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Self-oscillations of an induced absorber (Cds) in a hybrid ring resonator
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We investigate the properties of a material with excitation-induced increase of absorption in a hy-
brid ring resonator. The material is CdS at room temperature, showing photothermal optical non-
linearities. After characterizing the nonlinear medium itself, we investigate the behavior in a short
Fabry-Perot resonator and then present experimental as well as theoretical data for this induced ab-

sorber in the ring cavity. We show experimental indications for the appearance of the Farey-tree
structure, which was predicted theoretically in a recent paper. The dependence of the oscillations on
various parameters is discussed.

INTRODUCTION

In recent years optical bistability (OB) gained a great
interest, both from a fundamental point of view and from
a more technical one. Many semiconductors were found
to show strong optica1 nonlinearities under illumination
with intense monochromatic laser light. These nonlineari-
ties can have very different origins, e.g. , the transition
from excitons to biexcitons, the formation of an electron-
hole plasma, or local heating of the sample. In CdS three
types of OB—namely, OB due to induced absorption, due
to saturable absorption, and dispersive OB—were clearly
found using ns excitation in the MWcm region. For
recent reviews see, e.g., Refs. 1—5 and the literature cited
therein. OB by saturable absorption was found at
T =300 K. In contrast to these results much longer
pulses (total length rL ——100 ms —10 s) lead to an increase
of absorption for Ace situated in the Urbach tail of the
fundamental band gap. The mechanism is the heating of
the sample resulting for CdS (E~ ~c) and fico=2410 eV (the
green argon-laser line) in a sufficiently steep increase of
the absorption as a function of temperature for the ap-
pearance of intrinsic OB by induced absorption. ' ' This
nonlinearity will be the interesting one in the following.
Recently, self-oscillations were theoretically predicted by
Ref. 7 for an induced absorber in a ring cavity. Both
theory and experiments have been done so far for a ring
cavity containing a medium exhibiting mainly dispersive
nonlinearities (Kerr medium). This system leads to oscil-
latory instabilities and ways to chaos. As wi11 be shown,
the structure of the oscillations is totally different for an
induced absorber which, in contrast to dispersive non-
linear media, may be intrinsically bistable. The motiva-
tion to do our experiment is twofold:

(i) Our system allows us to study nonlinear dynamics
whereby both the nonlinearity and the feedback can be
controlled separately.

(ii) Although we use a hybrid feedback leading to a loss
of phase, our results are applicable to the all-optical sys-
tem, which will be discussed in Sec. III. This system
might be a candidate for an all-optical clock in connection
with all-optical computing.

In the following sections we will show
(a) the intrinsic properties of the induced absorber CdS,
(b) its behavior in a short Fabry-Perot (FP) resonator,
(c) the experimental setup, and
(d) the static properties of the medium in a ring cavity,

leading to the first direct measurement of the third unsta-
ble branch of the intrinsic bistability.

(e) We then present the self-oscillations.
We shall discuss the dependence of the oscillations on the
different parameters showing, among others, experimental
indications for the Farey-tree structure predicted by Ref.
7(c).

I. THE BEHAVIOR OF THE NONLINEARITY
WITHOUT ADDITIONAL FEEDBACK

It is a well-known fact that the optical properties of
semiconductors depend on the temperature T of the sam-
ple. Many insulators and semiconductors show an ab-
sorption edge, which can be described by the Urbach-
Martienssen rule'

a(co, T) =aoexp[cr(fico Fo)/ktt Tj, —

where o. and no are material parameters, Eo corresponds
roughly to the energy of the lowest free exciton, and k~ is
Boltzmann's constant. At photon energies fico below the
fundamental band edge an increase of the sample tem-
perature results in an increase of the absorption o.. A
small laser spot increases the local temperature T by the
absorption of photons which generate primarily electron-
hole (e-h) pairs. This excitation finally thermalizes. Be-
cause the lifetime of e-h pairs is of the order of 1 ns, this
intermediate step can be eliminated adiabatically. The
temporal evolution of b, T =T —To (with To being the
temperature of the surrounding heat bath) can be modeled
by Eq. (2):

(AT) = b, T/r+ A (b, T)I (t) /(CL)—
dt

with
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A (5T)= 1 —exp[ a—(h T)L],

I,(t) =I (t)exp[ —a(b, T)L] .

The first term on the right-hand side describes the dif-
fusion of the excitation in the lateral direction resulting in
a relaxation time constant ~ for the loca1 temperature in-
crease. r depends on the diameter of the spot d, with
~-d . For d = 100 pm one obtains the estimate
r=150 p, s, which will be used in the following. The
second term describes the excitation depending on the ab-
sorbed fraction A (b,T) of I, I being the intensity in front
of the crystal which obviously coincides with the incident
intensity Io if no cavity is present. A (b, T) is obtained by
averaging the intensity inside the crystal over the 1ength L
of the sample. This is allowed as long as the diffusion of
electronic and thermal excitation is sufficiently large for a
homogeneous excitation in the depth of the sample. The
CdS crystals are of the platelet type, with the crystallo-
graphic c axes being in the plane of the platelet. Here we
have used samples with a thickness between 3 and 10 pm,
the polarization is always E~ ~c. Figure 1 shows the mea-
sured A(AT) (Ref. 6) for a CdS single-crystal platelet,
E~ ~c. If b, T is also eliminated adiabatically, one may use
the well-known graphical construction" to solve Eq. (2).
This results in three mathematical solutions out of which
two are physically stable, as can be shown by stability
analysis. Therefore there is a region of Io where two
transmitted intensities I, are possible for one incident in-
tensity Io, depending on the way to Io. An observer will
not get any direct information about this third unstable
branch. Figure 2 shows the resulting hysteresis with the
switching times being ~, =2 ms and ~, =5 ms. If the total
length ~L of the pulses is decreased, one can see a dynami-
cal overshooting of the switching intensities caused by a
mismatch between AT and the incident intensity Io. For
a detailed discussion of these effects see Ref. 6, where the
behavior of the rate Eq. (2) is shown to be in good agree-
ment with the experimental results. In Ref. 6 also the set-
up is shown, which uses a cw argon-ion laser. The pulses
are generated with an electro-optic modulator. Both in-
coming and transmitted intensities are detected by photo-
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FIG. 1. Measured A (hT) for a 6-pm CdS crystal. The
straight lines show that OB is expected to appear. %co=2410 eV
(according to Ref. 6).
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FIG. 2. Experimental observation of OB by induced absorp-
tion using CdS at T =300 K. Note the increase of dynamic ef-
fects for decreasing pulse duration ~L', Ace =2410 eV.

diodes. In this context it is important to remark that the
switching time is no intrinsic constant for the system but
depends strongly on the way to the critical switching tem-
perature. This leads to the critical slowing down, well
known, e.g., for dispersive OB.' We look at the situation,
where one switches on a constant Io at time t =0, being
slightly above the switching-down intensity I, . The time
until the onset of switching r& and the time necessary for
the switching process ~2 will diverge for Io —I,~+0.
To describe the situation one can roughly approximate
A(AT) (Fig 1) by. three straight lines (also see Ref. 7)
leading to analytic expressions for ~] and v.

2 as a function
of 5=(IO I, )/I, by solvin—g Eq. (2) with b, T(r, ) =b, T~
and ET(r, +r2)=b, T2, b, T(0)=0:

r, /r=ln[(I+6)/5],
(3)

rplr = hT) A2 —A)

A, AT2 bT)—
A2 AT2

)&ln (1+5)—
A) AT)

Choosing A&
——0.27, A2 ——0.69, b, T2 ——26T&, which fits

to Fig. 1, we obtain ~&-4.6v and ~2-7. 1v. for 6=1 Jo.
Obviously ~& and ~2 are of the same magnitude. Note that
Eq. (3) only makes sense for an intrinsically bistable sys-
tem, i.e., AT2/AT] & A2/A &.

Figure 3 shows what we have observed when switching
on constant Io ——(1+5)I, in the beginning and detecting
I, as a function of time. For 6=0 one observes a more or
less exponential decrease of I, until a constant level is
reached. This decrease results from the increase of ab-
sorption at temperatures which are smaller than the criti-
cal switching temperature. This effect is very pronounced
because the series is taken with a L =9 pm crystal, which
is quite thick. With increasing 5 we again obtain the first
decrease, but after a certain time delay ~& the absorptive
switching process starts and a constant low transmitting
level is reached after a few ms, which on this time scale
leads to an almost perpendicular transition. The time de-
lay z& decreases with increasing Io or 5. In this case more
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FI&. 3. Experimental results for the critical slowing down. The constant incident intensity Io is switched on at t =90 ms;
Ace =2410 eV.

and more energy is pumped into the system, which leads
to a faster heating of the spot and therefore a shorter z&.

Figure 4 now shows v.
&

as a function of 5, showing within
experimental limitations the divergence of ~& for 6—+0.
The pole structure may be destroyed by the existence of a
small noise level which leads to a finite value of ~& for
5=0. Comparing experiment and theory one finds that ~2
fits well (theory, 5=1%~r2-1.1 ms; experiment; few
ms), but r~ is distinctly longer in the experiments.
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FIG. 4. The time delay until the onset of switching ~& as a

function of 5, gained from a series of measurements like the
ones in Fig. 3; %co=2410 eV.

II. THE NONLINEARITY IN CONNECTION
WITH THE FEEDBACK OF A SHORT EXTERNAL

FABRY-PEROT CAVITY

As described, the OB by induced absorption is an in-
trinsic mechanism, needing no additional external feed-
back. But what is going on if we add a feedback of the
light field by using an external FP~ Looking at the situa-
tion where we start in the transmission maximum of the
FP mode structure, an increase of absorption will lead to a
decrease of the finesse of the FP. This results in a smaller
generation rate of AT because the intensity inside the FP
is reduced. But the intrinsic absorptive switching to the
highly absorbing state was connected with an increase of
a(ET). So the FP leads to a negative feedback which
might destroy the bistability if the intrinsic positive feed-
back cannot overcompensate the negative feedback of the
cavity. But now in connection with the external FP,
dispersive nonlinearities also become relevant, which are
always connected with the absorptive nonlinearities via
Kramers-Kronig relations. These two influences may
lead to very complicated hysteresis loops.

In our experiment we have coated the CdS platelets
with dielectric mirrors on both sides each with reflectivity
R =60%. The effect of these coatings on the mode struc-
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FIC. 5. A series of measured hysteresis loops I,(Io) for dielectric-coated CdS platelets, changing only the place on the crystal re-
sulting in small changes of R and 5o, Iso =2410 eV.

ture is a bit reduced by imperfections of the surfaces.
Figure 5 shows the result of a series of measurements.
Obviously one can obtain very different ~loops, strongly
depending on the initial phase 5O inside the FP. Changes
of the sample's thickness in the order of parts of the
wavelength might shift the mode structure from a max-
imum to a minimum.

In Fig. 5(a) the situation is relatively simple. We first
obtain a purely dispersive switch up in the transmitted in-
tensity connected with a transient spike resulting from the
shift over the FP maximum. For twice the incident inten-
sity, an absorptive switch down occurs. Dispersive and

absorptive loops are clearly separated. But note that the
area enclosed by the absorptive loop has diminished, in
comparison with Fig. 2, caused by the negative feedback
of the FP. In Fig. 5(b) we start close to a maximum of
the FP mode structure. This situation manifests itself in
the overshooting at the dispersive switch back ( t). Here
dispersive and absorptive loops are no longer separated.
This trend is continued in Fig. 5(c), where the dispersive
switch up (again connected with the overshooting) more
or less coincides with the absorptive switch down.

To get some more insight, we again use Eq. (2) combin-
ing it with the usual resonator formula for the FP:
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FIG. 6. Theoretical mixed states of dispersive and absorptive OB using Eq. (3) in the steady-state limit. Note that between (a) and

(b) mainly the initial phase 5o is changed leading to totally different hysteresis loops; fico =2410 eV.
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dt
(b T) = AT—/r+a(b T)(1—R)(1+R)Io(t)/Ct [exp(aL/2) —R exp( a—L /2)] +4R sin (5&)I,

5& ——50+koL X const &( AT, (4)

I, =Io(1—R) /[[exp(aL/2) —R exp( aL/—2)] +4R sin (5i)I .

For simplicity we assume that the refractive index
changes linearly with temperature. Solving Eq. (4) in the
adiabatic limit [d(b, T)/dt =0], we obtain Fig. 6. In Fig.
6(a) we start in a FP minimum (5o——rr/2), obtaining a
hysteresis which looks very much like Fig. 5(a). Figure
6(b) shows again the more involved situation where
dispersive and absorptive switchings cannot be separated
leading to a butterfly1ike hysteresis which is qualitatively
the same as Fig. 5(c) (50=0 corresponds to the FP max-
imum).

In the beginning of this section we discussed the nega-
tive feedback of the FP. Why does this mechanism not
lead to self-oscillations'? It does not, because the time con-
stant for filling the FP with light (order of ps) is small
compared to the system time constant ~ and therefore a
fixed point is always reached. But if the delay of the
external feedback is long enough, the stable solutions
shown in Sec. IV will change to oscillatory output, as will
be shown in Sec. V.

III. THE INDUCED ABSORBER
IN A RING CAVITY: EXPERIMENTAL SETUP

R=l R=l

EOM

sample

Delay

PD

(b)

FIG. 7. (a) Induced absorber in a ring cavity; (b) schematic
representation of the hybrid system used in our experiment.

The system we are dealing with is shown in Fig. 7(a).
The light transmitted by the sample is reflected by the
mirrors and therefore coupled back with the delay of one
round-trip time ~z. In this system one has to add field
amplitudes and to take into account also dispersive
changes, provided the coherence time of the light source is
larger than ~~. The dispersive effects are not that impor-
tant for the oscillations as shown in Refs. 7(a) and 7(b),
where calculations with and without taking into account
dispersive effects are directly compared, showing no im-

portant difference. In Fig. 7(b) we present the hybrid sys-

tem, which we use in our experiment. In this system we
lose information about phase, which would be the same in
case of the coherence length of the laser being smaller
than the length of the cavity.

We send in a beam of constant intensity from a linearly
polarized cw argon laser into the electro-optic modulator

(EOM), which consists of a Pockels cell in connection
with a polarizer. To avoid a Gaussian profile of the laser
spot on the sample, we select the central part by a dia-
phragm before focusing the laser on the crystal. The
homogeneous spot has a diameter of 100 pm. The
transmitted beam is then sent on the photodiode after
passing some neutral density filters. The voltage signal is
digitized with a resolution of 8 bit and a maximum sam-
pling rate of 1 MHz. The digitized signal is stored in a
few kbyte of random access memory (RAM) for a max-
imum of 2000 sampling times. The delay time therefore
results from the product of sampling time and storing cy-
cles. Both are variable, but we usua11y keep the storing
cycles constant at 1000 and vary the sampling rate. This
means we have always digitized 1000 points in one
round-trip time vq. After a digital-to-analog conversion
we can attenuate the signal (corresponding to variable R
of the mirrors) and add an additional offset (standing for
the constant input Io) before the signal is connected with
the Pockels ce11 via a high-voltage amplifier. There is a
certain nonlinearity in the feedback system, coming from
the Pockels cell, which causes the quadratic increase in
the following I,(I) or I, (IO) pictures for small values of I
before the linear regime is reached. Therefore the scales
of Io between experiment and theory can only be com-
pared qualitatively. R (see Sec. V) is defined experimen-
tally by normalizing the transmission in the highly
transmitting state to be equal to one.

IV. THE CASE OF SMALL r~ (r~ &&~)

To describe the properties of the cavity we use the delay
equation

=Io+R I(t —~ii )exp[ a(b, T(t rri ))L] .——
Thereby Io denotes the incident intensity, counted behind
the first mirror, which is easy to handle and corresponds
to what we can measure directly in our system. The
dynamics of the temperature is again described by Eq. (2).

This coupled delay and rate equations have also been
used in Ref. 7, except that we add intensities instead of
field amplitudes and more important we do not use the
simplified nonlinearity 2 (AT), using three straight lines
(see Sec. I), but take a fit to the real measured dependence
A(b, T) for our calculations (see Fig. 1). The case of
rR «r has not been interpreted in Ref. 7(a) in the way
done here. The case of ~& &&x, which will be discussed in
Sec. V, and the dependence of the oscillations on rz (see
Sec. VI) reveals quite similar results although totally dif-
ferent 3 (b, T) are used, showing that the details of A (b T)
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are not very important as long as the induced absorber is
intrinsically bistable. We want to discuss this situation
only in the present paper.

Looking at ~~ &&~ again, no oscillations will appear,
i.e., I(t)=I(t') Vt, t' T.he situation is very similar to the
short FP, starting in a FP maximum. Again a sufficient
reflectivity will destroy the intrinsic absorptive bistability,
i.e., I,(IO) is not bistable any more. But what we are go-
ing to look at is I, ( I) [not I, (I0 )]. This point is the im-

portant new one. It is the situation of an observer looking
from the crystal's point of view of what is going on. He
now is no longer able to vary I at his own will, but is only
observing what a certain Io causes for I and I, . Figure 8
shows what we have observed for increasing "reflectivity
R" of the mirrors. Io(t) is a triangular pulse of total
length rl = 10 s to be free from any dynamic effects.

For R =0% the normal intrinsic bistability is obtained
(the quadratic increase is explained in the previous sec-
tion). For R =25% something strange happens. The
switching processes have now a steep positive slope
(dashed lines) until at R =50% there is only a small un-
stable region vanishing completely for R =75%. Here
we have three stable solutions for I, as a function of I.
We interpret this third branch as the third normally un-
stable branch of the intrinsic bistability.

To confirm this interpretation theoretically, we use Eq.
(2) together with Eq. (5) [d(bT)ldt =0]. If we are in-
terested in I, (I) (what we have measured), we only need

Eq. (2). Note that one yields I(ET) and I, (b T), leading
to the S-shaped dependence I,(I) in Fig. 9, independently
of the reflectivity R. [R does not appear in Eq. (2).]
Only the range of stable solutions will depend on R. In
order to obtain this range we get Io(b T) and I, (b T) from
Eq. (2) and Eq. (5) which introduces the dependence on R
leading to I, (IO) as is also shown in Fig. 9. The stability
range for I,(IO) can easily be gained. The switching pro-
cesses are perpendicular as is known from OB itself,
where always I, as a function of Io is presented. The be-
ginning and end of the graphically obtained transitions in
I, (Io) can be transferred by horizontal lines to the I,(I)
curve. So we obtain for R =25% a hysteresis similar to
the measured one in Fig. 8(b) (R =25%).

If I,(IO) is not bistable any more [as is the case in Fig.
8(d) (R =75%)], every point on I,(I) becomes stable.
Because the I,(I) curve does not depend on R (but only its
stability range does) this curve is identical with the I,(IO)
curve for R =0% (where I =ID), which is the intrinsic
bistability (including the unstable branch) of the medium.

This theoretical background finally allows us to identi-
fy the measured third branch with the third normally un-
stable branch of the intrinsic bistability of the medium.

V. THE CASE OF LONG r~ {s~&&v)

If rz ))r, many solutions from the case r~ &&r (where
I, always was constant) become unstable leading to oscil-
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FIG. 8. I, as a function of I (not Ip) for increasing reflectivity R of the mirrors. Note the diagonal switching for R =2.5% and
R =50%.
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FIG. 9. Graphical construction to obtain the diagonal transi-
tions for I,{I).

latory output of the cavity at constant Io. The basic
mechanism for all oscillations is the retarded negative
feedback by the cavity. This negative feedback may be re-
vealed by two different mechanisms.

The first one is the decrease of I if the switching down
to low transmission occurs. Starting with I &I, the in-
tensity I will increase n times every round trip by a cer-
tain amount until I~I, . Now the medium switches to
the low transmitting state causing I to decrease m times

until I &I, . In the following we will denote such an os-
cillation as an ( n, m) mode in agreement with Ref. 7(a).

The second mechanism is the negative slope of I, (IO),
when decreasing Io towards I, being on the lower branch
of the hysteresis [see Fig. 2 or Fig. 8(a)]. If I increases, I,
decreases, decreasing I, which increases I„increasing I
back to the initial value. Under the present conditions
only oscillations of period two may occur. We denote this
type as an (1.1) mode to distinguish it from the
(n =1,m =1) mode of the first mechanism, which we
now call (1, 1). This second mechanism has not been dis-
cussed in Ref. 7(a). We will leave out the overbar for all
( n &1,1) modes, because no confusion is possible.

In the following we will discuss both mechanisms ex-
perimentally as well as theoretically. Figure 10 shows a
measured series of oscillations using Io as a control pa-
rarneter. For Io ——68.5 /oI& and R =75% we observe an
oscillation which is called a (2, 1) mode (twice up, once
down) in our terminology, showing spiking at the begin-
ning and end of every step. To understand the spikes im-
agine the situation where we switch on Io resulting in
steps without spikes until I~I, . Although we are in the
limit ~z ~&~, the medium will need a certain time to react
to this new situation, due to the relaxation dynamics of
the temperature. During this time also, I, wiH rise until
the onset of switching to low transmission. After one
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FIG. 10. Series of measured I,{t)curves showing a Farey-tree-like structure with IQ being the control parameter.
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I„+& Ip+R I,(—I—„). (6)

Looking at Fig. 10(a) that means neglecting the spikes on
the steplike oscillations. To simplify the situation further
we use the dependence I,(Ip) as shown in the small pic-
ture in Fig. 11 which schematically describes our findings.
By simply iterating Eq. (6), we obtain the whole period T
of the oscillations in multiples of rz as a function of Ip,
as shown in Fig. 11(a). Between the simple (n, l) modes
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FIG. 11. (a) T/~~ as a function of Io/I, as calculated by
iterating Eq. (6) with I,(IO) as shown in the small plot; (b) with

5%%uo reduced width of the hysteresis loop.

round-trip time this spike arrives in front of the crystal
causing a new one at the end of the next step in the oscil-
lation. After a short transient phase the oscillations be-
come periodic together with the spiking structure. For
Ip 70——%I„the (1.1) mode, due to the second mecha-
nism, is observed. I, is smaller compared to the (2, 1)
mode because the crystal remains on the low transmitting
branch of the intrinsic bistability.

The question is what is happening if Ip is chosen in be-
tween the (2, 1) and (1,1) modes. We find an oscillation
[Fig. 10(b)] which alternates periodically between the two
ones. It has a period of about 5~+ and an average period
of —,'r~, respectively. While the simple (2,1) or (1.1)
modes are stable for many hours, the alternating one is
observed to be stable a maximum of about 2 min, before
the system decided to oscillate in one of the simple types.
Looking in more detail at the alternating mode in Fig.
10(b), one can see a little shoulder, which becomes much
more pronounced in Fig. 10(c) (rz is decreased to 100
ms). This shoulder results from the critical slowing down
at the point of switching back to the highly transmitting
state. If ~z is further decreased, this alternating mode
vanishes.

In order to get a better understanding of the nature of
the alternating mode and of the structure of the modes as
a function of Io, we theoretically investigate the limit
rz »r following the idea of Ref. 7(c). We transform Eq.
(5) together with Eq. (2) to a simple map

are trees of longer periods, whereby twice only the first
step of the tree is visible on this scale. These trees are
generic for the transition between modes of different fre-
quencies in this system as shown in Ref. 7(c). They exhib-
it a Farey tree structure.

We again choose the example of the tree between the
(2, 1) and (1.1) modes, also discussed in the experimental
part.

3/1 2/1

5i2

8/3 7/3

(7)

In Eq. (7) we denote the average period of the oscillations
as p/q whereby p is the total period T and q is the num-
ber of different maxima. Starting with 3/1 [correspond-
ing to the (2, 1) mode] and 2/1 [corresponding to the (1.1)
mode], one has to add numerators and denumerators in-
dependently resulting in 5/2 in the second generation.
The following generations can be obtained in the same
manner. The more maxima an oscillation has, the smaller
is its stability range. This coincides very well with our ex-
perimental findings. If the noise level of the system be-
comes comparable with the stability range, the mode will
not be observed.

Another example of such a tree is given in Fig. 12 and
Fig. 11(b). In Fig. 12 we have chosen a place on the crys-
tal with greater thickness L, leading to a decrease of the
intrinsic bistable regime of the medium. (Also see Ref. 6
for a detailed discussion of the dependence of the bistabil-
ity on L.) Again we only observe the first step of the tree
being an oscillation alternating periodically between (1,1)
and (1.1) modes. We have modeled this situation in Fig.
11(b) theoretically by iterating Eq. (6) with I, (Ip) analo-
gue to the small picture in Fig. 11 but with a width of the
hysteresis reduced by 5%.

If Ip is too high, i.e., a fixed point on the lower branch
of the bistability exists, a damped oscillation is observed
in experiment as well as theoretically when solving Eq. (5)
combined with Eq. (2) numerically. Figure 13(a) shows
such a damped oscillation, switching on Io between
t =4~~ and t =5~& resulting in an exponential-like de-
crease before one round-trip time later the medium
switches to low transmission leading to a fixed point after
t=20r„. Figure 13(b) coincides with Fig. 13(a) except
that the absolute time constants do not fit well. The cal-
culation was done for wq ——10~=1.5 ms and corresponds
to the experimental ~z ——100 ms, showing the same
mismatch as discussed in the beginning when talking
about critical slowing down.

To get an overview where the plateaus of the steplike
oscillations are situated as a function of Io, we are now
looking at I,(Ip) which is multivalued in the limit 1 g ))T
Experimentally we use a very small sweep frequency
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t lTR
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FICz. 12. Series like Fig. 10, but with a smaller intrinsically bistable hysteresis.

f«rz ' to scan Io and connect this with the x axes of an
oscilloscope, I, (the photodiode signal) with the y axes of
a scope. This procedure results in Fig. 14(a). For small

Io only one stable branch exists because the losses
(R =75%) are too high to increase I beyond I, . These
fixed points are situated on the highly transmitting
branch of the hysteresis. At a critical value oscillations
are appearing having long periods, the longest observed

was a (20, 1) mode. In principal ( oo, 1 ) modes should exist
here. For increasing Io the plateaus (corresponding to the
white zones) also increase up to a certain value where the
highest one leads to I~I, which is just the transition
from a (n +1,1) to a (n, 1) mode. For high Io again the
(1,1) mode exists before Io is too large for oscillations,
corresponding to Fig. 13. The same behavior is found
theoretically [Fig. 14(b)] by again iterating Eq. (6) with

Ul

C

L0

R' = 75'I.
= 88% I)

zR —100 ms
L =9~m

C CdS
Elle
T=300'

R =100'/o
I o

—270 Wcrn

= 10 ~rn

(b)

0 I, 8 12 16
t I rR

20 0
0 12

tfTR
16 20

FIG. 13. (a) Damped oscillation as observed for IQ being beyond the oscillatory regime; (b) same situation but calculated numeri-
cally with Eqs. (2) and (5).
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sinusoidal oscillation. Decreasing rR further stops oscilla-
tory output at ~z -2 ms. For small ~~ obviously ~ is the
dominating time constant and no longer ~z, leading to the
disappearance of locking of T into multiples of r~. The
corresponding Poincare-like plot is always shown on the
right-hand side. Although we display I, (t) versus I(t),
Eq. (5) shows that I,(t) =R [I(t +rz) —Io] means that
only the ordinate is rescaled. For ~~ ——500 ms the dots
correspond to the plateaus in the osci11ations. This loop is
also drawn in the Poincare section for ~z ——50 ms and
~~ ——5 ms to be easily compared. The effect for ~z ——5 ms
is very drastic. Neither the high nor the low transmitting
branch are reached; a transmission in between is always
obtained. To have a direct comparison to our model we
again solve Eq. (2) with Eq. (5) numerically. The general

1.0 (b) R
= 500rns

0.5 0
Io/ I)

1

0
0 0.2 0.4 0.6 08 1.0

Q ~ i i i

0 2 4 6 8
/TR

10 I(t) (orb. uni ts)

FIG. 14. (a) Experimental I,(I0) curves using a slow ramp to
increase Io, ra =100 ms, R =75%, E~ iC, T =300 K, L =9
pm; (b) theoretical I,(I0) curve gained from Eq. (5) and I,(I)
describing the hysteresis of a 9-pm CdS crystal as shown in the
small plot.

Vl

C

Cf

rR =50rns

I, (I) as shown in the small picture in Fig. 14, which
roughly describes the findings for a L =9-pm-thick CdS
platelet. Note that the fine structure in Fig. 14(b) and the
Farey tree are not resolved in Fig. 14(a) because of the fi-
nite sweeping frequency.

i i i

0 2 4 6 8 10
t ~~R

I (t) (ar b.units)

Vj. THE DEPENDENCE
OF THE GSCILLATIGNS GN rg

Cds
3. T=300K

E ll c
L =9~m

R'=75 I.
!~=60'lo I)

Y'R =5llls (c)

Figure 15 shows a series of oscillations with decreasing
Starting with r~ ——500 ms ( &&r), a (2, 1) mode is ob-

tained which has not as many spikes as the one for a
L =3-pm-thick crystal because at L =9 pm, A (b, T) (see
Fig. 1) is rounded very much (see also Fig. 8). The total
period T of this oscillation is slightly above 3~~. Keeping
Io constant and only varying ~z, Fig. 15 shows for
~z ——50 ms an oscillation which has lost some of the step-
like structure and is no longer 1ocked into T =3~&, but T
is approximately 4.7~+. This tendency continues for
w~

——5 ms where T=8.9&& leading to an almost

Q i i i i I I a

0 2 4 6 8
t I TR

10 I ( t) (or b.un i ts j

FIG. 15. Experimental series of I,(t) curves keeping Io con-
stant and decreasing ~R starting with ~z &p~. The picture on
the right-hand side always shows the corresponding Poincare
plot.
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= 50ms T'R = 20ms

TR = 10ms

Io(al'b. uni ts)

FIG. 18. Same measurement as in Fig. 14(a) but now using ~R as the control parameter.

parameters but different initial conditions, as we shall
show in a forthcoming contribution. This leads to an (in
principle) infinite series of coexisting modes with higher
oscillation frequencies. Once such a coexisting mode is
excited, it remains stable. This effect can also be inter-
preted with the theoretical tools presented here. These os-
cillations are self-similar as a function of time.

If the induced absorber is not intrinsically bistable, as is
the case for CdS in the orientation Elc and Boo=2.410
eV (see Ref. 6), I, (IO) shows only a strong nonlinearity.
The system shows a bifurcation route to chaos if the slope
I, (IO) is sufficiently negative. An experimental as well as

theoretical discussion of this scenario will soon be pub-
lished.
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