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A field theory of non-Born-Oppenheimer vibronic interaction in a molecular system is formulated
using a differential geometrical study of quantum molecular dynamics [A. Tachibana and T. Iwai,
Phys. Rev. A 33, 2262 (1986)]. In contrast to the conventional approach of many-body formalism,
the present approach stresses the finite-system aspects of the theory. The formalism is, of course,
general and exact and applies to infinitely large systems. Remarkably, a new vibronically induced in-
terelectron attraction is revealed, which is not brought about by the conventional mechanism of
electron-phonon coupling in condensed-matter physics. It is shown that the “sign” of the vibronic
interaction with respect to the Coulombic repulsion is — and is not + in the conventional electron-
phonon coupling model. The physical origin of the newly found interelectron attraction is clarified
in terms of the “instantaneous” nature of vibronic interaction and the primordial “spin-flip”” mecha-
nism of non-Born-Oppenheimer electron scattering processes [A. Tachibana, K. Hori, and T.
Yamabe, Chem. Phys. Lett. 112, 279 (1984)]. This predicts a “hidden” vibronic mechanism of su-
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perconductivity.

1. INTRODUCTION

Recently, exotic superconducting states have been
found in heavy-fermion superconductors, and the search
for a new mechanism of superconductivity is of vital im-
portance.! Likewise, a number of conducting organic po-
lymers have been discovered recently and the electric con-
duction mechanism including electron-phonon coupling
which may even lead to superconductivity is one of the
fundamental problems in the solid-state properties.>> As
conventional BCS theory of superconductivity predicts,’
the attractive force between a Cooper pair of electrons in-
duced by, e.g., electron-phonon coupling is necessary for
superconductivity to occur. In this connection, research
on strong-coupling superconductivity”® is a subject of
great interest because of the possibility of a high transi-
tion temperature. The theory of Little is also well known
as a challenge to the prediction of high-temperature super-
conductivity.’

According to electron-phonon coupling in condensed-
matter physics, displacements of nuclei from their equili-
brium positions should give rise to a perturbing potential
acting on electrons.!® The perturbed electronic state may
give rise to a new stable nuclear configuration. In this
way, nuclear vibrations and electron-density fluctuations
occur synchronously.

The fundamental assumption underlying the conven-
tional treatment of electron-phonon coupling is the ex-
istence of a mutually ‘“‘adiabatic” motion of an electron
and nuclear vibration (Born-Oppenheimer approximation).
The electron and nuclear vibration are, however, interact-
ing instantaneously and exchanging momenta with each
other. In other words, “friction” interaction exists. The
interaction is always present for every nuclear configura-
tion. Hence, this may be called an “instantaneous” in-
teraction. Contrary to this, the conventional electron-
phonon coupling!® may be called “delayed.” In terms of
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the normal coordinate Q of nuclear vibration, the delayed
interaction is caused by small but finite Q, and the instan-
taneous interaction is caused by 3/0Q. The delayed in-
teraction disappears at the equilibrium nuclear configura-
tion, that is, at the origin Q =0, but the instantaneous in-
teraction exists there. These two kinds of interaction are
induced by the same physical origin, that is, nuclear vibra-
tion.

Note that these two kinds of interaction should not be
confused with each other because they are mutually in-
dependent and yet are closely connected with each other.
Indeed, the coordinates and momenta are mutually in-
dependent dynamical variables and are related to each
other through the Poisson bracket in classical mechanics
and through the commutator in quantum mechanics. Ap-
parently the new interaction is induced by momentum of
nuclear vibration and works instantaneously, and we need .
no finite displacements of nuclei. The instantaneous in-
teraction has been considered quite small and neglected so
far. In other words, the instantaneous interaction has
been “hidden” in the history of superconductivity.

In the present paper we shall study quantum mechanics
of the newly found instantaneous vibronic interaction
which may even lead to superconductivity. Preliminary
treatments have been published elsewhere.!!~!3 Supercon-
ductivity is a highly collective phenomenon, whereas the
present theory treats fundamental electronic processes
only. We are not in a position, therefore, to consider all
aspects of superconductivity at the present stage of the
theory. For example, an important point which has to be
neglected is the derivation of temperature-dependent
phenomenological equations. The considerations of the
present paper will then be confined to the mathematical
Sformulation of the fundamental complete vibronic Hamil-
tonian. No approximations or assumptions are adopted to
simplify the calculation. The theoretical framework will
be presented in Sec. II. Differential geometry is used in
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order to define purely vibrational motion in an essentially
nonrigid molecular system.'* The attractive force between
a Cooper pair of superconducting electrons will be treated
in Sec. III. Since the instantaneous interaction is univer-
sal, it exists even in a small molecular system where the
finite displacements of nuclear positions do not occur. In
this sense, this is a molecular approach to the problem of
condensed matter physics. Indeed, this theory can treat
polycrystalline or amorphous states where the localized
states can play a major role. In Sec. IV virtual absorption
and emission of vibrational quanta through the vibronic
interaction process is studied. In order to elucidate the
present theory, an illustrative example is given in Sec. V.
A novel simple rule is described for the attractive force in
a one-dimensional polymer. This clearly predicts a hid-
den superconductivity if the Peierls instability is
suppressed, for example, under the condition established
by Horovitz and Birnboim.!* In Sec. VI concluding re-
marks are given. We treat the nonrelativistic Hamiltonian
excluding spin-dependent interactions. Atomic units are
used throughout the present paper.

II. FIELD THEORY OF VIBRONIC
INTERACTION

In this section, the complete vibronic interaction is
studied in terms of the field-theoretical formalism. A nu-
clear system of zero total linear and angular momenta is
treated, which may be a prerequisite for the molecular
system at rest. Translational symmetry of the system is
not assumed in this treatment.

A. Fundamental treatment

For a study of the vibrational motion of a nuclear sys-
tem in terms of differential geometry,'* the molecular
Hamiltonian is given, under the condition of zero total
linear and angular momenta of the nuclear system, by

1 —1/2 —1/2
=7 2 Jint 77'm'lintamnﬂ-n int +He + Vnucl ’ (2.1a)
m,n

where the first term is the kinetic energy operator of the
vibrational motion of nuclei with

T =dint 2 (—i3/3¢™J i
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[2 ma/Hma ]3det||Ia8a,,||/det||a”'"]} .
a a

(2.1b)

Jine=

(2.1¢)

In this expression, ||a™"|| denotes Wilson’s positive defin-
ite G matrix'® for the internal coordinates g™
(m=1,...,3N,—6) of the system of N, nuclei, I,
denotes the principal moment of inertia, m, denotes the
mass of the ath nucleus, H, denotes the electronic Hamil-
tonian, and V,,, denotes the potential energy of nuclear
repulsions. The momentum operator of vibrational
motion is represented by m,,. The 7, satisfy the follow-
ing commutation relationship:

(2.2a)
(2.2b)

[ﬂm’qn]='—i8fn s

[7m,m,]=0.

If we second quantize the electronic Hamiltonian H,, we
have

H,= [a'(Oh(Da(Ddr,

++ [aet@)1/rp)a2)a(Vdrdr, , (2.3)

where a'(1) and a (1) denote the creation and the annihi-
lation operator, respectively, and where dr; denotes the
volume element of the ith electron including spin variable.
Also, k(1) denotes the one-electron operator and 1/7;,
denotes the two-electron Coulombic repulsion operator.

The field operators are supposed to be unaffected by
nuclear motions because the “bare” electrons and nuclei
are mutually independent particles. The independence of
the electronic field operators with respect to the nuclear
motions may be represented as follows.

First, with respect to the translational motion,

[P,a(1)]=[P,a’(1)]=0, (2.42)

where P denotes the total linear momentum operator of
the nuclear system. Using the center-of-mass coordinate
Xc, we have

P=—id/3X. . (2.4b)
Second, with respect to the rotational motion,
[7,a()]=[T,a'(1)]=0, (2.5a)

where J denotes the total angular momentum operator of
the nuclear system. Using the Eulerian angles
¢',¢%,6°>=¢,0,¥ which specify the orientation of the prin-
cipal axis frame {e;,e;,e3} with respect to a laboratory
frame, we have '

T=3eJd,, (2.5b)
a
J.= 3 RA—id/3¢") , (2.5¢)
b
where the matrix ||R?|| is given as!’
cosecfsiny cosy  —cotfsiny
[IRE||=||cosecOcosyy —siny —cotd cosy (2.5d)
0 0 1
Third, with respect to the vibrational motion,
[Fpra (D] =[mm,al(1)]=0, (2.6)

where 7, is given by Eq. (2.1b).

It is to be noted that the nuclear system behaves as an
external background system to the electronic Hamiltoni-
an. Hence the molecular orbitals depend on the nuclear
configuration parametrically. Let us expand the field
operators by the molecular orbitals. Particle-hole repre-
sentation is adopted,'?

a()=3 (laj+ 3 ¢,(1)a, , 2.7
k P

where {k,/] denote the occupied orbitals and {p,q} denote -

the vacant orbitals of the reference Slater determinant, '

respectively. We will use {7,j} in order to denote both oc-
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cupied and vacant orbitals. Spin variables are implicitly
attached to the orbital indices. Here, the reference Slater
determinant is represented as

| @)= [Tax |0}, (2.8)
k

where |0) is the vacuum. Since the orbital motion de-
pends on the nuclear configuration parametrically, the
nonadiabatic interaction with the nuclear motion appears;
Fukutome has called it the recoil effect of electronic orbi-
tal motion due to nuclear motion.!® First, with respect to
the translational motion,

[Pap]=—i [201(11’1 | 9y /3Xc )
. 1

+ 3 ai (¥, | 9%y /3Xc) ] . 2.9)
p

Second, with respect to the rotational motion,

[Tax]=—i3 3 e,R2 |3 aruy | 9 /34)
a b 1

+2a;<¢,,|a¢k/a¢">] )
p

(2.10)

Third, with respect to the vibrational motion,

;GIW'I | ¢y /3g™)

[Trmaak]= —i

+ 3 a) (¥, | 3ur/3g™) | . 2.11)
< !

These nonadiabatic interactions exist even if the electrons
occupy the vacant orbitals. The interplay between them
would be an interesting topic for further investigation of
nonadiabaticity.

Since we are studying the vibronic interaction using the
Hamiltonian (2.1), we will examine Eq. (2.11) in more de-
tail in Sec. I B.

B. Dressed vibrational motion

The effect of the vibrational motion on the orbital
motion of the electron can be reduced if we introduce a
new concept of “dressed” vibrational motion. The physi-
cal requirement for such dressed vibrational motion is
twofold. If the momentum operator of the dressed vibra-
tional motion is denoted as II,,, then it should satisfy first
the same commutation relationship as the original rela-
tionship (2.2),

[Hm,qnlz[ﬂ'm)qn] > (2.123)
[IL,, 10, ]=[mp, 7], (2.12b)

and second, contrary to Eq. (2.11), the commutability
with the field operators of the orbital motion of electron,

[11,,,a;]1=[11,,,a]1=0. 2.13)

The procedure of construction of such an operator is
given as follows.
First, let us introduce the vector coupling operator

km(1,2)=3 3 {[7n (D]} (2)
+ (D[ t;(2)1%) . (2.14a)

The Hermiticity of the operator is guaranteed clearly,

Km(1,2) =k (2,1) . (2.14b)
The coupling properties are represented as follows:
[ km(1,2)9,(2)d = —idg;(1)/3g™ (2.14¢)
J 0 Ok, (1,2)d 7 =i3yF (2)/3¢™ (2.14d)

[ km(1,3),(3,2)d7y= 3 [8¢;(1)/8¢™ 139} (2)/3q™) .

(2.14¢)

Second, using this vector coupling operator, we define

Kn= [ a'(Dk,(1,2)a(2)drdT,, (2.15a)
satisfying
Kn=3 [Tmarlai+ 3 [7m.a)la, , (2.15b)
k P
[Kpn ' Kp 1=Ky mp ] 4- [T, K ] (2.15¢)

Using these properties, it is easy to prove that the K,,
thus defined satisfy

(2.16a)
(2.16b)

[Kp»a;)=[7m,ai],
[Km 7aiT] = [7Tm ’aiT] .

Then we can construct the dressed vibrational momentum
operator as

M, = —Kp 2.17)

Clearly, this construction satisfies the criterion given by
Egs. (2.12) and (2.13).

Thus, we have obtained the dressed vibrational momen-
tum operator. The orbital motion of the electron is also
dressed instantaneously as will be shown in Sec. IIC.

C. Complete vibronic Hamiltonian

Making use of the dressed vibrational motion in Sec.
II B, the vibronic Hamiltonian (2.1a) is rearranged as fol-
lows:

1 —1/2 m —172
=7 Jim I—ImJinta anJint
m,n

+Hvbr +H¢‘;+ Vnucl ’ (218&)

where (i) the first term is the kinetic energy operator of
the dressed vibrational motion of nuclei, (ii) the second

term, denoted as Hy,, is the vibronic or friction interac-
tion operator between the dressed vibrational motion of
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nuclei and the dressed electronic motion, and (iii) the third term, denoted as H, is the dressed elec-
tronic Hamiltonian. The normal product form of H; is
—1
Ee=7 2 Tint (M Jia ™K,y ‘

represented as
+ K Jia™ ) 5d”?,  (2.18b)
]

[(Frx + Agg ) +Page + AT — Z(Fk1+Ak1)alak+ E(Fq+ q)“;“q

2
p>

[(ka +Akp )akap+(Fpk +Apk apak]+ V4 . (2.18¢)

K__L
2

+
k,

)

In this expression, first, Fj; is the matrix element of the = where the one-electron integral denoted as A(-~I) is given as
well-known Fock operator in terms of the dressed orbital

(N _ m
motion of electron, Ajj'=7 2 a™(di;/dq™ | 3¢;/3q") , (2.20b)
Fij=h;+ % ({ij | kk ) — ik | kj)) (2.192) and the two-electron integral denoted as A,-j is given as
(2 _ 2 (2)
where the one-electron integral is given as Ajj 2 (AXij | ki) =A™k [ Kj)) (2.20c)
and the two-electron integral is given as @ ( ( N
) AP Gj iY== a™{(y; | d;/3q™ ){O¢;/3q" | ¥;
G 17y =Dl | ey [9p05(D) . (2.19¢) JETy == 2 a™ Y |89/ ) (840107 4
Second, A;; is the matrix element of the nonadiabatic cou- (2.204d)

ling operator represented b . . .
plng op P y Third, the residual electron correlation term denoted as

A=A +AP, (2.20a) V4 is given as
J

Vi=t 3 (pk |ql)+AP(pk |gl)ajalalaf— 3 ((pk |I') + A2 pk | II'))afaala,

p)qvkl pl,k,]' )
+ 3 (pk |qq’Y+Apk |gg'agaala,++ 3 ((K'k |I'1)+AP(k'k |I'1))ajajaa;
P9,k q' kLK I'
— 3 (pq |Ik)+A{pq |lk)—{pk |lg)—A?{pk llq))a,fa,fa,aq
pLkgq
+3 3 ((PP']‘I‘I')—!—A(Z)(PP'IQQ'))apTaqTaq:apr— > ((kk']lq)+Am(kk'[lq))a;r/akalaq
pap'q kLk',q
S (pp'llg)+APpp' |lg))ajaya,a++ 3 ((kp |lg)+Akp |Ig))araia,a, . 2.21)
p.Lp'sq k.Lp,q

T
It should be noted that the orbital motion of the elec- where V7% is given in Eq. (2.21). We shall use the dressed
tron is dressed instantaneously and is determined by the electron orbitals in the following development of theory.

dynamic Fock equation given as The dressed electronic Hamiltonian (2.23) has the char-
acter that the orbital motion of electron is dressed by the
fij=¢&:8; , (2.22a)  vibronic interaction. Furthermore the vibronic interaction
should alter the nature of the electron correlation signifi-
where cantly. This point is important for interelectron attrac-
f=F+A. (2.22b)  tion as will be shown in Sec. III.
The ¢; is the energy of the dressed electron orbital. The III. INSTANTANEOUS INTERELECTRON
variational theory of the dynamic Fock equation has also ATTRACTION
been developed.!! Using the dressed orbital motion of
electron, the dressed electronic Hamiltonian (2.18¢) is re- A. Spin-flip mechanism
duced to ) ) o
ok ¥ t N The most important property of the nonadiabatic vib-
H=E;— 3 eraxap+ 3, Epapa,+Vy, (2.23a) ronic interaction is the primordial “spin-flip” mechanism
ko 4 of the electron scattering processes.'> Indeed, the usual
=33 (ex+hu+AL) , (2.23b)  two-electron Coulombic repulsion integral (2.19¢) vanishes
k if the spin functions of the ij pair (or i’j’ pair) are dif-
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ferent from each other. On the other hand, the newly
found nonadiabatic two-electron integral (2.20d) vanishes
if the spin functions of the ij’ pair (or i’j pair) are dif-
ferent from each other. This kind of spin-flip mechanism
is very characteristic of the vibronic interaction.’?> The
spin-flip mechanism plays an important role for the non-
adiabatic interelectron attraction as will be shown in Sec.
III B.

B. Interelectron attraction

The novel feature of the newly found nonadiabatic vib-
ronic interaction is most apparent when we consider
Cooper pairs of electrons. Before proceeding further, we
shall briefly review Anderson’s generalization of the
Cooper pair.’. Cooper considered the time-reversal elec-
tron pair ¥y, and ¥_gp, that is, an electron with crystal
momentum k and up spin, and another electron with op—l

({poko |pa’ka’) +A*{poko |pa’ko’) )a;gaggla;g'a;:rg +({poko’ |pa’ko) +A?(poko’ |po'ko) )a;,,a;ala;zgakar
={(poko |po’ko’ )a}aa;a‘a,fara;a +A%poko’ |pa’ko )agaag(,va,zaaka,

=((poko|po'ka') —AP{poka’|po'kc) )a;,,a;o:a;,,ra;a .

posite crystal momentum —k and down spin. Anderson
generalized this to the time-reversal pair for a dirty super-
conductor where, because of the loss of translational sym-
metry, the crystal momentum is no longer a good quan-
tum number.!*?° The Anderson pair is nothing but a pair
of electrons with up spin and down spin and with the
same spatial orbital motion. This generalization is quite
suitable for discussing the present problem. Indeed, since
we treat a large but finite molecular system (or molecular
aggregate), however ordered it may be, it is finite and has
no translational symmetry globally; thus the crystal
momentum is no longer a good quantum number.

It should be noted that V7 given by Eq. (2.21) contains
the interaction of Anderson pairs. Then, the spin-flip
mechanism described in Sec. IIIA plays an important
role. For example, based on an analogy with particle-
hole-type Anderson pairs, we shall prove the vibronic at-
traction due to the spin-flip mechanism as follows:

+
"

(3.1)

In this and following expressions, the spin variables 0,0’ are explicitly shown in addition to the spatial parts of the orbi-
tal indices. The key manipulation of the spin-flip mechanism proceeds as follows: (i) from the first line to the second
line we use the selection rule of spin variable, and (ii) from the second line to the third line we use the anticommutation
relationship. .

There are altogether three types of Anderson pairs. The characteristic spin-flip mechanism works equally for these

pairs: (i) Anderson pairs of particle-hole type,

% 2 E ( (pk |pk > —A(2)<pk |pk > )a;aa;a'alro'al'cro + % 2 2 ( <kp | kp > —A(2)<kp I kp ) )akaako’apa'apa s
o,0' k,p

0,0’ pk

(ii) Anderson pairs of particle-particle type,

T3 3 (pa |pa)—APpq | pg))a),a)ya,0a,, ,

0’,0" Pq
(3.3)
and (iii) Anderson pairs of hole-hole type,
T3 (kI | kIY — APk | Kl Y)ag a0 paipar, -
0,0 kil
(3.4)

In these and following expressions, the spin variables o,0’
are omitted in the matrix elements for the sake of simpli-
city. Clearly, the interelectron attraction is guaranteed by
the positive definiteness of the vibronic interaction,

A(Z)(ij ll]> ,
= 3 a™(y; | 3f /3q™ | ¥;)

X | 3f /3g™ | ;) /(&; —¢;)* (3.52)

=3 | |3f/3Q, | ;) | */(e;—€;)*20,  (3.5b)

where Q, denotes the nth normal vibrational coordinate.

(3.2)

r
Clearly, we obtain the selection rule for a normal mode

to participate in the vibronic interaction. If the matrix

element of the numerator of Eq. (3.5b) does not vanish

(¢; |8f /380, | ¥;)#40, (3.6a)

then the nth normal mode induces the vibronic attraction.
Moreover, the orbital energy gap should be infinitely

small in order for the vibronic interaction to become sig-

nificant,

I €; *—Sj I —0. (3.6b)

Thus, we have proved the existence of the interelectron
attraction induced by the nonadiabatic vibronic interac-
tion. For the special case of a Cooper pair of supercon-
ducting electrons, this kind of novel spin-specific interac-
tion has been demonstrated.'?> It should be noted that the
interaction is purely instantaneous. In other words, no fi-
nite displacements of nuclei are necessary. This dramatic
character has not been found in the standard theory of
electron-phonon coupling.!® We summarize this in Table
I.

Moreover, it should be noted that as the “size” of the
system becomes large, the orbital energy gap |&; —¢; |
will become small and then the newly found vibronic in-
teraction will become large. There may exist some critical
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TABLE 1. Difference of interactions. Conventional
electron-phonon coupling in condensed matter physics utilizes
delayed interaction between nuclear vibration and electron,
while the nonadiabatic vibronic interaction is instantaneous in
nature.

Interaction At equilibrium point Q@ =0
delayed absent
instantaneous present

size over which the vibronic interaction becomes so large
that it overwhelms.the Coulombic repulsion. Then the
net attractive force is brought about. This point will be
further examined in Sec. IV.

IV. MODIFIED INTERELECTRON ATTRACTION

In this section we shall study the effect of virtual
electron-vibration scattering processes. This will modify
the “exact” vibronic interaction obtained in Sec. III. We
shall adopt the local normal coordinate approximation of
nuclear vibration. This is valid in the vicinity of the
equilibrium configuration of nuclear system.

In order to introduce the equilibrium nuclear configura-
tion, we should provide the potential energy surface. For
a preliminary treatment, we shall use the approximate po-
tential energy surface given by the electronic state of the
reference Slater determinant.

Let us use the dressed electronic Hamiltonian operator
(2.23) on the reference state (2.8). Then we obtain

H | @) =E;| ®o) +v} | Do) ,

v§=1 3 (pk|ql)+APpk |ql))ajalala] ,
p.k.al

(4.1a)
(4.1b)

where E. is the electronic energy given by Eq. (2.23b),
and where v} is the particle-hole-type interelectron in-
teraction given by the first term of Eq. (2.21). Then, the
potential energy surface U is given by

U =E:+ Vnucl . (4.2)

Using the harmonic approximation of the potential energy
surface, :

U=Us+3 30507, 4.3)
n

with the normal coordinate Q, and the vibrational fre-
quency @,, the vibronic Hamiltonian (2.18) is reduced to

H=Us+ 3 0,(bb,++)+hyp +05 , (4.42)
n
hyr= 3 Cniv/@, /2(b) —b,) , (4.4b)
n
Co=—i 3 (¢, | 3. /30, )ajafl , (4.4c)
k.p

where &, is the particle-hole-type nonadiabatic interac-
tion energy given by operating H.,, of Eq, (2.18b) onto
the reference state. In this expression, b, and b, are
creation and annihilation operator of the vibrational bo-
son of the nth normal mode, respectively, satisfying

[bm ’bl]:Smn . (4.4d)

Since we are focusing on Anderson pairs, we shall ex-
tract the corresponding portions of operators, denoted by
A in parentheses. For example, v} contains the interac-
tion of the Anderson pair which will be denoted as v4(A4),

vid)=53 3 (pk |pk)
o,0' pk
'_A(Z)(Pk ka>)a;0a;a'al;ra’al;ra >

(4.5)

correspondingly we obtain H (A4) and A, (A4).
Using the standard canonical transformation of H (A4),

H(A)=e SH(A)eS, (4.6a)

in which only the virtual scattering process with one vi-
brational quantum (phonon) is involved,?! the action of
H(A) on the vibrational ground state is reduced to

H(A)=Uo+7 3 0, +05(A) + 7 [hnel(4),5]

+ O([Aype (AT, (4.6b)

where
%[hvbr(A)’S]
=133 3 (4, 18/3Q, | ) |?

n o,0' pk
2
X wna;aa;a‘a;a’a;a
X {(81,—sk)2[(81,—sk)2—cof,]}“1 .
(4.6¢)

Neglecting higher-order contributions of %, (4) in H(A),
we obtain

HA=Us+3 S o,
n

+5 3 3 ({pk | pk ) —A P {pk | pk))

o,0' pk

Xa;aa;o’alzo”alta » (4.7a)
where A @ (pk |pk) denotes the modified vibronic in-
teraction,

A@(pk |pk)
= 2 I <¢p |af/aQ,, |'¢’k> |2/[(€p—£k)2—caf,] .

(4.7vb)

The exact vibronic interaction given by Eq. (3.5b) has
denominator (g, —gg )2 in this case, and the modified one
given by Eq. (4.7b) has the denominator (g, —gg 2 — 3.
The modification is then the inclusion of the term —w? in
the denominator. It follows that the virtual excitation
process may bring about a large attractive interaction if (i)
the matrix element of the numerator of the vibronic in-
teraction does not vanish,
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(¢p | af/aQn l '/’k )750 ’ (4.8a)

and (ii) the infinitesimal limit of the orbital energy gap
has the lower bound

|&p—€x | >0, . (4.8b)

The first criterion is the same as Eq. (3.6a), but the second
criterion differs from Eq. (3.6b). Since we allow now the
exchange of energy with nuclear vibration, the orbital en-
ergy difference should have the lower bound. The lower
bound is nothing but one quantum of the vibrational (pho-
non) energy. This new criterion is represented by Eq.
(4.8b). These criterions will be examined in Sec. V.

The analog of Eq. (4.7b) is found in the standard text-
book approach of electron-phonon coupling.?"*? But it
should be noted that the “sign” of the vibronic interaction
with respect to the Coulombic repulsion is — as shown in
Eq. (4.7a) and is not + as in the well-known attraction
model governed by the conventional electron-phonon cou-
pling.?""?> This is novel to the present instantaneous in-
teraction as compared to the conventional delayed interac-
tion. This may shed new light on the vibronic interaction
in the vicinity of the Fermi level, which may even lead to
superconductivity. In this sense, this is a hidden vibronic
mechanism of superconductivity. The theory will be elu-
cidated in Sec. V using an illustrative analytical model.

V. EXAMPLE

The theory thus developed is general and therefore is
applicable to any type of materials of any size. In this
section, we shall examine an illustrative model system in
order to elucidate the novel character of the theory.
Hence, we shall examine a simple one-dimensional model
polymer and reveal the novel asymptotic properties of the
modified vibronic interaction A ®){pk |pk) given by Eq.
(4.7b). The lattice points are N (even) with lattice spacing
[/ and the number of electrons is N.

The simple Huckel treatment gives the energy spectra
approximately,'3

g;=a+2Bcos[im/(N+1)], i=12,...,N (5.1)
o, =2wosin[n7/2(N +1)], n=1,2,...,N. (52)

In this expression « is the Coulomb integral, 3 is the reso-
nance integral, and wg is the local vibrational frequency.
We assume that f3 is a smooth function of ./,

B=B() . (5.3)

The wave function of the electron and the vector of vibra-
tion are given as follows:

ci =[2/(N +1)]"2sin(kp;), k=1,2,...,N (5.4

af=[2/(N +1)]"2sin(kp,), k=1,2,...,N (5.5
where

=Am/(N +1). (5.6)

In these expressions cj denotes the amplitude of the wave
function of the ith electronic state at the kth site, and af
denotes the amplitude of the lattice vibration of the nth

normal vibrational mode at the kth site, respectively.
The selection rule (4.8a) of the vibronic interaction is
represented as

p=k+n. : (5.7

For finite vibrational quantum number n the electronic
orbital energy levels p and k remain in the vicinity of the
Fermi level as N becomes infinitely large. Then the con-
dition (4.8b) is clearly satisfied. Indeed, first, the square
of the orbital energy gap becomes infinitely small in in-
verse proportion to N2 as N— o,

(ep — &) —4n>m*B2 /N . (5.8)

Second, by virtue of the selection rule (5.7), the vibrational
mode which couples the electron orbitals 1, and ¥ is
determined umquely, and the asymptotic behav1or of the
vibrational energy is given by

02 —>n’r?wl/N? . (5.9)

Third, therefore, one can prove that the condition (4.8b) is
clearly satisfied,

(ep —&x )2 —h —4n 2w (B —w}/4)/N?>0, (5.10a)

because one can usually assume for mobile electrons the
relationship

[ B| >w0/2 (5.10b)

(this relationship will be examined later). At the same
time, the numerator of A ‘®{pk | pk ) is also positive de-
finite and the asymptotic behavior as N — « is given by

| (8, |8 /30, | Ui ) |>—8|9B/3I |2/N . (5.11)

Note that this diminishes in inverse proportion to N as
N— w0, and hence will be larger than the denominator
given by Eq. (5.10a). It follows that A ?(pk |pk) tends
to infinity in proportion to N as N— oo,

AD(pk | pk)—2N |3B/3l |2 /n*mXB*—wi/4), (5.12)

where we used Egs. (4.7b), (5.7), (5.10), and (5.11). On the
other hand, the Coulombic repulsion

(pk |pk)=y/(N+1),

where ¥ denotes the two-electron Coulombic repulsion in-
tegral, tends to zero in inverse proportion to N as N — oo,
independent of p and k. Therefore, as N— «, the vib-
ronic attraction overwhelms the Coulombic repulsion in
the dressed interelectron interaction given by Eq. (4.7a),

(pk | pk)—A®(pk | pk)
—y/N—2N |38/ | 2/n* (B —wi/4) .

(5.13)

(5.14)

In other words, there exists a critical number N* such
that if N > N* the dressed interelectron interaction itself
becomes attractive,

(pk |pk)—A®{pk |pk) <0 if N >N*. (5.15)

This predicts a hidden pairing mechanism which may
even lead to superconductivity if the Peierls instabiliy is
suppressed, for example, under the condition established
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by Horovitz and Birnboim.!
It should be noted that, in the strong localization re-
gime, the very reverse of Eq. (5.10b) occurs,

|B| <<wo/2,

and then the vibronic attraction disappears. In this re-
gime superconductivity originating from the vibronic cou-
pling may not be likely to occur. This requires further
study, particularly in connection with Anderson localiza-
tion problems.??

Thus, we can estimate (i) the critical size of, and (ii) the
degree of “localization” in, the one-dimensional polymer
whose vibronically dressed interelectron interaction be-
comes attractive in the molecular elementary excitation
processes.

(5.16)

VI. CONCLUDING REMARKS

In this paper, the significance of vibronically induced
interelectron attraction is demonstrated. The instantane-
ous nature of the vibronic interaction is emphasized as
compared with the conventional delayed electron-phonon
coupling model. Since the “spin-flip” mechanism of

non-Born-Oppenheimer scattering processes plays an im-
portant role, application of this theory to novel types of
superconductivity in heavy-fermion superconductors' will
be quite interesting, where cooperative action of the vib-
ronic interaction with strong spin-orbit interaction will
play an important role. This direction of research is
under consideration. Moreover, it should be noted that
the formalism of this theory is exact and hence the appli-
cability is universal. This awaits further investigation in
future.
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