
PHYSICAL REVIEW A VOLUME 35, NUMBER I JANUARY 1, 1987

Symmetry breaking and metastable chaos in a coherently driven superradiant system
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The temporal evolution of the transmitted light field is computed for a high-density gas of two-
level atoms, which is externally excited by an amplitude-modulated field in resonance with the atom-
ic transitions. The transmitted field is shown to exhibit a chaotic transient and a cascade through
different phase-locked orbits. Due to the asymmetry of these orbits, the field develops a nonzero
average value even in the absence of a bias.

I. INTRODUCTION

In the last few years, the dynamic response of a driven,
damped pendulum has been studied quite intensively, ' and
by now this model serves as a paradigmatic example of
chaotic dynamics. The attraction of this system is based
on both its mathematical simplicity and its physical
relevance. Particularly, the driven damped pendulum has
been shown to be a quite realistic model for a Josephson
junction, and as a consequence of this connection, Joseph-
son junctions are now an important experimental instru-
ment to test the theoretical predictions of chaotic
behavior.

In this paper, we discuss an example of a quantum-
optics system, which in some idealization can also be
described by the damped pendulum equation. Starting
from the corresponding predictions for the chaotic pendu-
lum dynamics, we eliminate some of the idealizing as-
sumptions and study the changes in the dynamic response
for the more realistic model.

In fact, the pendulum model is widely used in the field
of quantum optics to describe the interaction between a
gas of two-level atoms and the electromagnetic field.
Here the pure pendulum equation applies if one discusses
the coupling of the two-level system to a single field mode
at resonance with the atomic transitions. One neglects
both the cavity losses and the atomic decay processes.
Nevertheless, this model can be used under certain cir-
cumstances and it has been applied quite successfully, e.g. ,
to predict the effect of squeezing, i.e., the anisotropy of
the variances of the components of the transmitted elec-
tromagnetic field.

In the more general case, an optical two-level system is
described by the Maxwell-Bloch equations. In compar-
ison to the pure pendulum, this amounts to an extension
of the phase space from two to at least three dimensions.
Such a complication is, however, unavoidable if one wants
to investigate also the effects caused by finite atomic
damping. In this paper, we especially address the ques-
tion of whether a more realistic model of the two-level
system follows a similar route to chaotic behavior as

would be predicted for a pure pendulum. In more physi-
cal terms, we investigate the dynamics of a superradiant
system under the influence of a periodically modulated
external field. We examine the parameter space, where
the pure pendulum model shows the quasiperiodicity
route to chaos. We are mostly concerned about the influ-
ence of the physically unavoidable atomic damping on the
dynamic output.

For the external driving field we assume a laser beam
which is at resonance with the atomic transitions and with
the cavity. As is well known, a study of the possible ap-
proach to chaos in the transmitted field requires an exter-
nally controllable frequency which competes with the
internal dynamics. Therefore, we assume that the driving
laser is amplitude modulated with a frequency of the or-
der of the oscillation frequency of the nonlinear medium.
This situation is chosen because without atomic damping
one can model it directly by the equation of the driven
pendulum where the driving force is the amplitude of the
injected signal.

Chaos in optical systems has been studied, among other
cases, both theoretically '"' and experimentally ' ' for the
example of an active (laser) medium which is pumped by
a time-dependent external field. This example, however,
differs significantly from our case, since we are dealing
with a passive medium in which the atomic cooperativity
plays an important role in the frequency-mismatch phe-
nomena. Taking advantage of the connection of our
model with the driven pendulum, we will describe the
dynamics in terms of simple two-dimensional phase por-
traits, leaving a complete statistical analysis for future
work.

This paper is organized as follows. In Sec. II we intro-
duce the physical system and the Maxwell-Bloch equa-
tions and recall some known results from the driven pen-
dulum. In Sec. III we describe the numerical results in
the case in which the driving term is purely oscillatory
(zero bias). In Sec. IV we give an analytical description of
the system. In Sec. V we report on other numerical re-
sults in the presence of bias, and in Sec. VI we make some
comments and point out some open problems.
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II. MAXWELL-BLOCH EQUATIONS

We consider a gas of N two-level atoms of frequency coo

contained in a cavity at resonance with the atomic transi-
tions. We limit ourselves to a single-mode description,
and assume a homogeneously broadened medium. As is
well known, for sufficiently large N such a system is
characterized by cooperative behavior. The atoms ex-
change energy with the field mode through nonliner oscil-
lations, provided the dephasing processes of the atoms
occur on time scales large enough with respect to the
period of such oscillations.

The period is given in terms of the so-called coopera-
tion time r, =(gN'/ )

' (Ref. 5), g being the dipole cou-
pling constant. We introduce in the system a new fre-
quency, competing with r, , in the following way. We
inject in the cavity a coherent beam with resonant fre-
quency coo, but with modulated amplitude. The frequency
of this modulation is taken to be of the order r, '. Denot-
ing by E the field amplitude, by D the population differ-
ence, and by A the amplitude of the injected signal, which
we ' will assume of the general form
3 (t) =Ho+/I ~ cos(coDt), we have the well-known
Maxwell-Bloch equations

dP
dt

=2gED —yqP,

dD
dt

2gEP ——yii(D ——,N),

2 1/2
COpP= —k [E—A (t)]—gP g =
AV

(2.1)

p =2ed —p~
d = —2' —yii(d —1),
e = —k'(e —a) ——,'p,

(2.3)

where the derivativ'es are taken with respect to
yq ~~=yq ~~w„k'=km„and a =a (r) =ao+a& cos(~nr)
(con ——co~re). If one disregards the atomic dampings the
first two equations describe a rotation. Denoting
p =p sin8, d =p cos8, and 2e =d8/dr one obtains, in this
case, the forced damped pendulum equation

d O, dO+k' +psin8=2k'[ao+a~ cos(6)or)], (2.4)
d1

where k is the inverse lifetime of the photons in the cavi-
ty, yz and y~~ are the transverse and longitudinal relaxa-
tion times, respectively, Vis the volume of the cavity, and

p is the atomic dipole moment. For /(~ ——0, system (2.1)
reduces to the Bonifacio-Lugiato model of optical bistabil-
ity. In order to compare the behavior of our system with
previous analyses of the forced damped pendulum, it is
convenient to rescale the variables as follows:

P D
t —+~=, P~p =, D +d =

N/2 ' N/2
(2.2)

E
N

thus obtaining

which, upon the rescaling &~s=wp, k'~k=k'/p
and con~coD ——coD/p' reduces to the normalized form
examined by D'Humieres et a/. ,"' with a bias

yo ——2k'ao/p and a driving amplitude y&
——2k'a ~/p:

8+k 8+sin8 =yo+ y, cos(coD r) . (2.5)

In the absence of atomic damping the quantity

p =p +d is conserved. Therefore, the dynamics
described by (2.3) always maps to the pendulum equation
(2.5), provided the control parameters yo, y&, coD, and k
are rescaled according to the initial values:

2(())+d2(())]l/2
We have numerically integrated the full system (2.3) by

means of a 5th order Nordsieck-Gear algorithm; the ac-
curacy of the integration routine has been checked by
evaluating p at different times in the case y&

——
yI~

——0. By
choosing a time step 5~=10,p was conserved with an
error in 10 up to 1 500000 time steps even in the chaot-
ic regime. Previous attempts, made by a simple one-step
integration routine, resulted in instabilities for the value of
p, with deviations of more than 10%, as well as in an ill-
defined period-doubling route; a sensitive dependence on
initial conditions was also observed in the nonchaotic re-
gime.

For the sake of completeness, we first report on some
results in the case yj ——

y~~
——0, and zero bias. In Fig. 1 we

display phase portraits (left column) in the plane (p, e),
corresponding to the pendulum phase plane (sin8, 8), and
plots of d versus p (right column) for different values of
the driving amplitude y~, (y~ ——0.5, 0.67, 0.675, and 0.69,
respectively, from top to bottom) with fixed coD ——0.67,
k=0.25. The initial conditions are always such that
p=1, and e(0)=0.

The case y~ ——0.5 [Figs. 1(a) and 1(a')] refers to small
oscillations around the unperturbed steady state
d = 1,p =0 in which the atomic system is completely
deexcited (all the atoms are in the ground state, 8=0).

The cases y~
——0.67 [Figs. 1(b) and 1(b')] and y~ ——0.675

[Figs. 1(c) and 1(c')] correspond to orbits of higher excita-
tion, in which the oscillating atomic Bloch vector almost
reaches the unperturbed unstable state d = —1,p =0 (all
the atoms in the upper level, 8=m. ).

A striking feature of these cases is the asymmetry of
the orbits with respect to the reflection p~ —p, so that
the time average of the polarization is different from zero.
The occurrence of this phenomenon, as a precursor of the
chaotic regime, has been previously stressed in the context
of Josephson junctions. "'

More precisely, in this regime degeneracy occurs, so
that one can observe a given asymmetrical orbit as well as
its specular image (p —+ —p). By slightly varying the ini-
tial conditions along the curve p=1, we obtained such
specular orbits.

When y& ——0.69 [Figs. 1(d) and 1(d')] the system is
chaotic [see also Ref. 1(c)]; the orbits lie very close to the
separatrix in the pendulum phase plane, but with higher
excitation. The Bloch vector transits through the excited
state d = —1,p =0 with finite velocity; the phase portrait
[Fig. 1(d)] again exhibits asymmetry.

Note, the Bloch vector does not follow the orbit [Fig.
1(d )) in a unidirectional sense. Most of its cycles are in-
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FIG. 1. Phase portraits of the solution with yj ——
yI~ ——ao ——0, ~D ——0.67, k'=0. 25, e(0)=p(0)=0, and d(0)=1. Left column,

plane (p, e); right column, plane (p, d). y q ( =2k'a
q ) has the following values: ( a, a'), 0.5; ( b, b'), 0.67; ( c,c'), 0.675; ( d, d'), 0.69.

complete and on the average it stays much longer in the
regime d & 0 than in the regime d & 0, as is evidenced by
the respective line thickness.

III. TRANSIENT CHAOS IN THE ABSENCE
OF BIAS: CASCADING THROUGH DIFFERENT

PHASE-LOCKED STATES
%'e will now discuss some results obtained in the case

without bias (yo ——0), and finite atomic dampings, which
for simplicity, are assumed to be equal (yI =yt~ ——y).
Considering a region of control parameters corresponding
to the chaotic regime in the absence of atomic dampings,
we will examine the approach to steady state following the
initial chaotic transient. The time behavior of the variable
p=(d +p )'~ allows us to classify the different regimes
of the transient in terms of stable (chaotic or phase-
locked) orbits for the corresponding driven pendulum. In
fact, we first note, as one easily verifies from the first two
equations of (2.3), that p evolves on a time scale of the or-
der of y '. Therefore, if y«k', p(r) is slowly varying
with respect to . e(r), p(r), and d(r), and, apart from
corrections of order y, again system (2.3) can be mapped
in Eq. (2.5).

The parameters k, y~, and AD are now slowly varying
with ~ on the basis of the scaling laws illustrated in the
previous section, namely, k-p(r) '~, y~-p(r) ', and

coD-p(r) ' . To put it in another way, while for y=0
the three-dimensional phase space is trivially reduced to
the cylinders p +d =p, when y&0 the cylinders be-
come weakly time dependent and the whole phase space is
needed to describe the dynamics. On the other hand, as
long as the radial evolution [p(r)] is slow as compared
with the angular one [8(r)], it is justifiable to examine the
latter on short time scales by assuming the former to be
fixed.

The bifurcation diagram for Eq. (2.5) in the plane of
the control parameters coD and y& has been given by vari-
ous authors, we will refer specifically to the one presented
in Ref. 1(c) as their Fig. 3, obtained with k =0.25. As a
matter of fact, inclusion of the dependence on k should be
needed in order to obtain a better understanding, nonethe-
less, from the quoted diagram we can extract a qualitative
description of the observed transients. Note the following
about the diagram: chaos occurs at boundaries between
regions of phase locking (of different periodicities); chaos
disappears for low driving amplitudes (y~ && 1), as well as
for high driving frequencies (coD »k).

If we then integrate system (2.3) by choosing the pa-
rameters such that y& and BD lie within the chaotic region
in the bifurcation diagram, we expect that for ~&&y
the solution behaves chaotic, then we expect it to sweep
different phase-locked states before reaching the steady
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FIG. 1. (Continued).

state. Due to the contracting property of (2.3), the overall
picture is a cascading through different phase-locked
states, starting from a chaotic regime. The steady state is
critically dependent, as is clear from the former discus-
sion, on the asymptotic behavior of p(~). In the numerical
results presented in this paper, unless otherwise stated, we
always considered y =10, and p (0),d (0) such that
p(0) = 1 [in this case k' =k (0), coD ——

co& (0), and
y~(0) =2k'a~]; we chose the following values for the con-
trol parameters: k'=0. 25, ~D ——0.67, and y~ ——1.07, cor-
responding to a chaotic region for the pendulum. The re-
sulting behavior of p(r) is displayed in Fig. 2, we can dis-
tinguish three regimes: for r &y ', p(r) decays exponen-
tially, for y '&r&3y ' we have p(r) —r" (a—= —4.6),
for 3y '

& r the steady state is reached with
p(~) = po+ pi cos(Pr) (pc-—1.5 &( 10,p t -= 10 ).

In the region ~(y ', on shorter scales, we observe de-
viations from a purely exponential decay that can be attri-
buted to phase-locking phenomena on metastable orbits.
To get a global picture of the different regimes, we super-
irnposed the phase portraits in the plane (p, e) at various
times: in Fig. 3(a) we display the solution from &=900 to
1000, then from v=1900 to 2000, and analogously at
&=3000, 4000, and 5000. The solution is initially chaotic
then it passes through the expected cascade. The thick-
ness of each orbit is an index of its metastability. To
make a direct connection with the pendulum, for the same
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FICx. 2. Log-log plot of p(~) from integration of Eq. (2.3);
y=10 ', k'=0. 25, coD ——0.67, e(0)=p(0)=0, d(0)=1, ao ——0,
and yI(=2k'a~)=1. 07.

parameters y~
——1.07 and ma ——0.67, we integrated system

(2.3) with zero atomic damping (y=0) by choosing the
initial conditions such that p was fixed at its previ. ously
observed values at ~=1000, 2000, 3000, 4000, and 5000.
In Fig. 4(a) we recover a stable chaotic regime, in Fig. 4(b)
the period three orbit, in Fig. 4(c) the asymmetric period-
one orbit, and in Fig. 4(d) the steady-state limit cycle.

As already pointed out in Sec. II, in this range of pa-
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smoothly to a steady state with a constant amplitude

po -—1.6X10 ' and an oscillating amplitude p~ &&po, note
that in the corresponding case with y0=0 (Fig. 2), a
power-law behavior was clearly appearing before reaching
the asymptotic regime, and that we had then
pa=-1. 5&&10 . Thus, the presence of a bias actually
favors the survival of cooperativity (in our case the bias is
of the order 10%%uo of the driving amplitude). Figure 6(b)
refers to (p, e) phase portraits taken, as in Fig. 3(a), every
1000 units of time. Apart from a small contraction, we
always observe the same structure (the orbit at &=5000 is
superimposed to the one at 4000 because then the steady
state is already reached).

The asymmetry of the orbit is also maintained asymp-
totically in this case, while for yo ——0 symmetry was re-
stored [see Fig. 3(a)]. In Fig. 6(c), for the same time inter-
vals considered in Fig. 6(b), we display d versus p. Note
that contrary to the case yo ——0, we always deal with solu-
tions lying outside the first potential well of the pendu-
lum. In other words, the constant-amplitude part of the
incident field is large enough to sustain the emission also
when the system is totally inverted. We can infer that the
power-law behavior observed for p(r), when yo ——0, was
associated to the decay through the separatrix orbit. In
the plane (p, d) the orbit is a symmetric one, but it is
passed through with a quite complicated time law; we no-

tice that the time average of p is clearly different from
zero (in the present case (p) &0). Another effect of the
bias is a stronger dependence on the initial phase of the
Bloch vector. In fact, the deformation introduced in the
potential of the pendulum [ V(8)= —cos8 —y08] is such
that a variation of the initial conditions along the curve
p= 1 actually corresponds to a large variation of the pen-
dulum energy; this is confirmed by the numerical results.
Figure 6 refers to p (0)=e (0)=0, d (0)= 1; if one chooses
instead p (0)=d (0)=(0.5)', e (0)=0, one obtains quite
a different behavior (see Fig. 7). The plot of p(~), shown
in Fig. 7(a), exhibits a discontinuity in the first derivative
at approximately v=10. The origin of this singularity is
understood from Fig. 7(b), in which we superimposed the
phase portraits related to the following time intervals:
400& ~& 500, 900& v & 1000, and analogously at ~=1500,
2000, and 2500. The three smallest orbits refer to the last
three intervals: we are approaching the same steady state
exhibited in Fig. 6(b). The two largest orbits refer to the
first two time intervals, apart from a stronger contraction
they have the same structure as the orbits of Fig. 6(b) but
they are specularly inverted.

The initial phase mismatch with the steady-state
behavior, mode locked with the driving term, is overcome
with an abrupt transition around ~=1000. Other at-
tempts made by varying the initial data along the curve
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FIG. 8. y =10, k'=0. 25, cuD ——0.67, yo( =2k'ao) =0.3,
y&(=2k'aI) =1.07, e(0)=p {0)=0, and d(0) =1. (a) log-log
plot of p{w), (b) phase portraits in the plane (p, d) at times
~= 1000, 2000, 3000, 4000, and 5000.
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p=1 resulted in slight variations of the two main
scenarios presented above.

So far we reported on cases in which p(r) monotonical-
ly decreases. The long time-scale behavior of p(r) is regu-
lated by atomic dephasings, and a decay on times of the
order y is expected; on the other hand, the evolution of
p(r) is influenced, through memory effects, by the amount
of p(r) is asymmetry of the solution. The stronger the
asymmetry, the stronger the survival of cooperativity; we
actually observed, for a larger value of yo (yo ——0.3), a
transient in which asymmetry overcomes the incoherent

processes. In this case p(r) decreases up to r-=2500, then,
after a cusp, it increases up to r-=4000 where again its
derivative is discontinuous, then eventually stabilizes to a
mode-locked orbit with constant amplitude po-=7&10
[see Fig. 8(a)]. Figure 8(b) is the analog of Fig. 6(c) (plot
of d versus p every 1000 units of time). The largest orbit
is at ~= 1000, the second largest is at ~=2000, the small-
est is at ~=3000, and in between these two lie, almost
coincident, the orbits at ~=4000 and 5000. We note
furthermore that the larger bias enhances the irregular
behavior of p(r) on short time scales; this is particularly
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clear in the range 10 &r & 10 . If we relate this staircase
behavior to high periodicity phase lockings, we can infer
that the bias has the effect of stabilizing the phase-locked
states, a feature already noted"' for the pendulum case.

The two discontinuities in the derivative of p(w) can be
associated to abrupt structural changes in the form of the
orbit. In Fig. 9 we display phase portraits in the plane

(p, e) at different times, in each case the evolution being
followed for 100 units of time. Figure 9(a) is taken at
~= 1000, and we are still in a chaotic regime. At ~=2000
[Fig. 9(b)] we have a period three orbit, strongly asymme-
trical; at v=3000 [Fig. 9(d)] the cusp of p(w) has been
passed through and a new orbit has appeared, structurally
distinct from the previous one. At r—=2500 [Fig. 9(c)]
close to the cusp, when p(r) rapidly sweeps different
phase-locked orbits, we can characterize the behavior as
chaotic transient. Up to ~=—4000 we observed essentially
the same orbits as in Fig. 9(d); the second discontinuity in
the derivative of p(~), at ~=4000, corresponds to a period
doubling, to an orbit to become the steady state. Figure
9(e) refers to ~=12 500 at steady state, but at v =5000 we
already observed essentially the same shape.

We considered larger values of yo (yo ——0.4,0.5, 1), and
p(~) reproduced the behavior described for yo

——0. 1 in Fig.
6; higher values of yo resulted in orbits of higher periodi-
city; in all cases strong asymmetry was observed. Hence,
in general, the bias sustains the cooperativity resulting in
a steady state with a relatively high po and a superimposed
oscillation of amplitude pi «po, so far we have not been
able to fully understand the physical mechanism respon-
sible for the restoration of atomic coherence observed in
the case yo ——0.3.

chaos at steady state, but we have no a priori reason to ex-
clude this possibility. A more complete numerical
analysis or a treatment along the lines of Melnikov's
method will be needed to have a conclusive answer on
this point. Nonetheless, if the system is prepared in such
a way as to obtain a cooperation time r, of, say, the order
of nanoseconds, while keeping the decay times in the or-
der of hundreds of nanoseconds, the time-dependent spec-
trum' of the output signal is expected to exhibit chaotic
character in the region of frequencies centered around

The amplitude-modulated signal in such a case can
be realized by a mode-locked, synchronously pumped cw
dye laser.

When the chaotic transient is over, a cascading process
occurs through different phase-locked states. While, in
the absence of bias, stochasticity adds to incoherent pro-
cesses that tend to destroy atomic cooperativity, with bias
the survival of cooperativity is favored even at steady
state, up to 10% of the initial value. This effect is a
direct consequence of removal of degeneracy of the orbits,
leading to stronger asymmetry, as explained in the previ-
ous sections. The asymmetry has its counterpart in a
transmitted field e(t) oscillating around a constant value
(e ), different from zero also without a bias.

In the absence of an injected signal, it is known "that
the system can produce squeezed states, if prepared in
such a way as to oscillate along orbits close to the separa-
trix of the pendulum. It is reasonable to infer that such
orbits can in fact be stabilized by a small oscillating driv-

ing field. A complete characterization of the observed
transient chaos as well as an analysis of quantum effects
are left for future work.

VI. CONCLUDING REMARKS

We presented an analysis of the behavior of a high-
density gas of two-level atoms in a cavity, driven by a
coherent amplitude-modulated field, looking for the feasi-
bility of an experiment on the quasiperiodicity route to
chaos. We obtained that, provided the cooperation time
v, is much smaller than the atomic decay times, chaos can
be observed as a transient; we have not been able to find
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