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Quantum tunneling times for the model of Drummond and Walls describing dispersive optical bi-

stability are investigated for sma11 cavity damping. Without damping the system can be described

by an appropriate Hamilton operator. By expanding the density operator in eigenstates of this
Hamilton operator the stationary solution as well as the lowest eigenvalues are obtained from a Pau-
li master equation for the diagonal elements of the density matrix for small cavity damping. The
tunneling time follows from the lowest nonzero eigenvalue of this master equation. Expectation
values as well as the Q function for the stationary case are also presented.

I. INTRODUCTION

In optical bistability, as in every bistable system, one
has two nearly stable states. (For a recent review article
on optical bistability, see Ref. 1.) Without any fluctua-
tions no transitions between these two states are possible.
If, however, fluctuations are taken into account one has a
certain probability that the system jumps from one state
to the other. The simplest example is the classical
Brownian motion of a particle in a double-well potential.
Due to thermal excitations the particle in one well may
sometimes accumulate enough energy to cross the barrier
between the wells and thus move to the other well. In his
pioneering work Kramers treated this problem and espe-
cially calculated the escape time for this system. For a
quantum particle a transition out of one well may occur
even without thermal fluctuations. It is only necessary
that the wave function penetrates through the potential
barrier. This quantum tunneling in the presence of an ad-
ditional damping term is the topic of recent theoretical
and experimental research.

For absorptive optical bistability, escape times have
been calculated by Lugiato and co-workers (see Sec. 3.6 of
Ref. 1 for a review) and by Schenzle and Brand. In Ref.
1 the escape time is obtained from a suitable Fokker-
Planck equation with a fixed phase using essentially the
Krarners method. In Ref. 8 a variational method is used
to obtain the lowest nonzero eigenvalue of the Fokker-
Planck equation with the inclusion of the phase. The
lowest nonzero eigenvalue determines the escape time.
Drummond has remarked that various representations of
the density operator, i.e., P and Q functions lead to dif-
ferent Fokker-Planck equations which in turn lead to very
different escape times. In his paper Drummond also cal-
culates escape times for dispersive optical bistability. Be-
cause of the adiabatic approximation made in, however,
his result is only valid near the turning points of the out-
put field versus input field plot without fluctuations.

In the present paper we calculate the tunneling time nu-
merically for the model of Drummond and Walls'
describing dispersive optical bistability. In this model one
has transitions between the bistable states even for tem-
perature T=O. Thus the fluctuations causing the transi-

tion for T =0 are pure quantum fluctuations. The tun-
neling time is obtained from eigenvalues of the density
operator equation for the system. In the bistable region
one of the eigenvalues becomes very small. This eigen-
value then determines the tunneling time. The density
operator equation consists of a reversible part with a sys-
tem Hamilton operator and the irreversible part describ-
ing the cavity damping. The essential assumption in our
procedure is a small cavity damping. Expanding the den-
sity operator in eigenstates of the system Hamilton opera-
tor the lowest eigenvalue then follows from the Pauli mas-
ter equation for the diagonal elements of the density
operator. As we will show, we are able to determine the
lowest nonzero eigenvalue as well as some other low
eigenvalues in and outside the bistable region. In Ref. 10
the density operator equation was transformed to a
Fokker-Planck equation for the complex P function. "
Because detailed balance is valid, the complex P function
was obtained analytically for the stationary state. In the
present procedure the stationary solution is also obtained
from the Pauli master equation. To check the present
procedure stationary results following from the present
procedure are compared with the analytic results of Ref.
10.

The present paper is organized as follows. In Sec. II
the model and the basic equations are presented. In Sec.
III the classical equations without quantum fluctuations
are given. Next, in Sec. IV the eigenvalues and eigenfunc-
tions of the system Hamilton operator are calculated. In
Sec. V the density operator is expanded into eigenstates of
the system Hamilton operator leading to a Pauli master
equation for the diagonal elements. In Sec. VI the station-
ary solutions of this master equation, some expectation
values and the Q function are presented. In Sec. VIII the
eigenvalues as a function of the driving field are plotted
and the connection to the tunneling times is given.

II. MODEL AND BASIC EQUATIONS

A quantum theory for a nonlinear polarization model
describing dispersive optical bistability was developed by
Drummond and Walls' some time ago. The main in-
gredients of their model are
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(i) expanding the polarization up to third order,
(ii) including a coherent classical driving field,
(iii) adding losses due to cavity damping, and
(iv) making the rotating-wave approximation.
In this way they obtained the following master equation

for the density operator p for the light field inside the cav-
ity:

4

P= X LJ«] ~

j=1

L&[p]= i—5~[a a p]

Lz[p] = —iX"[a a,p], (2.1)

L3[p]= [(Ea E*a ),p—],
Lq[p]=ir'(2apa —pa a —a ap+2n, h[[a,p],a ]) .

Here a and a are the creation and annihilation operators
of the light field, hco=co, —col is the difference between
the cavity frequency co, and the frequency co

&
of the clas-

sical driving light field E, X" is the imaginary part of the
third-order susceptibiilty, a is the cavity damping con-
stant, and n,h the number of thermally excited optical
quanta. As shown in Ref. 12, the last term in the above
master equation has to be modified for high temperatures.
Because we treat the zero-temperature limit (n, h

——0), in
the results of Secs. VI and VII this modification is not im-
portant in the final results derived in this paper. As al-

ready mentioned in the introduction, for the stationary
state equation (2.1) was solved in Ref. 10 by using the

complex P function (see Chap. 10.6 of Ref. 11 for further
details of a complex P function). In this way a Fokker-
Planck equation for the two complex variables of the P
function was derived. As it was further shown in Ref. 10
the potential conditions are valid for this Fokker-Planck
equation and therefore analytic expression was given. The
stationary expectation values were obtained in terms of
hypergeometric series. For calculating tunneling times
numerically the Fokker-Planck equation for the complex
P function seems to be not very useful because of the
large number of variables (two independent complex ones
equal four real ones). As shown in Sec. VII we calculate
the tunneling time without using the complex P function.

Equation (2.1) can be written in the form

III. CLASSICAL EQUATION
WITHOUT FLUCTUATIONS

From the density operator equations (2.2) and (2.3)
without the damping terms we obtain for the amplitude

a =Tr(ap), a*=Tr(a p) (3.1)

the equation

a=i Qa 2i+—Tr(a a p)+iF . (3.2)

According to the classical assumption we replace the ex-
pectation values of the operators a a by the expectation
values of the amplitudes (3.1), i.e. ,

Tr(a a p) =a*a
and thus arrive at

ci =isa —2iga*aa+iF .

(3.3)

(3.4)

For F&0 (3.4) has the stationary solutions

~St ~ St+ iy
St,

y"=0, F= —Qx"+27(x")

(3.5)

(3.6)

For Q & 0 it is easily shown that the solution (3.6) is stable
for

(x") &Q/(6X)

or

(x")'& Q/(2X) (3.7)

and unstable for

Q/(6X) &(x") &Q/(2X) .

X =@ X~~

The stable and unstable stationary solutions of (3.4) are
plotted in Fig. 1. For Q &0 (3.4) possesses only one stable
solution.

p=i[H p]+~L;,[p],
H= —Qa a+Sat a F(a +a ), —

L;,[p]=2apa —pa a —a ap+ 2n, h [[a,p],a ],
with

(2.2)

(2.3)

(2.4)
lower br

branch xst

F=-
4g F

0= —Ace, g=g", ~=v', F= —iE . (2.5) upper branch x„

Here Q,g, a are used instead of —Ace,X",~' for conveni-
ence of notation, the last equation with real F in (2.5)
fixes the phase of the driving field E.

The first part on the right-hand side of (2.2) describes
the coherent motion of the density operator, the second
part the irreversible motion of it.

FIG. 1. Stationary values x" as a function of the driving
field F according to (3.6). The corresponding normalized quan-
tities of (3.8) are marked by a tilde. Solid line: stable stationary
solutions. Broken line: unstable stationary solutions.
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Normalization

By using the normalized time t, amplitude a, and driv-

ing field F defined by (0 & 0)

t =At, a =VX/Qa, F=( I IQ)v'XIQF

(3.4) is transformed to the normalized form

(3.8)

da/dt =iF+ia(1 —2a ' a), (3.9)

i.e., one obtains the same equation for every 7, F, 0 &0.
Because the intensity I=a*a scales according to ( & ) l

I=(IIIX)I, (3.10)

a large parameter ratio II/X leads to high photon num-
bers, i.e., to a nearly classical behavior.

IV. EIGENVALUES AND EIGENFUNCTIONS
OF THE HAMILTON OPERATOR

The eigenvalues E and the eigenstates
~

m ) of the
Hamilton operator (2.3)

50
0.5

H
~

m)=E ~m) (4.1)

are calculated by expanding the eigenstates
~

m ) into Fock
states

~

n )

(4.2)

Insertion of (2.3) into (4.1) and using

aa n =n n

a ~n)=~n ~n —1),
at

~

n) =Vn+1
~
n+1)

(4.3)
F 0.5

we easily obtain the following tridiagonal recurrence rela-
tion for the expansion coefficients c

FV n + Ic~ „+&+[E +On Xn (n ——1)]c

+FV n c „~——0 . (4.4)

Because of the tridiagonal structure the normalized real
eigenvectors c „,i.e.,

For zero field, eigenvalues and normalized eigenvectors
are given by the analytic expression

E = —Qm +Xm (m —1), c „=5 (4.7)

FIG. 2. Eigenvalues of the Hamilton operator (2.3) as a func-
tion of the normalized field (3.8) for +=1.1 (a), +=0.55 (b), and
0=10.

crn nc~ n =6~ ~
n=0

(4.5) If 0/g is an integer number the eigenvalues are degen-
erate

and eigenvalues E can easily be determined by using a
suitable computer subprogram for tridiagonal matrices.
The eigenvalues also follow as roots of the continued frac-
tion

E,=E, for m~+m2 ——1+0/7, m~ 0, m2 0 .

(4.8)

D(E)= E——1F
—10—E—

2F
—20+1&(2+—E

3F
—30+2' 3X—E (4.6)

The eigenvector can be obtained by using a stable up itera-
tion, see, for instance, Sec. IX of Ref. 13 for a summary
and further applications of the continued fraction method.
The eigenvalues E as a function of the driving field are
shown in Fig. 2.

For F&0 this degeneracy is lifted. As seen in Fig. 2 the
differences of the eigenvalues increase with increasing F.

For the parameters in Fig. 2 the expansion (4.2) was
truncated at n=50. Because of this truncation we cannot
treat the problem for very large A/7 ratios, i.e., for very
large photon numbers. It turns out that the number of
states which have to be included for properly treating the
ground state, must be about 2.5 times larger than II /X

For an approximate expression of the lowest eigenvalue,
see the Appendix.
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Matrix elements

In the derivation of the Pauli master equation in Sec. V
we need the matrix elements

p =21~ g w(1~m )p~ —g w(m ~l)p
I

=2)cg 8' gp(,
1

(5.6)

(m la I
l)=(l

I
a

I
m)= g Un+le „c~„+~,

n=0

(m la a lm)= g nc
n=1

(4.9)

where the matrix W ~ is given by

W, =
I

(m
I

a
I
t)

I

'( +nth)+ I
(m

I
a'l l)

—[(m
I
a a

I
m)(l+n, ~)+(m

I

aa
I
m)nth]5~1 .

As seen from (4.9) they follow immediately from the nor-
malized eigenvectors c „. For the calculation of gz(0) in
(6.4) we also need the matrix element

(m Iat a Im)=(m
I
[(a a) —a a] Im)

(5.7)

The transition probabilities w(l~m) in (5.6) read

w(l m)= l(m la fl)l (1+nh)+ I(m la I)l nh.
(5.&)

= g n(n —1)c
n =2

(4.10)
In order to verify the first part of (5.6) and

(5.9)
V. EXPANSION OF THE DENSITY OPERATOR

For vanishing ~ the system will remain for ever in an
eigenstate of H if it was initially in such a state. If ~ is
small but finite the irreversible term in (2.2) determines
the occupation number of that state. For small ~ the best
way to solve (2.2) seems to be to expand the density opera-
tor p into eigenstates

I
m) of the Hamilton operator H,

1.e.)

one has to use

g I
(1

f
a

I
m)

I
= g (m

I

at
I
l)(l

I
a

f
m)

m at+ 1 (llalm)
1

=(m fata lm) (5.10)
P= X I m)P p(p I P p=(m IP p)

m, p

(5.1)

Insertion of (5.1) into (2.2) with H and L;„given by (2.3)
and (2.4) leads to

Pmp ~ (Etn +p )Pmp ++g ~mpqrPqr
q, r

M zq„——2(m la lq)(p la
I
r) —(p fata I

r)5

—(m fata I
q)5 „

+2nh[(m
I
a

I
q)(p

I

a
I
r)+(m

I

at
I
q)(p

I

at
I
r)

—(p Iaat
I
r)5 q (m

I

ata—
I q)5~, ] .

(5.2)

(5.3)

I pm~ I

= W(Icl
I E~ E~ I

) 6 (diagonal elem—ents) .

(5.4)

Therefore we can also neglect the off-diagonal elements in
the right-hand side of (5.2) for the equations with m =p if
~ is much smaller than the differences between the eigen-
values E . Introducing the occupation probability p of
the state

I
m)

pm =pmm (5.5)

we thus obtain for p the Pauli master equation

We now want to restrict ourselves to the slow motion of
the density operator p (time scale of the order I/1~). Then

p z is of the order ~p z. Furthermore, it follows from
the nondiagonal elements of (5.2) that the nondiagonal
elements m &p are of the order

and a similar expression for gl I
(I

I

a
I
m)

I
. With the

numerical procedure described in Sec. IV it is an easy
matter to obtain the transition probabilities w(l~m) and
the transition matrix W

The stationary solution of (5.6) could easily be obtained
if detailed balance would be valid, i.e.,

w (I~m )p("——w (m ~l)p~ (5.11)

A numerical check with the stationary solution showed,
however, that the detailed balance condition (5.11) is not
valid for driving fields different from zero.

In the results of the following two sections we have
neglected the number of thermal quanta n, h in (5.6) and
(5.7).

VI. RESULTS FOR THE STATIONARY STATE

Though our main aim in this paper is the determination
of the tunneling times, it seems to be appropriate to calcu-
late stationary solutions and expectation values with our
procedure as well. Firstly, a comparison with the analyti-
cal results of Ref. 10 gives a check of the presented
method. Secondly, it will lead to the conclusion that for
the damping constant used in Ref. 10 our low-damping-
constant procedure is already very well applicable. There-
fore the calculation of the tunneling times should work
for this damping constant also very well.

The stationary solution of (5.6) is obtained by calculat-
ing the eigenvector of the matrix W ~ belonging to the
stationary eigenvalue X„=O. (Because of g OW ~

——0 a
stationary solution must always exist, see Ref. 14.) For
the calculation of the results in the present paper it was
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r=P fo}}o~f,
Im)(m

I

i.e.,

1733

(6.1)

~~~s™
I
a

I
m),

(a a)= ~~~(m I
a a

I
m)

(6.2)

(6.3)

g (p)
(a ataa )

XJ m(m
I

at a
m

1
~

st}
n '

0.5

XP (
I

t
I

)
m

(6.4)

The Procedure
occurring in (6 2) 6

«ating the mat~

and (4}p
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abrupt change and for
~

F
~

larger than F„ the curve ap-
proximately agrees with the classical upper branch of Fig.
1. For the larger value 0/7=0. 55 in Fig. 4(b) the transi-
tion is more abrupt and it better coincides with the classi-
cal curve than for the lower value II/X=10/1. 1 in Fig.
4(a). Comparing Fig. 4(b) with the result of Fig. 1 of Ref.
10,

~
(a )

~

nearly agrees with the corresponding curve in
Fig. 1 of Ref. 10. The small discrepancies occur because
Fig. 1 of Ref. 10 is calculated with a finite Ir. If in (5.17)
of Ref. 10 s is made very small, both results agree within
the accuracy of the plot. In Fig. 5(a) and 5(b) the intensi-

ty (a a ) and the amplitude squared
~
(a )

~

is plotted.
Both curves approximately agree for driving fields below
and above the transition field, near the transition field F„,
however, the deviations become very large. This means of
course that near F„ the problem cannot be treated by the
classical equations, outside this transition region the clas-
sical results for the lower branch (

~

F
~
&F„)and for the

upper branch (
~

F
~
&F„) lead to very good approxima-

tions for the stationary expectation values. The agree-
ment is better in Fig. 5(b) than in Fig. 5(a) because we

10

0.25

FIG. 6. The correlation function (6.4) as a function of the
normalized field F for 0=10 and +=0.55.

have the larger value of II/X in Fig. 5(b).
The correlation function gz(0) is shown in Fig. 6 as a

function of the driving field. As seen one gets a high peak
[variance is g2(0) —I] at the transition field F=F,„.

B. Determination of the Q function

Because of a possible squeezing of the field amplitude'
the Glauber-Sudarshan P function does not always exist.
The Q function, however, does. It is defined by

Q(a) = (a
~ p ~

a), (6.5)

F 0.5
where

~

a) is the coherent state. The Q function is posi-
tive everywhere. Every antinormally ordered expectation
value can be evaluated with the help of the Q function ac-
cording to

(a "a™)= — a"a* Q(a)d2a .1
(6.6)

Because of (6.1) we have

Q(a)= gp"
) (a

~

m) ( (6.7)

Using (4.2) and

en
(a~n)= e

n!
we obtain for the matrix elements

n en'
a m = c „c „,e

(n!n'!)'~2

(6.8)

(6.9)

0 .5

FIG. 5. The normalized intensity (solid line) and the ampli-
tude squared (broken line) as a function of the normalized field
F for&=1.1 (a), +=0.55 (b), and 0, =10.

The contour lines of the Q function in the complex a
plane for four typical driving fields are shown in Fig. 7.
If

~

F
~

is smaller than the transition field F„we have ap-
proximately a Gaussian distribution with circular symme-
try centered around aI ——xi" where xI" is the solution of
the classical equation for the lower branch
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. (b)

Re(a) Re(a)

. c)

A ili'

'jV)"

0
E

Re(a)
E L

Re(a)

FIG. 7. Contour lines of the Q(a) function (6.5) for the normalized forces F=0. 1 (a), F=0.142 (b), F=0.5 (c), F=5.0 (d), and
for A=10, 1 =0.55. The contour lines start at Q =0. 1 [outermost line in (a), (c), (d) or lines in (b)] and have a separation of
bQ=0. 1.

F 0.5 0.5

FIG. 8. The five lowest nonzero eigenvalues A, of the matrix (5.7) for +=1.1 (a), +=0.55 (b), n, h ——0 and 0=10 as a function of
the normalized field F.
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—~a —x"
~g(a) =e

i.e., the system is approximately in the coherent state

(6.10)
master equation (5.6) for the diagonal elements of the den-
sity operator. These in turn are given by the negative
eigenvalues k„of the matrix W I multiplied with 21~, i.e.,

p=
I t'ai & &~i

I

. (6.11)

VII. EIGENVALUES AND TUNNELING TIME

If the energy differences E —Ez of the Hamilton
operator (2.3) are much larger than the cavity damping
constant ~ the low eigenvalues of the density operator
equation (2.2) are given by the eigenvalues A, of the Pauli

10

In the transition region another peak appears centered ap-
proximately at x„", where x„" is the upper branch of the
classical solution in Fig. 1. Instead of having a circular
symmetry the contour lines of the right peak are
earshaped. For driving fields in the transition region,
where one has two peaks as in Fig. 7(b), the variance has,
of course, a very large value, compare Fig. 6. For larger
fields the left peak disappears and the contour lines are of
an elliptical shape. By comparing Figs. 7(c) and 7(d) there
is the indication that even for larger driving fields one
again gets a circular symmetry. The variance in the real
quadrature phase (a+a )/2 is obviously smaller than in
the imaginary phase (a —a )/(2i) for larger driving fields.

A. =2K'.p

g W I p I"'———A,~'"' .
I

(7.1)

(7.2)

A. Connection to the tunneling time

The lowest nonzero eigenvalue is connected to the tun-
neling time of the transition from the lower branch to the
upper branch of the semic1assical curve in Fig. 1 and vice
versa. This can be seen as follows. The matrix elements
of the amplitude of the states with the lowest eigenvalue,
i.e., (1

~

a
~

1), (2
~

a
~

2), and (3
~

a
~

3) are nearly equal to
the amplitude x„" of the classical upper branch whereas
the matrix element of the amplitude for the state which
had evolved for F=0 from the vacuum state, i.e.,
(11

~

a
~

ll) and (20
~

a
~

20) for the parameters of Figs.
3(a) and 3(b), is nearly equal to the amplitude x~" of the
classical lower branch. Thus the probabilities to find the
system in the upper (u) or lower (I) branch are given by

The eigenvalues A,
&

are shown in Figs. 8 and 9 as a func-
tion of the driving field F. In the bistability region
0&

~

F
~

&Fo ——0.2722 the lowest nonzero eigenvalue be-
comes very small. Furthermore, it is very well separated
from the other larger ones. It reaches its lowest value
near the transition field F„as best seen from the logarith-
mic plots in Fig. 9. The lowest nonzero eigenvalue
reaches lower values for the larger 0/7 parameter as seen
by comparing Figs. 9(a) and 9(b).

Pu =P1+PZ+P3 ~

PI =P11

pI =p22 ~

(7.3)

10
(a) see Fig. 3(a) for p» and 3(b) for p22. The time-dependent

probabilities p (t) and therefore also p„(t) and p~(t) can
be expanded into eigenstates p

'"' of the matrix 8' I,

p (t)=p" + g c'"'pg'e ", m =1,2, 3, . . .
p=1

p. (t)=p."+ g c "'p'."'e
@=1

(7.4)

So-' =

(b)

p&(t) =p,"+ g c'"~pp'e
@=1

Here the constants c'"' depend on the initial conditions.
The p '„"' and p I"' are connected to the eigenvectors p g'
according to (7.3).

If we wait until all the exponentials with the exception
of the first one have vanished [i.e., exp( —2ak2t) « 1] the
solutions for p„and p~ read

FICx. 9. Logarithmic plot of the eigenvalues of Fig. 8.
( 1 )~ ( 1 )

—2K' if
p, (t)=pi +c p& e (7.5)
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Some of the eigenvectors P
' ' are plotted in Fig. 10. As is

seen in this figure p '„" and p ~

' are approximately given
by

(7.6)

in the bistability region. It follows from (7.5) and (7.6)
that p„(t) and pr(t) obey the two-state master equation

p„=—w(u —+l)p„+w (1~u)pI,

p~ =w (u —+l)p„—w (1~u )pi, (7.7)

where the transition rates from the upper to the lower
branch and vice versa are given by

w (u ~I ) = 2~A, ~~",

w(l~u) =2m.ktp„" . (7.&)

10
0 F 0.25

The tunneling times from the upper to the lower branch
and vice versa are the inverse rates, i.e.,

T(u~1)= 1/w(u~l), T(l~u)=1/w(l~u) . (7.9)

The rates w(u —+1)/2K and w(l~u)/2/c are plotted in

-(o W
10

F 0.25

0.5

FIG. 11. Logarithmic plot of the eigenvalue A. I multiplied by
p„" (right curve) or p~" (left curve), i.e., the transition rates from
the lower to the upper branch or vice versa divided by 2~, see
(7.8). The parameters are the same as in Fig. 8.

(b)

Fig. 11. For driving fields well below (above) the transi-
tion field F„ the transition rate from the upper (lower)
branch to the lower (upper) one is much larger than the
rate from the lower (upper) branch to the upper (lower)
one. Well below and well above F„ the transition rates
w(u~l) and w(l~u) are connected to the first eigen-
value A. ~ by

w(u ~1)= 1/T(u ~1)=2~k„!F ! (F„
w(l~u)=1 /T(l~u)=2~A ,I!F!&F« .

(7.10)

At the transition point F„both transition rates become
equal and we have (pi" ——p„"= —,)

w(u ~1)=w (1~u) =xA &, ! F ! =F„. (7.11)

0.5
FIG. 10. The eigenvector p

"' of the matrix 8 I with the
lowest nonzero eigenvalue A. I as a function of the normalized
field F~ for +=1.1 (a), +=0.55 (b), and 0=10 (solid lines).
The sum p '„"=p 'I" + p q" +p 3" is also shown (broken line).

Near the end of the bistability region, i.e., for F=O and

! F!=Fo, the lowest nonzero eigenvalue is no longer
much smaller than the other eigenvalues. In this case the
concept of a tunneling process with the two tunneling
times T(u~1) and T(l~u) breaks down.

The rates w(u~l), w(l~u) and therefore also the
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times T(u —+1), T(l~u) have approximately an exponen-
tial dependence on F~ 0 in the bistable region

The minimum value off(a) is given by

a=n„ (A4)
1/T(u ~l) =w (u ~l) —exp( —aF),
1/T(l~u) =w (l~u)-exp[ b(—FO —F)] . (7.12)

where a„=x„"is the upper branch in Fig. 1, compare (3.5)
and (3.6). Using the normalization (3.8) we thus obtain

However, small additional ripples occur for the tunneling
rates as well as for the lowest nonzero eigenvalue as best
seen in the left parts of Figs. 9(a) and 11(a). These ripples
seem to be correlated with steplike change of the higher
eigenvalues.

B. Discussion of the other eigenvalues

In the bistability region, where the first nonzero eigen-
value X~ becomes very small, the next eigenvalue takes
over the value of A,

&
outside the bistability region. The

third eigenvalue goes down in two steps to the value the
first eigenvalue has outside the bistability region, leading
to a nearly twofold degeneracy similar as it is the case for
the eigenvalues A.o

——0 and A, &. Similar features are ob-
served for the higher eigenvalues. A similar steplike
change has been observed in the bistability region for a
classical Brownian motion of a particle in a tilted periodic
potential, see Refs. 16 and 17 or Figs. 11.43a and 11.46 of
Ref. 13.

Note added in proof. For absorptive optical bistability
eigenvalues have also been calculated by Englund et al. [J.
C. Englund, W. C. Schieve, W. Zurek, and R. F. Gragg,
in Optical Bistability, edited by C. M. Bowden, M. Ciftan,
and H. R. Robl (Plenum, New York, 1981)].
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E) &f;„=f(a„)=(Q/X)(x'„') [1—3(x'„') ], (A5)

F= —x '„'+2(x„") (A6)

Elimination of x '„' leads approximately to the first eigen-
value E&(F)=f;„. The other solution with Bf/Ba=O
leads to a=a~ where aI ——x ~' is the lower branch in Fig.
1. Replacing in (A5) and (A6) x '„' by x ~' then leads ap-
proximately to

E»(F)=f(at)
E2o(F)=f (aI ),

(A7)

see Figs. 2(a) and 2(b), respectively. (Obviously no exact
upper bound can be given in this case. ) Calculating the
variance of H for the stationary states

I a„) and
I a~ ) we

obtain

(A8)

Thus the coherent states
I a„) and

I
ar) are not exact

eigenstates of H for
I
a~

I
&0 (

I a„
I

is always larger
than zero). Because for small values of

I

F I, faI I
is

very small,
I
aI) is nearly an eigenstate of H for small

I

F
I

. For the lower branch the ratio b,H/E is of the or-
der v 2+/A for small F whereas for the upper branch
bH/E is of the order (v'2/3)(2X/F) ~ for large F. Thus
in the lower branch for small F and in the upper branch
for large F

I
a~ ) and

I
a„) can be used as approximate

eigenstates. For these eigenstates the matrix elements are
given by

APPENDIX: APPROXIMATE EXPRESSION
FOR THE LOWEST EIGENVALUE

&ag
I

a
I
aI & =xP', (a„

I
a

I a„&=x„" .

Because of

(A9)

The Hamilton operator (2.3) is an Hermitian operator.
Therefore the lowest eigenvalue and its eigenfunction 11

follow from the variational principle
and

&az la a lai&=
I &az la Iar& I

Using the coherent state

as a trial function, we obtain

Ei f(a)= —A
I
a

I
+X

I
a

I

—F(a+a*) .

(A 1)

(A2)

(A3)

(a„ fa a fa„)=
I (a„ fa fa„) I

=x„"

the master equation (5.6) has stationary solutions where
only the occupation of one of these states is equal to one.
For small F and large 0/7 and for large F we thus obtain
for (a ) the classical result of the lower branch (small F)
and of the upper branch (large F).
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