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Theory of quantum beats in optical transmission-correlation and pump-probe measurements
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A full density-matrix theory for quantum beats in optical transmission-correlation or pump-probe
type of experiments is developed. The model used is a three-level system with split excited-state lev-
els. It is demonstrated on the basis of perturbation theory that quantum beats should be observable
in such experiments. Theoretical and numerical results are compared with the complex details, in-
cluding damped sinusoidal decays, observed in recent femtosecond relaxation studies of large organ-
ic dye molecules. It is also shown that there is no separately identifiable decay component corre-
sponding to any homogeneous or inhomogeneous optical dephasing time in such experiments. Simi-
lar beating should also be observable in ultrafast spectroscopy using incoherent light and in Raman-
type energy-level configurations where the ground state contains split levels.

I. INTRODUCTION

Recent femtosecond transmission-correlation' and
pump-probe studies of various organic dye molecules re-
vealed surprising details in the relaxation dynamics of
such large molecules. In addition to previously known pi-
cosecond processes, observations of initial exponential de-
cays faster than 100 fsec and damped sinusoidal oscilla-
tions with a period on the order of 150 fsec were reported.
It was suggested' that these damped oscillations might
possibly represent quantum beats. The subject of quan-
tum beats in the fluorescent light emitted by an atom or
a molecule prepared in a coherent superposition of states
by a pulse excitation has a 1ong history, and the theoreti-
cal basis for the effect is well established. In conventional
quantum-beat experiments, the fluorescence emitted is
directly detected and the quantum beats show up as
modulations superimposed on the exponential decay. The
fastest beat that can be observed this way is generally on
the order of 150 psec, limited by the response time of the
detection system. The conjecture that quantum beats on a
femtosecond time scale could be seen in simple optical
transmission type of experiments involving molecules sug-
gests the need to demonstrate theoretically that this is
indeed possible in principle. A detailed theory of quan-
tum beats in transmission-correlation or pump-probe type
of measurements is developed in this paper which takes
full account of the effect of finite homogeneous relaxation
rate T2

' and inhomogeneous broadening for the optical
transitions. It shows that, as a general technique for ob-
serving quantum beats and measuring the corresponding
homogeneous relaxation rate T2,„'& for the sublevels in the
excited and ground-state manifolds involved in the optical
transitions, the transmission-correlation or pump-probe
type of techniques offer an alternative to the conventional
fluorescence type of measurements or other techniques
such as those based upon photon-echoes ' or polarization
spectroscopy.

The model we consider is a three-level system as shown

schematically in Fig. 1. The excited state is assumed to
consist of two sublevels 2 and 3. Optical transitions from
the ground-state level 1 to both levels 2 and 3 are allowed.
The system is initially prepared by a short optical pulse
with a coherence width wider than the transition frequen-
cy v3$ and spans the split states

~

2 ) and
~

3 ) . In conven-
tional fluorescence-type quantum-beat experiments, the
fluorescent light emitted after this initial pulse excitation
is detected directly. The fluorescence decay is limited by
the population relaxation time T& for the optical transi-
tions 3~1 and 2~1. If the relaxation time T2,„& for the
"atomic coherence" between the sublevels 2 and 3 is long
compared with the excitation pulse width ~& and the oscil-
lation period corresponding to the sublevel splitting v3z,
the fluorescence will show a sinusoidal modulation at v32
with a damping time T2,„&, which is the quantum beat.
This type of quantum beat can be seen regardless of the
extent of inhomogeneous broadening or the homogeneous
relaxation rate Tz for the optical transitions 3~1 and
2~1. Such a quantum-beat experiment allows one to

1
FIG. 1. The schematic energy diagram of a three-level sys-

tem. The excited state consists of two sublevels 3 and 2.
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measure the level splitting v32 and the corresponding re-
laxation time T2,„b in the presence of possibly very large
optical-transition linewidths due to T2 and the inhomo-
geneous broadening. However, because the beats are first
measured as a transient feature on the fluorescence decay,
the time resolution is limited by the response time of the
detection system used to measure the fluorescence decay,
which is typically in the picosecond to nanosecond range.

In the transmission-correlation or pump-probe type of
experiments, the dynamics of the excited populations are
probed by successively delayed short pulses with a pulse
width shorter than all the dynamic features to be mea-
sured. More specifically, in the transmission-correlation
type of experiments, for example, the sample is excited by
two identical trains of repetitive ultrashort pulses with a
variable delay v. between the two. The pulse repetition
time ~„„is generally long compared to all the transient
features of interest but short compared to the integration
time of the detection system. In the experiment both
trains of pulses are sent collinearly through the sample to
be measured. The time-averaged total transmitted power
of both trains is measured as a function of the pulse delay

The measurement itself is basically a dc measurement
and the response time of the detector is not a limitation.
The quantum beats, if there are any, wi11 show up
in the measured transmitted power as a function of ~
in the form of a damped sinusoidal oscillation

Tgsub-e '" cos(co32r) near zero delay, again regardless
of the extent of homogeneous or inhomogeneous broaden-
ing of the optical transitions 3~1 and 2~1. The time
resolution depends upon the pulse width and the resolu-
tion of the time delay between the two pulse trains. It is
presently on the order of 10 fsec.

Physically, this type of quantum beat can be understood
qualitatively as follows. ' The first pulse at t =0 prepares
the system in a coherent superposition of states as in the
fiuorescence-type quantum-beat experiments. Let this ini-
tial state at t =0 be

I
a &=a

I
»+pI »

where a and p depend upon the optical transition mo-
ments between the states 1 and 2 and 1 and 3, and the en-
ergy of the first excitation pulse. At a later time t =~
larger than the pulse width ~~, this coherent superposition
state becomes

~

a(r))=a(r)e ' ~2)+p(r)e ' ~3) .

Projecting
~

a(r) ) back onto
~

a ) and with proper nor-
malization gives the fraction of the excited-state popula-
tion

(
(a

~

a(r) ) [ I ( (a
~

a ) ), that can be optically cou-
pled to the ground state

~

I ) at time r. Through the sa-
turation effect, the absorption or transmission of the de-
layed pulse at ~ will be affected by the change in the rate
of absorption, proportional to

~
(a

~
a(r)) ~, induced by

the first pulse, which contains a modulation term

& I'.d~&a(r)p (r)

Taking relaxation of the coherence between levels 2 and 3
into account, the statistically averaged a(r)p'(r) factor—«~2-bdecays as e "" . This leads to a damped sinusoidal

modulation term in the absorption proportional to—~/T2sube ""'cos(co32r). A full density-matrix treatment of
this problem allowing for a finite pulse width, homogene-
ous optical relaxation rate T2 ', inhomogeneous broaden-
ing, population decay, and pulse overlap is developed in
Sec. II for both the transmission-correlation and pump-
probe types of experiments.

Quantum beats have also been seen in photon-echo or
polarization-spectroscopy type of experiments. ' In
fact, Golub and Mossberg' have reported seeing beats at
140 fsec in Rb vapor using incoherent light. The key
difference between the photon-echo type of experiments
and those discussed in this paper is that quantum beats in
the echo type of experiments can be seen only if the
homogeneous relaxation rate T2

' for the optical transi-
tion is small compared to the beat frequency. There is no
such restriction in the transmission-correlation or pump-
probe type of experiments. The time-resolved polarization
spectroscopy has been applied extensively to atomic sys-
tems in the nanosecond and picosecond time domains.
The optical transmission-correlation and pump-probe ex-
periments and the corresponding theory open the way for
studying ultrafast molecular dynamics and femtosecond
time-domain spectroscopy.

II. THEORY

A. General results

There are three main issues that need to be addressed
beyond the simple considerations given in Sec. I. First, it
must be shown that the beat signal is not masked by inho-
mogeneous broadening of the optical transitions 3-1 and
2-1. Second, whether the transmission-correlation or
pump-probe type of measurements give any information
on the homogeneous relaxation rate Tz ' for the optical
transitions. Third, it is we11 known that in such measure-
ments there is a "coherent artifact" contribution to the
measured signal when the two pulses overlap. This
coherent artifact significantly complicates ' the interpre-
tation of the data for relaxation processes on the order of
or faster than the pulse width. Previous theories of this
artifact all assumed infinitely fast dephasing time and no
quantum beat. It is important to know how a finite T2,
inhomogeneous broadening, and level-splitting affect the
coherent artifact. For these, a full density-matrix treat-
ment is needed.

We consider the basic model shown in Fig. 1. As for
the excitation, the envelope of the electric field is assumed
for the moment to have an arbitrary shape. Later we con-
sider the case of time-delayed two equal pulses. The equa-
tion of motion for the corresponding 3 & 3 density matrix
1s

dp
dt

=—[p,A o+A,„,]+(decay term),

where

0 Ae)2) 0

0 0 0
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and

0 0 @31

A,„,= —[8'(t)e '"'+c.c.] 0

P13 712

PZ1 (3)

The dipole matrix elements p31 and pz1 are both nonzero
in general.

The decay term of Eq. (1) consists of four parts. The
excited-state populations p33 and pzz decay with the same
rate y to other levels. The ground-state recovery time is
much longer than the experimental time scale and can be
neglected. The optical coherence components p» and pz1
relax with the rate Tz ', and the excited-state sublevel
coherence component p32 decays with Tz,„b. The decay
terms, therefore, are summarized as

The pump-and-probe signal or the transmission-
correlation signal will be calculated according to the fol-
lowing procedure. First, Eq. (1) is solved using the per-
turbation theory'"' for each component up to the third
order. Next, the third-order solutions for the density-
matrix elements are averaged over the inhomogeneous
spectrum of the optical transition frequencies, which we
assume to be Gaussian; for example,

I —(~3] ~)2/4~2
g(co31)= e

2av w

The resulting third-order density-matrix elements p31' and
pz1' give the desired macroscopic polarization P,

P= Tr(pp)

d
dt pj = —ppJJ, J =2, 3

decay

d
P11

decay

dt pj 1
= —pj1/Tz, J =2,3

decay

P32 P32irzsub .
decay

—P31P13+P21P12+C. C. ,

which in turn gives the change in the transmitted power S
through the medium

S= — dtE t —P t
d
dt

where the horizontal bar denotes time averaging over an
optical cycle. Accordingly, the signal S is, from Eqs.
(1)—(7),

2~PO IP31 I + IPZ( I
'2 4 —(lz —t()ITz —u (fz —t(1'

dtz dt, 8" tz) tf'(t()e

$3

x Iw*(t4)&(t3)&*(tz)&(t()( lp» I'+ lp21I")

2 ] ~ 3 t2)2 2

Xe (e ' +1)

+ &*(t4)«t3) «tz) &*(t()(
I p» I

'+
I pz( I

')
2 2

Xe
—O (t4 —t3 t2+t] ) f(t3 12)

(e +1)

+2&*(t )«t )&'(t»«t )
I p I'lp

X cso[c03 (t22 t1 )]

+28'*(t4) 8'(t3 ) 8'(t, )8'*(t, )
I p» I

'
I p„ I

'e

X S[C&O32( tz —tl )]

+2+ (t4)+(t3)@ (t2)+(tl )
I p31 I

—cT ( t4 —t3 + t2 —t ]
—( t3 —t2 )/T2sU2 2

Xe COS[CO32(t3 tz )]

+2+ (t4)+(t3)+(tz)@ (tl ) Ip31 I

'
lp21

—o ( t4 —t3 —t2 + t ] ) —( t3 —t2 )/T2sUj
2 2

Xe COS[C032(t3 t1)] I
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The above expression gives the most general result for any
arbitrary-shaped pulse excitation. The first term gives the
linear absorption and the rest corresponds to the nonlinear
absorption. Among the nonlinear absorption terms, the
last two quantum-beat terms are of particular interest. In
the following sections, this general result is analyzed for
some specific cases.

B.Transmission-correlation measurement

We now consider specifically the transmission-
correlation measurement which makes use of two pulses
of equal amplitude, one delayed by ~ from the other. The
electric field envelope in this case is written as

where e(t) is assumed to be real. The signal is obtained by
substituting Eq. (9) into Eq. (8).

It should be emphasized here that the signal is analyzed
as a function of the delay time r. The terms which are in-
dependent of ~ only gives a constant background and will
be of no consequence and, hence, not considered further.
Also notice the existence of the fringe terms. ' lf a term
has an exponential factor corresponding to e-+' ' or
e —', it will oscillate very rapidly as 7 is varied and will
be averaged out to zero in the experiment; these terms
should be neglected also. Following these considerations,
the signal STc for the transmission-correlation measure-
ment or the transmission-correlation peak (TCP) (Ref. 7)
is derived from Eq. (9) as

8'(t) =e(t)+e(t —r)e'" (9)

X [e(t& )e(t2)e(t3 7)e(t4 r)—(N+ +—N +C+ +C +8+ +8 )

+e(t) —r)e(tp —T)e(t~ )e(t4)(N+ +N +C+ +C +8+ +8 )

+e(t, )e(tz ~)e(t3 ~)e(t4)(N+ +C+ +8+ )

+e(t )
—r)e(t2 )e(t3 )e(t4 r)(N+ + C—+ +8+ )

+ e(t& )e(t2 —7 )e(t3 )e(t4 'r)(N +C—+8 )

+e(t( ~)e(t2)e(t3 r)e(t4)(N —+C +8 )], (10)

where

N+ =(
I u 131'+

I s 21 I

')e

0t~t2 7p
I 1

tptyVp Ot, t&'7p

X cos[co32(t2 t, )], —
2 2 [ 4 '3+ 'z '& ] ('3 '28+ =2 ls'311 lz211 e

1 st term

tg 'Y+Yp

2nd term

7t2tp

3rd term

7+Vp

X cos[co»(t3 t2 )],
2 2 ['4 ~3 'Z+'& ~ ['3 '2]~T2sub2 28- =2 lu311 la 211 e

X cos[co32(t3 t~ )] .

I I

tP tP'7p 0t~ tp t2 ty7p

The six terms of Eq. (10) are illustrated in Fig. 2. (No-
tice the time ordering t& & t2 & t3 & t4. ) Each term is com-
posed of simply decaying nonbeating components X+,
nondecaying components C+, and, finally, beating com-
ponents B+. It is clear from the figure that the terms
other than the first term disappear when the two pulses
are well separated. Thus, the first term gives the most im-
portant contribution to the quantum-beat signal. On the

4th term

ty {t+&p

5th term

'Tt, tp 7+7p

6th term

FIG. 2. Schematic illustration of the ordering of the time
variables in Eq. (10). It should be emphasized that the time or-
dering is always t& &t2&t3 &t4. 7 is arbitrary. If 7) 7p terms
2—6 in the figure vanish. If 7 & 7p, all six terms are nonzero.
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other hand, when the pulses overlap, all the terms become
nonzero and produce the initial spike call coherent ar-
tifact.

Physically, the first term of Eq. (10) or Fig. 2 shows
that the induced polarization P which leads to the absorp-
tion of the second (delayed) pulse is proportional to
P~E~E2, where E& and E2 are the amplitudes of the
first and the second pulses, respectively. The role of the
first pulse is to create the excited-state population and the
sublevel coherence, if there is any, and the decay
(y ', Tq, „b) of these quantities is monitored by the second
pulse as a function of the delay time ~, for ~ larger than
the pulse width ~z.

There is an intrinsic difference between the transmis-
sion type of experiments as discussed here, and the
photon-echo type of experiments, although both make use
of a pair of short optical pulses and are due to the third-
order nonlinear optical polarization P ~E . In photon-
echo experiments, the role of the first pulse is to create an

optical coherence and its decay ( T2 ) is monitored as a
function of ~. Therefore, the macroscopic polarization P,
in this case, is proportional to E&Ez instead of E~E2.
The echo is observed at a delay time on the order of or
shorter than T2. The behavior of Eq. (10) will be dis-
cussed in detail later.

C. Pump-probe measurement

In usual pump-probe experiments, the total electric
field is given as

8'(t) =e(t)-+a~„b,e(t —r)e' ', (12)

where the coefficient ap b is small compared to 1. The
general result of Eq. (8) is slightly modified in this case
because only the transmitted power of the probe beam, not
both beams, is measured. This corresponds to including
the probe field only in the E(t) appearing in Eq. (7). Cal-
culation similar to that in Sec. II B leads to

~POO robeSpp(r)= f dt4 f dt3 f 'dr, f 'di, e

X [e( t
&

) e( t2 )e( t 3 r) E( t& r—)(N+ +—N +C+ +C +B+ +B )

+ E(t
&

r)e(tz )e(t3 )e(—t4 —r)(N+ +C+ +B+ )

+e(t] )e(&2 —T)E(r3)e(&4 —7 )(N +C +B )]

for the pump-probe signal Spp(r). We notice that the
number of terms is reduced to a half in this case. For the
special case where ep„b, ——1, there is a very simple rela-
tionship between the transmission-correlation Szc and the
pump-probe Spp signals:

Src(7 ) =Spp(r)+Spp( —r) . (14)

In this section, we discuss some special cases related to
the transmission-correlation measurement [Eqs. (10) and
(11)].

I Effect ofpulse. width

One of the few examples where Eq. (10) can be evaluat-
ed analytically is the case when the pulse e(t) is given by
the delta function:

e( t) =@05(t), (15)

but the homogeneous or inhomogeneous optical dephasing
time T2 and T2 (determined from cr ') can be arbitrary.
From Eq. (10) it is clear that in this case only the first
term survives as the signal. The analytical solution in this

This conclusion is rather natural since the transmission-
correlation measurement is simply a symmetrized version
of the pump-probe measurement with respect to the delay
time w.

D. Discussions

case is

Src(r) "[(
I p3i '+

I p2i I
')e

+2
I p31 I

'
I p» I

'e ""'cos(~32+)) (16)

2. Effect offinite dephasing times T2 and T2

It is important to consider how optical dephasing times
T2 and T2 affect the signal line shape if they are intro-

This shows that the signal consists of two terms: the sin-
gle exponential decay of rate y, and the damped sinusoid
with oscillation frequency co32. As might be expected, the
optical dephasing times T2 and T2 do not show up in the
expression. The quantum-beat component becomes most
pronounced when the two matrix elements ~p» ~

and

j pqi are equal.
For finite pulse widths, the integrals in Eq. (10) can be

evaluated only numerically. We consider first the case
when T2 and T2 are equal to zero so that the finite
pulse-length effect can be seen clearly. The corresponding
signal lineshapes or the transmission-correlation peaks for
different pulse widths are shown in Fig. 3. Here and
henceforth we assume that the pulse shape is gaussian. It
can be seen that the main features remain the same, ex-
cept that the oscillation amplitude is reduced as the pulse
width exceeds the oscillation period. This is consistent
with the experimental observation reported in Ref. 1.
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eral problem is very complicated. Equation (10) can only
be evaluated numerically. Various numerical examples
obtained using a Cray computer are shown in Fig. 4.
When two pulses overlap, the numerical results in Fig. 4
show that, generally, the magnitude of the coherent spike
is higher for shorter dephasing times. For longer dephas-
ing times, it is lower and the peak at ~=0 may even be-
come a dip instead of a peak for very long dephasing
times. The shape of the quantum-beat signal and the
width of the coherent spike region do not depend on the
dephasing times, however. Thus, it is difficult to obtain
any direct information on the values of T2 or Tz from
the signal line shape. Decay times y

' associated with
the populations of some levels, the sublevel splitting co32,
and coherence decay time T2,„b are the principal informa-
tion that can be obtained from the transmission-
correlation type of experiments.

Q
C
CP

M

3. Comparison with experiments

In order to compare with the experimental result of
Ref. 1, Eq. (10) is analyzed numerically using constants
corresponding to the results for malachite green; that is,
&~=40 fsec, v32 ——150 fsec, T2,„b ——190 fsec, 1/@=4.8

psec, and 1/o. =6 fsec. The value of Tz is unknown.
However, according to the discussion given in Sec. II D2,
the signal line shape is relatively independent of T2, ex-
cept for the magnitude of the coherent spike. We arbi-
trarily assume T2 to be 100 fsec. Reference 1 also report-
ed a very fast relaxation component (60 fsec) in addition
to the 150-fsec quantum beat and the slow (4.8-psec) pop-
ulation decay process. The previous discussion shows that
this fast relaxation component cannot be due to any de-

phasing process. It is probably due to intramolecular pop-
ulation decay from photo-excited states not associated
with those producing the quantum beats. In the numeri-
cal works, an additional decay channel with a relaxation
time of 60 fsec is, therefore, assumed. The final calculat-
ed result is shown in Fig. 5 which is in very good agree-
ment with the corresponding experimental result reported
in Ref. 1. If the damped oscillations reported in Refs. 1

and 2 are indeed due to the process discussed in this pa-
per, the origins of the split levels 3 and 2 in the excited
states, or similar split levels in the ground-state manifold,
of the molecules studied remain to be determined.

III. CONCLUSIONS

In conclusion, the full density-matrix theory shows that
quantum beats in optical transmission-correlation or
pump-probe type of experiments can indeed be seen if the
excitation pulses are short compared with the inverse line
splitting between the sublevels in the excited state and the
corresponding dephasing time. The beat pattern is essen-
tially independent of the homogeneous or inhomogeneous
broadening of the optical transitions. It is also found that
the width of the coherent artifact in such measurements is
not significantly affected by the homogeneous or inhomo-
geneous relaxation times of the optical transitions either.

I I I I 1 1 I 1 I

0 500 1000

Decoy time (fsec )

FIG. 5. Numerical simulation of the experimental
transmission-correlation signal for malachite green reported in
Ref. 1 based upon Eq. (10). ~p» ~

/~p2&
~

=0.1. The other pa-
rameters used in the calculation are given in the text.

In fact, these types of measurements do not yield much
useful information on the optical dephasing times T2 or
T2.

We have carried out a similar theoretical analysis for
the case using incoherent light; that is, when broadband
incoherent light with a very short correlation time ~, is
used rather than short pulses of coherent light. ' The
theoretical approach developed in Sec. II is extended to
this case in detail in the Appendix. Since incoherent light
is regarded as a train of uncorrelated coherent pulses,
quantum beats should be expected and the result of the
Appendix shows that they are indeed observable by using
incoherent light.

The theory can also be extended to the other type of
three-level system: for example, if the split levels occur in
the ground state rather than in the excited state, where the
corresponding energy-level scheme is not different from
that for conventional resonance Raman experiments.
Transmission-correlation or pump-probe measurement is
found to give quantum beats in this case also.

Note added in proof. Since the submission of this pa-
per, two papers have been accepted for publication in the
Comments section of Phys. Rev. Lett. confirming the in-

terpretation that the observed oscillations in the transmis-
sion correlation is due to quantum beats have come to our
attention: "Observation of Molecular Vibrations in Real
Time" by J. Ha, M. Maris, W. Risen, J. Tauc, C. Thom-
sen, and Z. Vardeny of Brown University; and "Fem-
tosecond Time-resolved Observation of Coherent Molecu-
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lar Vibrational Motion" by K. Nelson and L. Williams of
MIT.
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APPENDIX: INCOHERENT EXCITATION

Even when broadband incoherent light is employed in
transmission-correlation measurements, the general result
Eq. (8) is still applicable since the electric field N'(t) was
assumed to be arbitrary. The first or the second pulse am-
plitude e(t) appearing in Eq. (9), however, is not a real
smooth function but an ill-behaving complex function
with correlation time v;, which is short compared to the
real pulse width ~z. Assuming e(t) is complex, Eq. (10)
can be rewritten as

X [e(t) )e'(t2)e(t3 r)e'(—t4 r)(N+—+C+ +B+ )

+e*(t))e(tp)e(t3 r)e'(t—4 r)(N +—C +B )

+e(t) —r)e (12 —1 )e(t3 )e'(t4)(N+ +C+ +B+ )

+e*(t ) r)e(t2 —r)e(t3)e—*(tg)(N +C +B )

+e(t ) )e'(t2 —r)e(t3 —1 )e'(t4 )(N+ +C+ +B+ )

+e(t( r)e*(t2)—e(t3)&'(tg r)(N+ +C—+ +B+ )

+e"(t ( )e(t2 r)e(t3 )e*(tg —r)(N +C—+B )

+e"(t~ r)e(tq)e(—t3 r)e (t4)(N +C—+B )], (Al)

where N+, B+, and C+ are defined in Eq. (11).
For simplicity, we consider only the case of Tq ——0. Then the above equation is greatly simplified since t, =tz, t3 t4, ——

N+ N, B+ B——, and C+ ——C ——. By changing the variables t4~t and t4 tz~s, Szz(r) is-
Src(r) ~ f ds[(1+r )(e "'+ I )+2re "" cos(co32s)+2r]

x f «[1«t —s)
I
'1«t —r) I'+

I
«t —s —r)

I
'1«t)

I

'

+e(t s)e'(t ——s r)e'(t)e(t —r)+c c )—, . . (A2)

where r = 1p3& 1
/1p2& 1

. This expression is similar to
that obtained by Tomita and Matsuoka' but consists of
the quantum-beat term. The first two terms of the second
integral of Eq. (A2) has a sharp peak of width r~ at r=s.
Therefore, when ~, is very small compared to y ', T2,„b,

and v32 the damped sinusoid appears as a function of 7

in the final expression. This result assures the feasibility
of observing quantum beats with incoherent light excita-
tion.
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