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Quasiperiodically kicked quantum systems
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We consider a two-state system kicked quasiperiodically by an external force. When the two kick-
ing frequencies assumed for the force are incommensurate, there can be quantum chaos in the sense
that {a) the autocorrelation function of the state vector decays, {b) the power spectrum of the state
vector is broadband, and (c) the motion on the Bloch sphere is ergodic. The time evolution of the
state vector is nevertheless dynamically stable in the sense that memory of the initial state is re-

tained. We also consider briefly the kicked quantum rotator and find, in agreement with Shepelyan-

sky [Physica 8D, 208 (1983)], that the quantum localization effect is greatly weakened by the pres-
ence of two incommensurate driving frequencies.

I. INTRODUCTION

The question of how classical chaos might manifest it-
self in quantum mechanics is an intriguing one. In sys-
tems with external driving forces there are some particu-
larly interesting questions about diffusion in phase space
and energy deposition; early numerical experiments of
Casati et al. ' have provided the impetus for much of the
work in the field. These authors considered first the clas-
sical problem of a kicked rotator, which is described by
the so-called standard map, and found that in a chaotic
regime the angular momentum (Ps) performs an essential-
ly random walk with the energy (Pa) growing linearly
with time on average. When the same system was treated
quantum mechanically, however, it was found that this
diffusive energy growth is greatly suppressed.

This suppression of the classical diffusive behavior as-
sociated with chaotic time evolution was related by Csrem-
pel et al. to the Anderson localization of a (quantum)
particle in a one-dimensional lattice with random site en-
ergies. The random diagonal terms of the tight-binding
model correspond in the periodically kicked quantum sys-
tem to a pseudorandom sequence, with the lattice points
of the tight-binding model corresponding to the integer
values of quantized angular momentum in the rotator.
The suppression of diffusion in the kicked quantum sys-
tern is thus fully analogous to the localization in configu-
ration space of an electron in a one-dimensional random
lattice.

The localization analogy certainly suggests that the
time evolution of driven quantum systems can be more or-
derly than the corresponding classical evolution. Howev-
er, it does not necessarily mean that some classical notions
of chaos are generally impossible in quantum mechanics.
We consider here quantum systems driven quasiperiodical-
ly. In this case there are reasons to expect localization to
be greatly weakened, as discussed be1ow. We begin in Sec.
II with a quantum map for a quasiperiodically kicked
two-state system, and reach conclusions in agreement with
Pomeau et al. In particular, the autocorrelation function
of the state vector is found to decay strongly when the
Rabi frequency is large. We also present evidence that the

motion on the Bloch sphere is ergodic, and give an intui-
tive explanation for the appearance of chaos. In Sec. III
we return to the problem of the kicked quantum rotator,
and present numerical evidence for diffusive energy
growth when the rotator is kicked quasiperiodically. We
argue that some aspects of deterministically chaotic
behavior may be a general feature of quasiperiodically
driven quantum systems.

II. THE TWO-STATE SYSTEM

Consider the general problem of a quantum system
described by the Hamiltonian

H =Ho+A(x)F(t) g "o(t/T n) . — (2. 1)

Let
~

'P(k) ) be the state vector just before the kth 6-
function impulse. Just after the kth impulse the state vec-
tor is exp[ —iA(x)F(kT)T/fi]

~

'Ilk)), and between im-
pulses the evolution of the state vector is governed by the
operator exp( —iH pt /A) Thus.

i
(Il(k+1)) =e ' e

Writing

~

e(k)) = g a (k)~lt ), (2.3)

where Hp j
l('j ) =E, g ), we obtain from (2.2) the

quantum map

a„(k + 1)= g V„(k)a (k), (2.4a)

where

( q ~

e —iA(x)F(kT)T/A
~ q )e n

In the case F(t) =const, V„ is independent of k and we
have a periodically kicked quantum system of the type
considered by Casati et al. '

The case of a kicked two-state "atom" is particularly
simple. In this case the unperturbed Hamiltonian
Hp = (%cop/2)o. „where (7, is a Pauli spin operator and cup

is the transition frequency. For the perturbation we take
A (x) = @Err„. In the e—xample of a two-state atom in an
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electric ie, p is e'c field is the transition dipole matrix element and
i fre uen-E the amplitude of the applied field, and a Rabi requen-

cy is de ine as =p* f d Q= E/A. For this perturbation we have

—IA(X)F—ig (x)P(kT) T/g i QF (kT) Tcr„

—lkcopT+i sin[Q(k)T]e ci(k),
ikcoOTcz(k+1)=i sin[Q(k)T]e ci(k)

(2.6a)

=cos[Q(k) T]+io„sin[Q(k) T], (2.5)

with Q(k)=QF(kT), and the matrix elements Vn~ are
easily evaluated. Defining c„(k)= „",= 1

and 2, we may write (2A) in the form

c i (k + 1)=cos[Q(k) T]c i (k)

1.2
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+cos[Q(k)T]c2(k) . (2.6b)

Consider first the case of periodic kicking with
Q(k)~Q independent of k. In Fig. 1 we plot the upper-
state probability ! c2(k)! versus the impulse number k

the initial condition ci(0)=1 and c2( ) = .]
'

in-(0)=0.] It is in-
teresting to compare such results with the solution of the
Schrodinger equation for a two-state atom in a field
Eocos(cit). In Bloch form these equations are

FIG. 2. Solution of the Bloch equations for the upper-state
probability for the case co=~p, = 1.2.

X = —67(P

y =coo x +Qz cos(cot ),
z = —Qy cos(cot),

(2.7b)

(2.7c)

0 ~
8--

CL

1where =pQ= E /fi. The atom is driven most strong y
when co -=coo,' driving frequencies co far removed from res
onance do not have much of an effect by comparison.
Therefore we can replace cos(cot) in ( . ) y,'2.7& b

incest g e2nint/T g g(tyT n) (2 g)2
00 00

where T=2m. /co, and we expect the mapping (2.6) to ap-
proximate well the solution of the Bloch equations when-
ever co =—coo and 0=2A.
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~ ~FICx. 1. Solution of (2.6) for the upper-state probabihty
! c {k)! for the case cooT=2vr, AT=0. 60, and ci{ )=,0)= 1.0.C2

FIG. 3. (a) Upper-state probability and (b} absolute value of
the autocorrelation function C(~) for AT==500 co T=3.0, x ir-
rational.
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~

C(k)
~

= lim (I/N) g c~ (n)c~(n+k)X~ oo n=0

+cz (n)cz(n +k)e

(2.10)

One of the characteristics of chaos is a rapid decay of
correlations. We have computed the autocorrelation func-
tion (2.10) for the periodically kicked two-state system for
a range of values of coOT and AT, and have found that
C(k) is nondecaying. That is, there is no evidence of
chaotic behavior for the periodically kicked two-state
atom.

However, we find that C(k) can decay rapidly in the
case of a quasiperiodically kicked two-state system. Con-
sider, for instance, the kicking with F (t) = cos(co t), in
which case

0( k) = II cos(co'kT) = II cos(2vrkco'/co)

=0 cos(2nkx), (2.1 1)

where x is the ratio of the two driving frequencies. A ra-
tional value of x means the two frequencies are commens-
urate. In such cases we obtain nondecaying autocorrela-
tions. When x is irrational, however, the autocorrelations
are found to decay rapidly for large values of AT. The
correlations do not go exactly to zero; there are small but
finite correlations even for large values of ~, as well as oc-
casional peaks as high as around 0.4 in

~

C(r)
~

. But the
behavior of the autocorrelation function is dramatically
different from the case of rational x. In Fig. 3 we plot

~
cz(k)

~

and
~

C(k)
~

for AT=500 and an irrational
value of x. The decay of C(k) certainly suggests chaotic
time evolution of the state vector, and, moreover, the
power spectrum of the time series of Fig. 3(a) is broad-
band (Fig. 4). These indications of quantum chaos are
consistent with the conclusions of Pomeau et al. , who in-
tegrated the Bloch differential equations for a bichrornatic
driving field and found decaying correlations and broad-

In Fig. 2 we show the solution of the Bloch equations
(2.7) for the upper-state probability (1+z)/2, assuming
co=coo (i.e. , cooT=2n) and AT=1.2. The solution is quite
complicated but we plot only the values at times t =n T in
order to compare with the results of the discrete mapping.
It is seen, as expected, that the mapping provides an excel-
lent approximation to the solution of the Bloch differen-
tial equations (2.7). The agreement is best for small
values of AT, where the effects of all the overtone fre-
quencies implicit in the discrete mapping are small. For
small QT the mapping is also accurate considerably far
off resonance. It might be noted that for two-state atoms
in optical fields the Rabi frequencies are very small corn-
pared with co, i.e., Q, T &~1.

It is useful to consider the autocorrelation function of
the state vector, defined as

T
C(r)= lim (1/T) I dt(qi(t) ~%'(t+r)) . (2.9)T~ oo 0

For the kicked two-state atom we consider
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FIG. 4. Power spectrum of the upper-state probability ampli-
tude.

band spectra.
It is convenient to define the three real Bloch variables

x (k) =a )(k)az (k)+a ( (k)az(k),

y(k)=i [a& (k)az(k) —a&(k)az(k)],

z(k)=
~

az(k)
~

—
~

a)(k)
~

(2.12a)

(2.12b)

(2.12c)

y (k + 1)=x (k)sin(cooT)+y (k)cos(cooT)cos[20(k) T]

+z (k)cos(cooT)sin[20(k)T], (2.13b)

z(k +1)=z(k)cos[2Q(k)T] —y(k)sin[2'(k)T] . (2.13c)

In the limit T~O we recover the Bloch equations (2.7).
Since the motion is confined to the Bloch sphere
x (k) + y (k)+z (k)=1, (2.13) is also a mapping relating
azimuthal and polar angles from kick to kick. The form
(2.13) is useful for computing the surface of section (Poin-
care map) of points x (k),y(k) such that z(k +1)=0 and
z(k) &0. This provides a mapping on a circle, i.e., a
mapping on the equator of the Bloch sphere.

In Fig. 5 we show this surface of section for the case of
Fig. 3. The points appear to fill in the entire circle in an
erratic sequence. A similar result is obtained for the sur-
face of section in the xz plane. The surface of section in
the yz plane fills only the semicircle y +z = I, y &0.
This is a simple consequence of the Bloch equations:
x &0 implies y &0. In other words, the projection in the
xy plane of trajectories on the Bloch sphere must always
spiral in a counterclockwise sense.

These results for surfaces of section, which appear to be
independent of the initial conditions on the probability
amplitudes, suggest that trajectories on the Bloch sphere
can cover the whole sphere when the kicking is done
quasiperiodically. That is, in addition to decaying auto-
correlations and broadband spectra, we appear to have er-
godic motion on the Bloch sphere.

in terms of which the mapping (2.6) takes the form

x (k + 1)=x(k)cos(cooT) —y (k)sin(cooT)cos[2Q(k) T]
—z (k)sin(coo T)sin[20(k) T], (2.13a)
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F '
t itive explanation of the origin

'
in of thisor an inu' '

os[A(k) T]"chaotic" behavior, consider the factors cosy
=cos[AT cos(2~kx)] and sin[AT cos(2~kx )] appearing
in the Schrodinger equation (2.6). For largee values of QT,
and irrational values of x, these functions vary erratically
with k. We plot cos[QTcos(2vrkx)] in Fig. , together
with its autocorrelation function, for th
and 5. Note the rapid decay of the autocorrelation func-
tion, which does not occur at smaller values of QT, nor at
rational values o x ig.f (Fi . 7). For large QT and irrational
x therefore, the probability amplitudes are being driven
erratically and they evolve "chaotically.

We can summarize our results for the quasiperiodically
kicked two-state system as follows. For coor commensurate

d in time andsense that the state vector remains correlated in

frequencies an arge a
'

d 1 R bi frequencies, however, the time
1-chaotic in the sense that (a) the autocorre a-evolution is c aotic, in e

b) the owertion unc ionf tion of the state vector decays; e p
n c thespectrum o e sf the state vector is broadband; an c e

er odic.motion of the state vector on the Bloch sphere is ergo ic.
The properties (a)—(c) are reasonabble criteria for "quan-

tum chaos" of externally driven systems, in that they also
characterize classical chaotic behavior. n e c
context, of course, ere

'f th is an unambiguous definition o
chaos, i e., a sysh, , ystem is chaotic if it has a postttve
Lyapunov exponent, implying ve yy, ver sensitive dependence
on initial con itions. i

' '
1 d't This hallmark of classical chaos is

not shared by bounded quantum systems: A perturbation
of the state vector cannot grow exponentia y.tiall . Int ea-

CCunambiguously whether a quantum system is chaotic, "
t ere aveh h been considerable differences of opinion not

1 about how quantum chaos should be de ine, uony a ou
also about whether there can even be such a

'

gh a thin as
quantum c aos. e reh W return briefly to these questions in
Sec. IV.

Casati et al. have recently discussed the dynam' ical sta-
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FIG. 6. (a) The function cos[QTcos(2vrkx)] and (b) tts auto-
correlation function for the case of Fig. 3.
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FIG. 7. Same as Fig. 6(b), except now O.T=O.T= 10.
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bility of quantum "chaotic" behavior in the hydrogen
atom driven by a monochromatic field. In a classically
chaotic system the memory of the initial state is eventual-
ly lost due to the exponential instability implied by a posi-
tive Lyapunov exponent. In numerical experiments this
means that backward integration does not reproduce the
initial state for the forward integration. We have con-
firmed numerically that the backward mapping for the
kicked two-state system does reproduce the initial state,
thus providing another example of the greater degree of
dynamical stability enjoyed by quantum systems.

ROO

0
0

l
200

III. THE KICKED PENDULUM

I/ (k) (2 )
—1e in 2v—//2

X
2'

e ei ( m —n )0 —i A (8)T cos(2~kx) /A

0

where r=AT/m! . Taking A(8) = —(ml coo)cos8, we ob-
tain

(3.1)

I/ (k) (2 )
—1 in s/2 — dg i (m n)Hei—K(k)cose2

nm 0
2

)
—1 in r/2 —d g e i ( m n)8—

0

The results of Sec. II, suggest a reexamination of the
kicked quantum rotator for the case in which the kicking
is quasiperiodic. For the rotator Ho Pe /2m——I and
En =n fi /2ml . The unperturbed eigenfunctions of Ho
are gn(0) =(2m. )

' e'", and so for F(t) again taken to be
cos(co't) we have

FIG. 9. Classical result corresponding to Fig. 8.

b, (y) =1'J,(y), (3.3b)

with J, the Bessel function of the first kind of order s.
The Schrodinger equation (2.4) then becomes

c„(k+1)=gb„[K(k)]e '" ' c (k), (3.4)

where c„(k)=a„(k)e'" ' . When F(t)=l, x~0 and
equation (3.4) reduces to the equation solved numerically
by Casati et al. '

For x rational we obtain the "localization" behavior
noted earlier. With x irrational, however, it appears we
can have the diffusive energy growth predicted by the
(periodically kicked) classical model. In Fig. 8 we plot the
energy (in units of mcool /2)

X g b, [IC(k)]e"' N

&&(k) & =« (3.5)

=b„[K(k)]e

where

and

K (k) = (ml c2OT/fi)cos(2r(kx) =K cos(2mkx)

(3.2)

(3.3a)

where N is a large integer, typically =400, chosen large
enough that the total probability is conserved at each
iteration. For Fig. 8 we chose E= 10, ~= 1, and
x=4637/13 313, which for practical purposes is an irra-
tional, and the rotator is assumed to be in the ground
state at t =0. After 300 iterations there is no evidence of
any quantum suppression of the classical diffusion. For
comparison we show in Fig. 9 the corresponding classical
results obtained from the standard map' modified for the
case of quasiperiodic kicking:
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FIG. 8. Plot of the energy (3.5) for the quantum rotator with
K= 10, ~= 1, and x irrational.

FIG. 10. Energy (3.5) for the quantum rotator with K=10,
1
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(3.6a)

(3.6b)

with I(. (k)=Kcos(2rrkx), K=Kr=10. Figure 9 was ob-
tained by averaging over results for a set of 40 initial an-
gles Oo. In Fig. 10 we show the results for the quantum
rotator with K =10 and x = —,. In this case there is signi-
ficant suppression of the classical energy growth after
=60 kicks.

Shepelyansky has also found that two-frequency kick-
ing can greatly extend the time scale over which diffusive
energy growth occurs in the kicked quantum rotator, and
has suggested that the diffusive time scale in this case in-
creases exponentially with E. It is perhaps worth noting
that the addition of more kicking frequencies effectively
increases the dimensionality of the system. Since Ander-
son localization is most effective in one dimension, it is to
be expected that the addition of more driving frequencies
acts to weaken the quantum localization effect.

IV. REMARKS

Our main criterion for quantum chaos of these kicked
systems has been the decay of the autocorrelation function
of the state vector. Since this autocorrelation function is
related by Fourier transformation to the power spectrum

this decay implies that the power spectrum does not con-
sist solely of 5-function peaks, as in the ease of quasi-
periodic motion. We suspect that such quantum chaos is
not unusual in quasiperiodically driven systems.

This criterion appears to us to be a reasonable one. It
has also been used by Pomeau, Dorizzi, and Gramma-
ticos and, in the time-independent domain for a single
energy eigenstate, by Shapiro and Goelman. Of course, it
is widely recognized that quantum chaos cannot entail the
same degree of dynamical instability, in the sense of a
positive Lyapunov exponent, as classical chaos. In the
quasiperiodically kicked two-state system, for instance, we
have confirmed that the chaotic time evolution is fully re-
versible, not only in principle but in practical computa-
tions. That is, the quantum dynamics smooths out the
classical instability associated with very sensitive depen-
dence on initial conditions. This smoothing effect is
perhaps best understood in terms of the summing over
classical paths that is implicit in the quantum dynamics;
we hope to discuss this point in a future publication.
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