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Algebraic view of the optical propagation in a nonhomogeneous medium
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In this paper we propose an algebraic method to study the optical propagation in a nonhomogene-
ous medium with a quadratic profile of the refractive index. We use the Wei-Norman algebraic pro-
cedure establishing an analogy between the evolution operator and the optical propagation matrix.

I. INTRODUCTION

Algebraic methods have come into widespread use in
quantum optics. ' The evolution of two-level systems can
be treated using the SU(2) algebra and the two-photon
dynamics is conveniently described by means of the
SU(1,1) group. Furthermore, unitary symmetries, al-
ready widely exploited in nuclear and elementary-particle
physics, have been shown to be potentially powerful tools
with which to understand the dynamical behavior of mul-
tilevel quantum systems and have displayed a number of
previously unpredicted physical effects.

To quote one more example, we recall that these alge-
braic tools have been applied also to the quantum har-
monic oscillator with time-dependent frequency and have
allowed the straightforward recovery of the adiabatic
theorem, together with higher-order corrections.

So far we have indicated quantum problems only, but
we want to stress that some aspects of classical optics can
also be modeled using algebraic methods. In fact, in Ref.
7 the relevance of the SU(1,1) group to the light propaga-
tion in self-focusing fibers was indicated. This last point
only touched upon in the papers quoted will be analyzed
in further detail in the present paper, and the usefulness
of algebraic concepts to the wave propagation in an inho-
mogeneous medium with a parabolic profile of the refrac-
tive index will be discussed.

Operatorial techniques in classical optics are, however,
not new. Twenty years ago Vander Lugt introduced the
operator notation into coherent optics to simplify, for
some special cases, the arising mathematical difficulties.
This early suggestion was later elaborated on by But-
terweck, ' who extended the simple Vander Lugt notation
into a more comprehensive set of system operators.

More recently, Stoler" has pointed out the structural
similarity between physical optics and quantum mechan-
ics, thus indicating the possibility of utilizing the wealth
of mathematical techniques developed in quantum
mechanics to treat the evolution of a light wave along an
optical system. Later, Bacry and Cadilhac' showed that,
in the paraxial approximation, lens transfer and free-space
propagation are described by a set of operators belonging
to the metaplectic group, isomorphic to the symplectic
group of ray-transfer matrices representing the same sys-
tems in the framework of geometrical optics.

This paper develops both the points of view of Stoler
and Bacry and Cadilhac. In fact, it will be shown that the
wave propagation in a lenslike medium in the paraxial ap-
proximation can be described using a Schrodinger-like
equation with a "time"-dependent harmonic potential.
Furthermore, using the algebraic method of Ref. 7 we
embed the "dynamical variables" of the problem to get
SU(1,1) as a noninvariance group. Algebraic ordering
methods are then used to describe the wave propagation in
terms of an evolution operator. An interpretation of this
operator is given, combining indeed both properties of the
SU(1,1) generators and those of the propagation matrices,
and its effect is understood as that of a beam expander, a
thin lens, and a straight section. Finally, the well-known
results of the propagation in a homogeneous medium are
rederived as a particular case of the present formalism.
Only the mathematical aspects will be emphasized in the
present paper, while possible specific application will be
discussed elsewhere.

II. THE HELMHOLTZ EQUATION FOR
A REFRACTIVE INDEX WITH A PARABOLIC

PROFILE AND THE SU(1,1) GROUP

The scalar Helmholtz equation

~u+k2u =p (2.1)

for the wave propagation in an optically inhomogeneous
medium with a refractive index exhibiting a parabolic
dependence on the transverse (x,y) coordinates can be re-
cast in the form'

V' u+ko(z)[ko(z) —k~„(z)x —key(z)y ]u =0 . (2.2)

ko(z) is the wave number on the axis of propagation and
k p 2y are the expansion coefficients.

Making the usual transformation

Z

u (x,y, z) = exp —i ko(z')dz' g(x,y,z),
zo

(2.3)

and assuming that g(x,y, z) is a slowly varying function of
z, we get from (2.2),
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f(q, z) =i f (g,z), (2.5)

where

—ko(z)[kq„(z)x +k2~(z)y ]/=0 . (2.4)

We can further simplify the above equation assuming
variables separation, which yields the following
harmonic-oscillator Schrodinger-type equation,

III. WEI-NORMAN- TYPE SOLUTION

f (z) = 4(z,zp)f(zp),

and obeying the equation

(3.1)

Equation (2.5), although with the above-mentioned
non-Hermiticity problems, has been recognized as being
Schrodinger-like. We can therefore look for its solution
exploiting the well-established techniques of quantum
mechanics.

We can indeed introduce an appropriate evolution
operator, not necessarily unitary, according to what has
already been discussed, such that

ko(z)
f(x,y, z) =

ko(zo)
f (x,z)f (y, z) .

g =x,y k2(z) =k2„2y(z),
—1/2 (2.6) i +(z,zo)=H(z)+(z zo)

az

+(zo,zo)=I .
(3.2)

The problem of solving the Helmholtz equation, in the ac-
tual conditions, has therefore been reduced to that of solv-
ing an equation which formally resembles a Schrodinger
one with a harmonic-oscillator potential with "time"-
dependent mass and frequency not necessarily being real
functions.

These are not major drawbacks and we tackle the solu-
tion of Eq. (2.5) using the technique adopted in Ref. 7 to
treat the evolution of quantum states ruled by a time-
dependent harmonic-oscillator Hamiltonian. In that pa-
per it was shown that by suitably embedding the
harmonic-oscillator dynamical variables one can get an
SU(1,1) algebraic structure.

In fact, the operators

A straightforward solution of (3.2) is hampered by the
"time" dependence of the "Hamiltonian, " but according
to its SU(1,1) structure the underlying ordering problems
can be overcome by means of the Wei-Norman method, '

thus giving'

2Q

ko(z)

U' =kq(z)e "—Uu ', (3.4)

4'(z, zp) = exp(2uk3) exp(uk+ ) exp( —wk )I, (3.3)

where the functions u, v, w obey the following system of
differential equations (the prime means d /dz),

l 2 l a a
k = —g k = —— k = — g + — (27)

2 2 an

with the relations of commutation

e ", u(zo)=U(zo)=w(zo)=0,
kp(z)

whose solution depends on that of a single Riccati equa-
tion, known as the characteristic equation (CE), namely

[k+,k ]= —2k3, [k3,k+] =+k+ (2.8)

are immediately recognized as the SU(l, l)-group genera-
tors.

We can rewrite Eq. (2.5) in the following, more com-
pact, operatorial form,

d k2(z)h'+ h +. ln[kp(z)] h+ =0,
8z kp(z)

[h = —u', h(zo)=0] . (3.5)

It is, however, more convenient for our purposes to in-
troduce the functions

. a
l

az
(2.9)

U= exp( —u), W=w exp( —u), (3.6)

where the "Hamiltonian" operator H is a "time"-
dependent linear combination of SU(1,1) generators,
namely

which are linear independent solutions of the second-order
differential equation

H= k +ik2(z}k+ .
p z

(2.10)

k~(z)
ln[k, (z)] g'+ /=0,

dz 0 z
(3.7)

The reason we characterize H as a "Hamiltonian" opera-
tor is due to the fact that it is not necessarily Hermitian,
since ko 2(z) can be a real or a complex function of z.
The possible non-Hermitian nature of H will not create
additional troubles in solving (2.5) and we will utilize the
already widely exploited algebraic methods, ' with a few
minor changes only.

with initial conditions

U(zp) =1, =0,dU
Gz

W(zo) =0, d8'
dz

1

kp(zp)

(3.8)
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It is worth stressing that this new CE equation is identical
to that of the ray paraxial propagation' in a medium of
the type considered. An analytical solution of (3.7) and
(3.5) depends on the functional form of ko and k2 func-
tions. Following a standard procedure, ' a class of kp 2

functions allowing analytical solutions can be indicated.
This problem, together with its physical meaning, will be
discussed elsewhere.

IV. CONCLUSIONS

preceding section are more relevant to the structure of
"evolution" operator, which within this framework might
be better identified as a propagation operator (PO).

In this section we will discuss a possible interpretation
of PO's, restricting ourselves to the case in which ko 2 are
real functions of z. To clarify the physical meaning of
PO's, we follow the suggestion put forward in Refs. 7,11,
and 12. We consider therefore, a gaussian beam obeying
the propagation equation

So far we have indicated the possible impact of an alge-
braic solution technique on the study of the wave propa-
gation in an inhomogeneous medium. The results of the where

(4. 1)

ko ——ko(0),

f (,z)=
1/2

1 rl 1H„v 2 exp iko —z+
cu(z)

"
cu(z) 2q (z)

exp i(n + —, ) tan
Xz

7Tco o

(4.2)

coo ——cu(0), cu (z) =coo[1+(z/zz ) ],
2~~o 2~ 1

q (z)
1 . A,—l

R (z) rrco2(z)
ZR =

ZRR(z)=z 1+
Z

with H„() Hermite polynomials and

(4.3)

and its action on f„(ri,O) is immediately understood to be

exp( —wk )f„(q,O) =f„(g,—wko), (4.5)

and thus interpreted as a shifting operator on a straight
section of length —wko with the following simple ray ma-
trix form (usually adopted in the paraxial approxima-
tion)

l
exp( —wk ) = exp w

2 an'
a

exp —~ ko
az

(4 4)

A rather immediate interpretation of the operator
exp( —wk ) follows from (4.1); indeed, 1 —LUko

0 1
(4.6)

The action of the operator exp(uk+ ) on f„(q,z) is
straightforward,

v2
exp(uk+ )f„(g,z) =

~2"n!

1/2

~2 exp( —koz )
1

&cu(z)
"

cu(z)

P

X exp i(n + —, ) tan
7Tcoo

i — 1
exp ——ko

2 q(z)
U

ko
(4.7)

and secures an interpretation of the operator as a thin lens
with focal length f =ko/u or, in matrix form,

the following Inatrix representation for this last operator
can be used:

1 0
—U/ko 1

Finally, since

(4.&) e —Q

0
0

eQ
(4.10)

We can therefore rewrite PO's in the more suggestive
formexp(2uko)f„(ri, z) =e" f„(qe",z), (4.9)



35 ALGEBRAIC VIEW OF THE OPTICAL PROPAGATION IN A . . ~ 1671

U=
0

0

—Wkp

V ( IVV+ 1)

kp 0

() 1 —w (z)kp

v(z} 0
1

ko

(4.1 1)

q(z)=

in this framework yields the following expression for the
complex beam radius

Uqo —ko W
(4.13)

1+VW
( —v Ikp )qp+

U

Just to recover a well-known result, we have considered
the case in which both kp 2 are constants; in this connec-
tion we get

where

dUV=e"v= —ko(z)
dz

(4.12)

The relation (4.11) provides a rather immediate interpreta-
tion of the propagation operator as the effect of a beam
expander, a thin lens, and a straight section. Let us also
stress that a useful by-product of the above-stated analogy
is an almost direct application of the ABCD law, which

U= cos
k2

kp

1/2

Z 7

1

1/2 Sln
(kqko }

V=(kqko)'~ sin
k2

kp

k 2

ko
' 1/2

Z 7

thus getting, for q (z) a very familiar expression,

(4.14)

q(z) = cos
1/2

2

kp

kp
qo+

2

1/2

sin
k2

ko

' 1/2

Z . —Sln
k2

ko

1/2 1/2
2

qp+ cos
kp

k2
z . (4.15)

kp

1 0„2
[Uco( —wkp ) ]

vZ
k(z, O)f„(g,O) =

sr2"n!
7l

Uco( —
wko )

Let us finally discuss how PO transforms an input Gaussian beam, namely,
1/2

~ 2 2w (z)
X exp(iwk p) exp —i(n + —, ) tan

COp

kpri 1 ko(z)
X exp + UU'

2U q ( —wko) ko
(4.16)

The results of this section complete our preliminary analysis of the relevance of the algebraic methods to wave propaga-
tion in a nonhomogeneous medium. In a future paper we will discuss the relevance of the present results to ko 2 complex
functions of z to account for eventual gain or losses.
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