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K. A. Dawson*
Department of Chemistry, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301

and Laboratory ofAtomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501
(Received 15 August 1986)

A lattice model which has recently been developed to aid the study of microemulsions is briefly
reviewed. The local-density mean-field equations are presented and the interfacial profiles and sur-
face tensions are computed using a variational method. These density profiles describing the inter-
face between oil rich and water rich phases, both of which are isotropic, are structured and non-
monotonic. Some comments about a perturbation expansion which confirms these conclusions are
made. It is possible to compute the surface tension to high numerical accuracy using the variational
procedure. This permits discussion of the question of wetting of the oil-water interface by a mi-
croemulsion phase. The interfacial tensions along the oil-water-microemulsion coexistence line are
ultra-low. The oil-water interface is not wet by microemulsion throughout most of the bicontinuous
regime.

I. INTRODUCTION

Recently Widom has described a lattice model of mi-
croemulsions. The reader who is interested in details
should consult the original paper. ' The purpose of the
present article is limited to discussing the behavior of sur-
factant molecules near interfaces within the context of the
lattice model. Later papers will deal with global aspects
of the phase diagram, critical points, critical end points,
and considerations beyond the mean-field theory, so no at-
tempt will be made to report these results in this account.

The origins of the lattice model may be understood in
the following way. The three components, oil, water, and
amphiphile, are conceived to have only two types of func-
tional group. Hydrophilic (water-like) and hydrophobic
(oil-like) residues are labeled A and B, respectively. The
three species may then be named A-A, A-B, B-Baccord-
ing to their functionality.

In calculating the partition function for this system,
one should count all possible configurations of these mole-
cules. However, it is clear that contributions where A and
B ends of different molecules are close together are quite
small. Now imagine dividing configuration space into
cubes of side a. We make the following approximation.
Only arrangements where each cube is filled with either
all A or B ends are permitted. Furthermore, the interac-
tions are viewed as constant inside each cube and it is now
possible to assign a density of A or B heads to each such
portion of space. A lattice with vertices lying at the
centers of the cubes defines the lattice gas (p„=1,0) or
equivalent spin model (o„=+1)in the following sense. If
a cube is filled with A or B heads, then the spin variable
is set to +1 or —1. When the various interaction terms
are included and the partition function calculated, it is
possible to show that the model is equivalent to an Ising
system with one-spin, nearest-neighbor (NN), next-
nearest-neighbor (NNN) —linear and diagonal —and
three-spin couplings. The coupling constants are 8, J,

TABLE I. Translation of Ising spin to microemulsion vari-
ables.

ZBB

ZAA

1/2
ZAB

(ZAAZAB )

' 1/2

Z;J is the activity of ij species, q =K/kT, j = J/kO, h =H/kO,
rn =M/kO, I =L/kO. The energies of interaction of two 3 or
B ends of different amphiphiles are K(1—A, ) and K(1+X).
The temperatures of the solution and Ising models are T and O,

respectively.

Ising model

j
h

Microemulsion model

—1ng+ (5/2)q
3 1ng+ (15/4)kq
—4q

l—4A,q

M, 2M, and L, respectively. A transcription of these to
solution variables is given in Table I. Note that for
l =h =0 (the symmetrical regime) there are equal
amounts of oil and water in the mixture. This is expected
to correspond to part of the bicontinuous region of the
microemulsion phase diagram. Most of the following re-
marks refer to this two-parameter cut of the phase dia-
gram.

It is now possible to construct a mean-field theory of
this model based on the local density of A heads (p„) at
each lattice site n=(x,y, z). The spin variables are related
to site density by p„= —,(S„+1)where S„=(o„)0.The
notation (x)0 means that the average of x is calculated
using the mean-field Hamiltonian. The mean-field equa-
tions for l =h =0 are

[—md. „—(j + 12m )b,„—6(j + 5m)]S„+tanh 'S„=O,
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where b,~ is the three-dimensional lattice difference opera-
tor and b, =(b, ) . For certain portions of the (j,m)
plane the symmetry of solutions is planar and Eqs. (1.1)
become [see Figs. 1(a) and l(b)]

[—mA, —(j+12m)b,,—6(j+5m)]M, +tanh 'M, =O,

(1.2)

which are equivalent to those of the axial NNN Ising
(ANNNI) model. ' The general theory will be developed
elsewhere. However, if we confine ourselves to the region
where —m /( j+8m) & 0, I/( j+3m) & 0, the phase dia-
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grams of the two models are the same. The ferromagnetic
(+,—) phases occupy a two-phase region bounded largely
by a second-order line (to the paramagnetic phase) and a
first-order line dividing it from a modulated phase of
period six ((3) phase in the notation of Ref. 2). In solu-
tion language the ferromagnetic phases are bulk oil or wa-
ter, with some surfactant solublizing the other material.
The modulated phase is one where there are three con-
secutive layers (comprised of basic cubes) largely filled
with A heads, and then three with B heads. The surfac-
tant molecules are mostly confined to the regions where
layers of oil and water meet.

The remainder of this paper is divided into three sec-
tions. In Sec. II we examine the interfacial structure and
tension between the oil rich and water rich phases. In Sec.
III we give an analytical description of these interfaces.
In Sec. IV we discuss the problem of wetting of the oil-
water interface by the microemulsion phase. Results are
sometimes presented in terms of the traditional ANNNI
model variables Jo, Ji, J2 [Jo/kT =j +3m and
—Jz /J i

———m /( j+8m)]. This should facilitate compar-
isons with the results of those who have studied the aniso-
tropic magnetic model.

II. INTERFACIAL STRUCTURE AND TENSION
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Equations (1.2) will first be written in terms of p„ the
density of A ends at lattice plane z. Remember that,
strictly speaking, the density within each cube is constant
and given by the density at lattice index n. The lattice
plane z is formed by the centers of an infinite two-
dimensional array of cubes with equal density. Thus, we
seek density profiles [p, J which minimize the free energy
(M, =2p, —1),

F = g [—3(j+5rn)(2p, —1)
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FIG. l. (a) The phase diagram for part of the symmetrical
(l, h =0) lattice model. The plot is in conventional axial NNN
Ising (ANNNI) model variables [1/(j+3m) vs —m/(j+Sn)].
Only the important phase boundaries are drawn. The curve RT
is the three-phase (a:y:period-6) coexistence line. Along MT it
is the metastagle extension of RM. The curve ML is the three-
phase (a:y:modulated phases) coexistence line where all three
phases are global minima of the free energy. The curve RS is
the locus where o&y cT(0) is zero. To the left of it o~y is posi-
tive. (b) The half-plane (j &0) phase diagram for the symmetri-
cal (l, h =0) lattice model. In this case m has been plotted
against j. Only those phase boundaries relevant to the surface
tension calculations are drawn. The phase diagram for j &0
may be constructed from the positive half-plane by a simple
symmetry operation.

{J'+ 12m)(2)o—,—1)~,)o, —m (2~, —1)~ p

+p, lnp, +(1—p, )ln(1 —p, )], (2.1)

and satisfy boundary conditions p, -p as z~oo and

p, -(1—p ) as z~ —ao, corresponding to bulk oil rich
and water rich phases. The numerical results (examples
of which are presented in Figs. 2—5) are essentially exact
within mean-field theory. This was achieved by using
each p, as an independent variational parameter and in-
creasing the length (in the direction oi z) until there was
no change in the free energy per spin, typically
0 (10 ' kQ. Initial studies also addressed the question of
avoiding metastable profiles connecting p and (1—p ).
This was done in a number of ways (including a "heat
bath" technique) but experience and the analysis of Sec.
III soon permitted the confident choice of initial condi-
tions. One of the most striking features of the density
profiles is that they are no longer monotonic (except for
the case of m =0 which corresponds to the nearest-
neighbor Ising model). Although a simple analysis (see
Sec. III) shows that this must be so, the physical origins
of the effect are a little more subtle. By examining the
distribution of surfactant molecules across the interfacial
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FIG. 2. Density of A functions at lattice plane z for three
sets of parameter values. These are 1/(j+3m)=3. 844 and
—m/(j +8m)=0. 02 (Fig. 2), 0.08 (Fig. 3), 0.48 (Fig. 4). They
lie along a horizontal line in Fig. 1(a). The insets have been con-
structed using Eq. (A3) and represent the density of AB bonds
across lattice planes z and z+ 1.

FIG. 4. Density of A functions at lattice plane z for three
sets of parameter values. These are 1/(j+3m)=3. 844 and
—m/(j+8m)=0. 02 (Fig. 2), 0.08 (Fig. 3), 0.48 (Fig. 4). They
lie along a horizontal line in Fig. 1(a). The insets have been con-
structed using Eq. (A3) and represent the density of AB bonds
across lattice planes z and z+1.

region, one can draw the following conclusions. Most
surfactant molecules are found at the interface where they
cause a great reduction of surface tension. Also, because
of the tendency of hydrophobic groups to repel hydrophil-
ic groups, amphiphiles tend to cause aggregation of ma-
terial at either side of the interface. This results in struc-
ture in the interface to a distance of the bulk correlation
length (g). Figure 6 shows that this is an important effect
in the following sense. The surface tension is calculated
by subtracting the bulk free energy from the free-energy
when an interface is present. This latter contribution is
computed by summing the free-energy density, an exam-
ple of which is presented in Fig. 6. Notice that ultra-low
surface tensions arise as a result of subtle free-energy can-

1.0

cellations across the interface. In the context of the lattice
model, this is a direct consequence of the interfacial densi-
ty oscillations. Thus, a monolayer of surfactant is not in
itself sufficient to ensure that the surface tensions found
in this model are in agreement with those observed. If the
model has captured the essential features of microemul-
sions and surfactant solutions, then one would expect, in
experiments, to observe structure reminiscent of the
nearest (metastable) bulk phase at the interface between
homogeneous phases.

The qualitative features of the surface tension
throughout the two-phase region are evident from Figs. 7
and 8. In every instance the surface tension is given in
units of k8/a unless otherwise stated. The quantitative
results for m =0 agree with earlier calculations by Wi-
dom on the nearest-neighbor Ising model. In Fig. 8 we
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FIG. 3. Density of A functions at lattice plane z for three
sets of parameter values. These are 1/(j+3m)=3. 844 and
—m/(j +8m) =0.02 (Fig. 2), 0.08 (Fig. 3), 0.48 (Fig. 4). They
lie along a horizontal line in Fig. 1(a). The insets have been con-
structed using Eq. (A3) and represent the density of AB bonds
across lattice planes z and z+ 1.
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FIG. 5. Density of A functions at lattice plane z for the a-P
(period-6) interface. This calculation is for a point on the three-
phase coexistence line RM and just beneath M in Fig. 1(a).
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FIG. 6. Free-energy density at lattice plane z. The surface
tension is obtained from the integral minus the bulk free energy.

show the surface tension plotted against —m/(j+8m)
for a number of different values of 1/(j+3m), i.e., along
horizontal lines in Fig. 1(a). Note that results have been
presented even for the region where bulk oil rich and wa-
ter rich phases are metastable with respect to micoremul-
sion. To the left of the line RS in Fig. 1(a) the surface
tension is positive. This line is the locus of points where
tr=0. To the right of it, the bulk states remain metastable
minima, but this interfacial profile is no longer stable.
Thus, the interface (in the absence of gravity) has infinite
response to some long-wavelength transverse fluctuation:
The interface would crumple. Note that at low (Ising)
temperature the line of stability is close to the line
j+10m =0. At zero temperature these two lines meet.
Finally, it is clear that when the interface is unstable there
are two possibilities: Either the system degenerates to the
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FIG. 7. Norinalized surface tension [o /2( J+ 10M) ] vs
1/(j+3m ). Upper curve, simple Ising model ( m =0); lower
curve, j+12m =0. This latter set of parameter values corre-
sponds to a vertical line [in Fig. 1(a)] which intersects the
Lifshitz point I..

FIG. 8 Surface tension of a-y interface (fixed) 1/(j +3m) vs
—m/(j +8m). At m =0 the curves (from the top) correspond
to 1/(j +3m)=1.0, 1.5,2.0,2.5,2.844, 3.0, 3.5. Note that the
density-profile plots of Figs. 2—4 were calculated along the line
1/(j +3m) =2.844.

modulated phase that is the global minimum, or it can
find another local minimal free-energy interface which is
stable with respect to transverse oscillations. This point
will be elaborated elsewhere.

III. ANALYTICAL TREATMENT
OF INTERFACES

6(j+5m)Mp ——tanh 'Mp . (3.1)

The appearance of nonmonotonic density profiles due
to surface aggregation may be a little surprising if one is
accustomed to normal liquid-gas interfaces. It is thus
worth providing some analytical insight into the novel
features presented by a fourth-order gradient term. We
present the following material in the spin representation
for simplicity. One should bear in mind that the density
of A heads in layer z is simply given by p, = —,(M, +1),
while the density of B heads is just (1—p, ).

As outlined below Eq. (2.1), we wish to solve the Euler
equations subject to the conditions M, —+Mo which
represent bulk oil- and water-phase asymptotes. However,
both theoretical arguments and experience of computa-
tions such as those of Sec. II indicate that the interfacial
region is only of dimension 2g, where g' is the bulk corre-
lation length. Furthermore, even within the interfacial re-
gion, the deviation of the density profile from the left or
right asymptotes is fairly small. Thus, rather than ex-
panding in temperature series we choose to use the bulk
phase densities as the zeroth approximation in an iterative
solution (rather like the Born series of scattering theory).

Imagine that the lattice planes are situated at half-odd
integer values of z. To the right or left of the origin and
beginning at z = —, or ——, we assign the density Mo or
—Mp (see Fig. 4). The actual density profile deviates
from +Mp by the (small) value +f, . The zeroth-order ap-
proximation to M, of Eq. (1.2) then satisfies
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The first-order correction then follows by linearizing
around this uniform density. Thus

L,f,"'=[ mb—,, (j +—12m)b, ,' ' —6(j+5m)

+(1—Mo) ']f,"'=0 . (3.2)

—2(j+Sm) cosq —2m cos(2q) . (3.4)

The solutions of (3.2) correspond to plane waves with mo-
menta +q, +q* such that Xq diverges. The roots of (3.4)
are

1
cosq = — (j+Sm)

4m

+ [4j +86m +16m(1 —Mo) ']'
8m

(3.5)

providing m is nonzero. These roots are, in general, com-
plex. If q =P+ia, and (u, u) are the real and imaginary
parts of the right-hand side of (3.5),

cosha cosP=u,

sinha sinP=u .

To this order the density profile is given by

Mo —Ae ™cos(Pz+P), z & 0
—Ma+Ac cos(Pz+P), z &0

(3.6)

where A and P are undetermined. These constants are
fixed by consideration of quadratic terms in (3.2).

This sort of expansion has limited use in discussing
wetting and other delicate questions. However, it em-
phasizes the point that the qualitative features of the
mean-field interfacial profile are determined by the four
complex divergences of the susceptibility. Naturally, for
the simple nearest-neighbor Ising model, one has m =0
and (3.4) has only real roots. This is reflected in the
monotonic density profile of Fig. 2.

IV. THE QUESTION OF WETTING

From the phase diagram it is clear that there is a three-
phase coexistence line which becomes asymptotically close
to j +10m =0. This is the locus (RT) where oil rich, wa-
ter rich, and modulated ((3) ) phases have the same free
energy, and each phase satisfies the Euler equations (1.2).
These conditions have been used to locate the first-order
line to high numerical accuracy.

It is now of interest to compare the surface tensions be-
tween oil rich and water rich phases (o &) and either of

The Crreen function of this operator may be defined in
terms of the inverse susceptibility of the bulk phases with
respect to small perturbations. Thus

1 BF (3.3)
2 aM, aM, .

which may be diagonalized in a basis of plane waves. The
Fourier transform ( —ir, m.] of the Green function is just
the inverse (momentum-dependent) susceptibility,

Xq
' ——Kq

' —— 4(j +—3m)+(I —Mo)

these with the microemulsion phase (o ~
——err@) .When

(4.1)
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FICx. 9. Surface tension vs 1/(j+3m) along three-phase
coexistence line RM. To the right of the point M (along MT),
a, y, and period-6 phases are in metastable coexistence. The
wetting transition point (where the period-6 phase wets the in-
terface between a and y phases) is just beneath M (along MT).
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the contact angle becomes zero and the P phase is said to
wet the (a:y) interface.

This problem was investigated using mean-field theory
in the following way. Imagine interposing I complete cy-
cles of the period-6 phase between bulk a and y phases.
We label this configuration (a:P':y) where l =0 corre-
sponds to the normal (a:y) interface. This choice is made
because very unfavorable free energies result from using
fractions of half cycles of the P phase. It is now possible
to compute the surface tension [cr(l)] as a function of l
along the three-phase line. When the global minimum is
I =0 or oo the (a:y) interface is wholly nonwet or com-
pletely wet. In this instance the surface tension at fixed j
and m increases monotonically with increasing l. Beyond
1=3, cr r(l) is essentially 2o.~p. The relevant results of
these calculations when P is the period-6 phase are
presented in Figs. 9—11. The one-parameter family of
o.(l =0)=cr r along the three-phase coexistence line is
plotted in Fig. 9. If o(/ =1,2, . . . , ao ) data were plotted
on this graph, there would be no discernible deviation
from the o.

y data. Hence in Fig. 10 an expanded scale
plot of cr r (symbols 0) and 2m~& (symbols 0) is present-
ed Since., in this instance, cr Ii crier, th——e crossing of these
two line yields the wetting transition. Note carefully that
this occurs in the part of the phase diagram where all of
a, y, P (period-6 phase) are metastable. The three-phase
coexistence line is, at this point, the metastable extension
of the three-phase line at lower temperature. Wetting
would thus occur only if one could quench all three
phases to the point ( W) j„=0.363 47 and
m = —0.03491. The symbol j denotes that value of
the coupling parameter at which the (3) phase wets the
(a:y ) interface. The point marked M (j =0.366,
m = —0.035) on Figs. 1(a) and 9 marks the upper limit
where the three coexisting phases a, P (period 6), and y
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FIG. 10. Surface tensions of a-y (symbol ~) and a-P (symbol
0 ) interfaces vs 1/(j +3m). Wetting transition at intersection.

are global minima (but see Appendix B where the location
of M is discussed). It is thus clear that along the line
RM, the interface is never wet by the P (period-6) phase.
One final check on this conclusion is possible. Thus at
the values of the coupling constants (j,m ) the
period-7 ((34) ) phase is found to have a lower free ener-

gy than that of the period-6 phase. Clearly, then, the
point M lies before the point 8'on the line RT.

There remains the following interesting but open ques-
tion. Does one of the longer-period modulated phases
(which replace the period-6 solution in the three-phase
equilibriuin along Ml. wet the (a:y) interface? Until one
has fully understood the phase diagram above the point
M, it is not possible to resolve this question. For example,
it has been suggested that a branching process involving
combinations of three and four consecutive spins occurs.
Based on our investigations it seems likely that one of
these modulated phases does eventually wet the oil-water
interface. Also, in the conventional ANNNI model one
has more freedom in coupling-parameter space ( Jo,J&,Jz
rather than j,m). It is thus probable that the (metastable)

wetting transition by the (3) phase can be brought into
the region where the three coexisting phases are global
minima. The resolution of the question is probably not
important to our understanding of the microemulsion
model. At the point M the a and P (period-6) phases con-
tain 33.5% and 37.6% of surfactant molecules. These
concentrations are too large to be relevant to what are
usually thought of as microemulsions.

Finally, note that at zero Ising (and solution) tempera-
ture o.~z and 2o.~p become equal. Although this is not
really a wetting transition, the trend to smaller contact an-
gles at low temperature might be reflected in experimental
data.

V. CONCLUSIONS

The purpose of this research was to extend our under-
standing of the lattice model of microemulsions. The re-
sults of the study are encouraging. Thus, a model with
prescribed microscopic interactions has been able to repro-
duce extremely low bulk interfacial tensions along the
three-phase line. In fact [see comments beneath equation
(A7)] even the quantitative results seem reasonable. In ad-
dition, it is predicted that the oil rich, water rich interface
is not wet by microemulsion in the symmetrical region of
the phase diagram. This is in accord with experimental
surface tension data and direct visual observation. It is
worth noting that a transition to wetting has been ob-
served in some systems, but not in others. The transi-
tion, when it occurs, does so in the unsymmetrical regime
(I,h nonzero in lattice model language). It will be in-
teresting to compare the predictions of the lattice model
with these results. Some of the detailed findings of this
research [density profiles, the presence of the line RS in
Fig. 1(a), etc.] are, at the moment, of more theoretical
than experimental interest.

The results of more extensive studies of surface tension,
critical points, and critical end points of the lattice model
will be reported in the near future. Detailed phase dia-
grams (for two- and three-dimensional lattices) calculated
by mean-field and simulation methods will also be pub-
lished.
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FIG. 11. Surface tension of a-y interface along the three-
phase line RT vs j (left) and m (right).
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APPENDIX A

In this appendix we discuss some of the details of the
composition-profile and surface tension plots of Figs.
2—11. Recall that p„and (1—p ) are the local densities of
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where the subscripts "n+ —,
" and "a+1"are now short-

hand for n+ —,t and n+t. Within mean-field theory,
spin-spin correlation functions factor. Thus

AB
pa+1/2= 2pnpn+1+pn+1+pn . (A2)

Note that Eq. (Al) is an exact formula while (A2) is
correct only with the mean-field approximation. Equa-
tion (A2) is the generalization of an approximate formula
given by Widom. If one is studying layered states or pla-
nar interfacial profiles, Eq. (A2) becomes

AB
pz + 1/2 = pz pz + 1 +pz + I +pz (A3)

and this result has been used to construct the insets to
Figs. 2—4. Furthermore, by neglecting derivatives in a
gradient expansion of (A3), one obtains Eq. (21) of Ref. 3.

It is also possible to calculate the fraction XAB of sur-
factant molecules in any bulk state,

AB AB AB
XAB ~ (Px+(1/2)yz+Pxy+(1/2)z+Pxyz+1/2) ~ (A4)

for layered phases with period p (symbolized n, n =p/2)
and modulation in the z direction,

1
XAa = g ( 4Pz 2Pz+1Pz+5Pz+Pz+1) .

3~ z=i

If the period-6 state has site densities X, Y,X,
(1—X),(1—Y), (1—X) and the a, y phases have density
p„and (1—p ), respectively,

Xwa =2p (1—p ),
XAi) = —,( —6X'+SX—4Y'+6 Y 4XY+1) .

(A6)

(A7)

At zero Ising (and solution) temperature p =0 and
X= Y=0. Hence, the fraction of surfactant molecules in
the a or y phase is zero, while the period-6 (microemul-
sion) phase is comprised of 11.1% surfactant, 44.45% oil,
and 44.45% water. At the point 1/(j+3m) =1.344,
—m/(j+ 8m) =0.499, the (a:y) surface tension is

A- and 8-type functions within the cube surrounding lat-
tice site n. In the interfacial density plots we have plotted
p, against z. The points (p„z) have been joined by
straight lines as a guide to the eye. However, one should
keep in mind the fact that densities are constant within
each cube of side a. Also, note that the free energy of the
profile is invariant to translation by any integer.

To analyze the distribution of surfactant molecules, one
uses the idea that the A —B "bonds" lie across neighbor-
ing cubes containing different head groups. It is then pos-
sible to write the density of bonds at n + —,

' t (t is a unit

vector in the direction i, j, or k) in terms of the correla-
tion function,

AB
Pn+1/2 2 ((1 ~n~n+1)) r

typical of those observed experimentally [cr y
—2

X 10 (k8/a )]. It is interesting to note that the associ-
ated proportions of /IB molecules in the three phases (oil,
water, microemulsion) are then 0.35%, 0.35%, and
11.3%.

Regarding the units used in plotting surface tensions,
the following conventions were found to be convenient.
For horizontal cuts in the phase diagram [Fig. 1(a)] it is
possible to use (r/k9. For vertical cuts (Fig. 7) it is
preferable to normalize to the zero-temperature surface
tension. This is calculated by considering the energy of a
profile M, =+1(z+ve). Thus

0'~y

kO
~2(j+10m) as 8~0 (A8)

throughout the a:y region. The (a:y) surface tension
vanishes in the limit j+10m =0, (j+3m)-On. For
higher (Ising) temperatures the locus of vanishing surface
tension is plotted on Fig. 1(a). This is determined numeri-
cally from the data in Fig. 8.

APPENDIX B

As explained in Sec. IV, the location of the wetting
transition for the period-6 phase is straightforward. How-
ever, in deciding where the three-phase line becomes meta-
stable (M), one requires a few additional assumptions.
These are based on an asymptotic expansion around the
critical line (to be published) and appear to be reasonable.
Thus one believes that the order of stability of the modu-
lated phases near the paramagnetic, modulated-phase
boundary is preserved along the line MI . It is then likely
that the period-6 phase (in coexistence with a, y phases)
can become unstable only with respect to solutions of type
(3 4q) (see Ref. 2). It is now possible to solve Eqs. (1.2)
along the (a:(3):y) line assuming these periodicities as
initial conditions. When the free energy of one of these
becomes lower than that of the (3) phase, one has ap-
proximated the point M. This procedure was carried out
for small values of p and q. Among this trial set of solu-
tions only those of the form (3y4) (of which the first is of
period 7) have free energies that ever cross that of the a,
y, and (3) phases on the (a:(3):y) line. The p = oo limit
of these crossings occurs at j =0.366, m = —0.035
[1/(j+3m) =3.844, —m /( j+8m) =0.415] while the
(a:(3):y) wetting transition is found to occur at
j~ =0.36347, m = —0.03491 [1/(j +3m) =3.86489,
—m/(j +8m) =0.41463].

The vicinity of the point M is at present being studied
(in association with P. Balbuena) using annealed Langevin
minimizations. It will soon be possible to be more
rigorous in the description of this point of the phase dia-
gram. As outlined in Sec. IV, one cannot be definitive
about wetting by longer-period modulated phases until
this question is fully elucidated.
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