result
should prove useful in determining the transmission
characteristics of pulses of more realistic pulse forms than
the conventionally assumed Gaussian form.

II. THE DISPERSIVE SCHRODINGER OPERATOR

The linear propagation properties of the optical wave
pulse are determined by the dispersion relation, which re-
lates to the wave frequency co and the wave number k ac-

k=k(co) .

We expand the function k(co) around the wave carrier fre-
quency ~o to obtain

k(n)
0

k = g (co —cop)", (2)
nf

where

ko = „(coo).(pg) d k
dc&

Equation (2) can be rearranged to read

k(n)
0k —k, = g (~—~o)".

n=i

The correspondence

a a
t (k —k,), t (~ ~o)— —

Bx c)f

(4)

(5)

makes it possible to translate Eq. (4) into a differential
equation for the slowly varying envelope g(x, t) of the
pulse, viz. ,

- t"k,'"'
g yl

Bx „, n! t)t" (6)

Finally, we introduce the retarded time ~, measured rela-
tive to the time it takes the pulse to travel the distance x,
assuming a pulse velocity equal to the group velocity
vg ——(kp), i.e., r=t —xkp. Using ~ as the time variable
in Eq. (6) we obtain the generalized Schrodinger equation

where an important property of the operator H is that it
is self-adjoint. The subsequent analysis is carried through
for a general self-adjoint operator H. In practice, the
second (kp') dispersive order part of the operator dom-
inates the pulse evolution, except for extremely short
pulses and/or close to the zero-dispersion wavelength.
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III. MOMENT EQUATIONS FOR THE GENERALIZED
SCHRODINGER EQUATION

Consider the evolution of a pulse which satisfies the ini-
tial value problem:

. ag(x, r) H a ]( )
BX a7

(8)
P(0,r)=tgp(r),

where H is a self-adjoint operator. Instead of trying to
find an explicit solution of Eq. (8) we characterize the
solution in terms of its moments I„(x), defined as cf.
Refs. 7 and 8,

I„(x)=(r")= f P*(r,x)r"P(r,x)dr .

Iz ——f f*(r,x)HP(i, x)dr=bo+b, x+b,x

where the coefficients aj and bj are determined by
+ oO

ao —— Qo (r)re(r)dr,
+ oo

ai =i' f yo(r)[H r]yo(r)dr
+ oo

bo =f go (r)~go(r)«
+ oo

bi =i f qo(r)[H, ~]ito(r)dr

b2 ————,
' f . Qo(r)[H, r ]21(o(r)dr .

IV. APPLICATION TO DISPERSIVE
PULSE PROPAGATION

(19)

If we introduce the commutator [H, r"] as

[H, r"]=He r"H—
and the m-fold commutator [H,r"] as

[H, r"] + i [H, [H,——r" ] ],
[H, r"],= [H, r"],

it is straightforward to show by induction that

(10)

In the case when f(x,r) of Eq. (8) represents the slowly
varying envelope function of an optical wave pulse, the
moments of Eq. (18) have a well-known physical interpre-
tation.

(i) Ip represents the pulse energy which, without loss of
generality, will be taken equal to unity.

(ii) Ii determines the "center of mass" velocity of the
pulse since (r) = (r —xkp) =ap+a ix implies that

d I„(x)=i ([H,H] ) . (12) =kO+a) ——1
+Q)

Vg

(20)

/

Furthermore, it can be shown (see the Appendix) that

gk —=0 ifn&m .
a

(13)

(iii) I2 determines the rms pulse width o defined ac-
cording to

'=(( —
& &)'&

Thus, if H(a/ar) is a self-adjoint differential operator
with constant coefficients, cf. Eq. (7), i.e., =bo —ao+(bi —2aoai)x+(b2 —a i )x2 2 2

oo gk
l Ak

k=2

we conclude that

d" +'I„(x)
dX

=0,

i.e., I„(x)must be a polynomial of degree n:

I„(x)=g a„kx
k=0

(14)

(16)

The coefficients ai, bi, and b2 include contributions
from arbitrarily high dispersive orders, but in practice, ex-
cept for extremely short pulses, the coefficients are deter-
mined by the second- and third-order dispersive terms in
the Schrodinger equation. To third dispersive order we
find, using the operator identities derived in the Appen-
dlX,

+ ago k,'" +. agoai ——kp'Im f Po dr+ f dr,

+ oO f'(r, x )g(r,x )dr =const,
+ oO

Ii —— P'(r, x)rP(r, x )dr=ao+a ix, (18)

The coefficients, a„k, are determined by the initial condi-
tion Pp(r) according to

k

a.,k
=

k, & [H &lk & I =o

k

, f fo(r)[H, r"]kgo(r)dr . (17)

From Eq. (16) we infer the following lowest-order mo-
ments:

+~ W'o „, +"
bi ——2ko'Im f t/&or dr+ko" f

2
+ agp

b, =(k;)' f

2
a@,

dv,
a7-

(22)

koko +" a4o a 0oIm d7
2 oo a'r ap

ko f + a2go
dv .

ar

The results given by Eqs. (21) and (22) provide a generali-
zation of previous works of ours, see Refs. 7 and 8.
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V. APPLICATION TO CHIRPED GAUSSIAN PULSES where

The above results, Eqs. (20)—(22), make it possible to
evaluate to third dispersive order the pulse velocity as well
as the rms pulse width variation for pulses of arbitrary in-
itial form. In order to demonstrate the analysis on a
well-known example, we investigate the pulse broadening
of chirped Gaussian pulses of the form

gp(r)=A exp ——,(1 ia—) (23)

Using Eq. (23) in Eqs. (20)—(22) we find

H(m)=

G(m)=

r r 2—3 1

2m 2m

I' 1+ 1

2m

p2
2m

16I 1+
ko"—=k,'+, (1+a')

Uc 4a

0
2

——1—
Op

uko' +a (k )2 (1+a ) (k )2 2

0o '40o 80o

(24)

Kp(m) =
r r 3- I 2-1 1 3

2m 2m 2m

I 1— 1

2m

(29)

(25)

where 0 p ——a ~2 denotes the initial rms pulse width.
Equation (25) reduces to well-known results in the limits
of vanishing second- or third-order dispersion, cf. Refs.
1—4, 8, and 9. However, as has recently been pointed
out, ' the Gaussian pulse approximation is analytically
convenient, but is not always very realistic. The following
flexible ansatz was recently suggested as a more useful
model,

2m

p2
2m

Ei(m)=I 1

2m
—I 2—

2m

Qp(r)=A exp ——,(1—ia) (26)

The parameter m determines the degree of rectangularity.
For m =1 we regain the usual Gaussian pulse with a
linearly varying chirp frequency. However, for increasing
m, the corresponding super-Gaussian envelope functions
become successively more rectangular and the chirping
becomes concentrated to the leading and trailing edges of
the pulse. Both features are characteristic of pulses from
directly modulated semiconductor lasers.

Using the ansatz (26) in Eqs. (20)—(22) we obtain for
the pulse velocity

ko=ko+
Uc 8 0o

I I 2—3 1

2m 2m

P2 1
1

2m

(27)

I (x) denotes the gamma function and
op ——a I (3/2m)/I (1/2m) is the initial rms pulse width.
The variation of the pulse width is determined by

0;ko'
cT /cTp= 1 —

2 x
0o

2

H(m)kp'
4

which is seen to reduce to Eq. (25) when m = 1. A previ-
ously made comparison between the second-order disper-
sive result, according to Eqs. (28) and (29), and the numer-
ical computations of Ref. 6 showed complete agreement.

VI. APPLICATION TO TRUNCATED
EXPONENTIAL CHIRP-FREE PULSES

As a further illustration of the usefulness and the flexi-
bility of the result given by Eqs. (28) and (29), we will ap-
ply it to a recently suggested model for chirp-free optical
pulses, viz. ,

gp(r) =3 exp( r/2rp+i beet )B(r), — (30)

where B(r) is the Heaviside step function and b,co models
the frequency deviation due to injection current modula-
tion in a semiconductor laser. In the case of an envelope
variation, as in Eq. (30), b,co is constant since
b,co —d ln

i P ~

/dr.
Using Eq. (30) in Eqs. (28) and (29) we find

0 (x) kp=1+ 2 x (31)
0'o - 20 o

Minimizing the output pulse with respect to the input
pulse for a given distance of propagation x, we obtain

(kill )Q

+G(m)[ICp(m)+K, (m)a ]
Oo

(28)

cr;„=(x
i

kp'
i

)'i', (32)

which compares favorably with the numerical result ob-
tained in Ref. 5 [o;„=0.9(x

i kp i

)' ]: The difference
should be due to the different definition of the rms pulse
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width used in Ref. 5 (defined with respect to the powers
squared).

VII. INFLUENCE OF FIBER LOSS

If fiber loss is included into the generalized Schrodinger
equation, Eq. (8), we obtain

true to any dispersive order and applicable to input pulses
of arbitrary form .The result provides a more direct and
convenient way of determining the transmission capacity
of an optical-fiber communication system than previous
cumbersome numerical procedures based on Fourier-
transform analysis.

ai = i yf+—HP .
Bx

(33)
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The loss term ( iyp—) can be transformed away by intro-
ducing /=/exp( iy—x). The resulting equation for g is
the same as Eq. (8). This implies that the evolution of the
moments I„(x)will not be affected by fiber loss since

f g*(r,x)r"P(r,x)dr
I„(x)= +™f "P"( ,rx)P(v. ,x)d~

f g '(r, x )Hg(r, x )dr
(34)f P "(r,x )P(r,x )dr

The normalized definition of I„(x) in Eq. (34) is con-
sistent with definition (9) complemented with the condi-
tion (1)=1. Thus all our previous results for pulse
broadening are still valid when fiber loss is included.

VIII. CONCLUSION
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APPENDIX

I gk =0 ifn(m . (A 1)

In order to prove this we need the following operator
identity, which is straightforward, to verify using induc-
tion:

k
sr sr

, e =e gk
(A2)

The crucial point in the presented analysis is the result
given in Eq. (13), viz. ,

The maximum bit rate of long-distance optical-fiber
communication systems is determined by the dispersive
broadening of the input pulse during propagation. Our
investigation results in explicit analytical expressions for
the rms pulse width variation in terms of a second-order
polynomial in x—the distance of propagation. The coef-
ficients of the polynomial are determined by the proper-
ties of the input pulse. %"e emphasize that the result is

I

The left-hand side of Eq. (A2) can be expanded as

I gk ( )n gk

ae'

The right-hand side (rhs) of Eq. (A3) is rewritten as

(A3)

e S'7

'k
gk

a
(s )n k k gk rgk— ao (s )n+m n k k gk r-

g (r)s"
n=0 n! „, tj

(A4)

m =1

s:
gk gk —1

Identification of powers of s in Eqs. (A3) and (A4) yields
Eq. (Al) for the vanishing powers, and the lowest-order
nonvanishing powers yield the following useful commuta-
tor identities:

I &k &2k 2s: +,r =2k
. 2

The following commutator results will also prove useful:
(i) If H=H, +H, , then

[H ~12=[He r'12+ [Hi ~)z+2[Hc, [Hi, ~]j .

s2,
gk gk —1 gk —2=2k', +k(k —1)

a
(AS)

a2 a3

t)r t)1
(A7)
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