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We consider a generalized form of parametric amplification which produces k-photon correla-
tions. We show numerically that this process is well-defined quantum mechanically, and we explain
the quantum phase-space structures produced by such parametric arnplification.

I. INTRODUCTION

In this paper we discuss a generalization of squeezed
states. Throughout this paper "squeezing" refers to ordi-
nary squeezing, and the term "generalized squeezing"
shall be used explicitly when referring to our work.

In experiments where all sources of external noise have
been made insignificant, there are still limits in measure-
ment precision due to the Heisenberg uncertainty princi-
ple. This uncertainty in the variables is like a "quantum
noise. " Now we can use an idealized prescription where a
detector is coupled to a harmonic oscillator. This is quite
a general prescription (e.g., the harmonic oscillator's coor-
dinates could represent the electric field in light, or the
position or momentum in a mass-spring system), so we
shall restrict our attention to such systems. The quantum
states which most closely describe the classical motion of
these systems are harmonic oscillator coherent states. If
we call the canonically conjugate variables for our har-
monic oscillator system "position" x and momentum" p,
but choose appropriate dimensionless units for them, then
the coherent states have a symmetric uncertainty in x and

p with Lbcbp=1 and hx =Ap=1.
A loose classical description of quantum states can be

made in terms of a phase-space probability distribution.
For coherent states this corresponds to a bivariate Gauss-
ian distribution in x and p displaced from the origin and
rotating around it with time. The rotation in phase space
corresponds to the oscillation of p one quarter cycle ahead
of x, and the equality of the uncertainties in x and p ini-
tially leads to both Lx and Ap being independent of time.
Thus the harmonic oscillator coherent state has a time-
stationary "noise."

Since the uncertainty principle only puts a restriction
on the product Lxhp we might consider starting with a
more precise position, so Ax & 1, and a more uncertain
momentum, Ap & 1. These states are called squeezed
states the noise has been squeezed into one variable at
the expense of its conjugate. We see that as this state
evolves freely in a harmonic oscillator potential the pre-
cise x rotates in phase space to become a precise p in one
quarter cycle, and the uncertainty in p gets rotated into
that of x. This variation of the uncertainty in these vari-
ables gives squeezed states a time-dependent noise (or as

we shall refer to it in this paper a phase-dependent noise).
A simple change in the variable we observe can yield a

time stationary noise for squeezed states. Roughly this
change corresponds to measuring either x or p in a rotat-
ing frame in phase space. This new variable is called the
quadrature phase (or quadrature amplitude), so squeezed
states have a time stationary quadrature phase noise. In
practice the quadrature phase is measured by interfering
the original signal with an oscillating reference. This is
just a homodyne or heterodyne detection scheme.

Real two-photon devices have recently been used to
produce squeezed states of light. ' With the use of these
devices comes the promise of improved high-precision in-
terferometers.

Any states deserving the name "generalized squeezed
states" should have properties analogous to ordinary
squeezed states, they must reduce to ordinary squeezing
appropriately, and they should be generated from a
phenomenologically reasonable model. The first require-
ment is somewhat vague so we shall simply take it to
mean that these new states should at least possess a
phase-dependent noise. We concentrate on a class of de-
vices that generate states satisfying these criteria.

In Sec. II such devices are modeled by ideal k-photon
"parametric amplifiers" (creating or destroying k photons
at a time) acting, for simplicity, on a single mode of the
electromagnetic field. Ordinary squeezing corresponds to
k =2. This section also analyzes these devices in a quali-
tative classical manner and suggests why we expect them
to generate phase dependent noise.

A simple but quantitative way to discuss the noise of
these generalized squeezed states is through the use of a
quantum analogue of the joint probability distribution in
phase space. This analogue is known as the Q-function.
We review this quantum description in Sec. III and derive
some analytic properties that the Q-function of our k-
photon state must satisfy. We find that the analytic prop-
erties of the Q-function closely follow our qualitative clas-
sical prejudices. In this section we also look at the asymp-
totic behavior, for short time, of the Q-function. For the
case k =3 we find that a large-amplitude coherent state is
initially squeezed at a rate proportional to its
amplitude —intrinsically much faster squeezing than that
produced by ordinary squeezing interactions (k =2).
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II. MOTIVATION FOR THE MODEL

One obvious generalization of squeezed states comes
from recognizing that coherent states and squeezed states
can be generated from idealized one-photon and two-
photon devices, respectively.

We restrict our attention to a single mode of the elec-
tromagnetic field, at frequency co, which can be represent-
ed by the harmonic oscillator annihilation and creation
operators (a and at, respectively. ) In the Schrodinger pic-
ture the Hamiltonians for ideal one-photon and two-
photon devices are given by

FE&
——era a+i [zi(t)a —zi (t)a], (2.1)

Mz ——cuba a+i [zq(t)a —zq (t)a ],
where

(2.2)

In Sec. IV we study this classical-quantum correspon-
dence more closely. We start by finding the proper classi-
cal Hamiltonian corresponding to these k-photon devices.
Having set up the classical problem, we find that the clas-
sical and quantum evolution differ for k ~ 1. The classical
motion is determined by an unstable fixed point at the ori-
gin of phase space; the classical evolution is "driven" by
this fixed point to produce very sharp features in the clas-
sical probability distribution. These sharp features are de-
stroyed by the quantum corrections, the dominant terms
of which correspond to ordinary diffusion when k ) 1.

Fisher, Nieto, and Sandberg have also studied this gen-
eralization to squeezing via k-photon devices. They con-
cluded that there is something seriously wrong with the
evolution operator for these devices, after discovering that
for k ~2 its vacuum-to-vacuum matrix element has a
divergent Taylor series expansion in time. In Sec. V we
study this matrix element numerically using Pade approx-
imants. We obtain good convergence for this matrix ele-
ment for all scaled times (the coupling constant of the
parametric amplifier multiplied by time) less than about
1.2. We also see that the divergence problems are due to
singular behavior along the imaginary time axis. This
matrix element and others are used to generate contour
plots of the Q-function for k =3 and k =4 at various
scaled times.

Hong and Mandel have defined a set of parameters
which they call measures of "nth-order squeezing" for
even n. When n =2 this parameter reduces to a measure
of the uncertainty in the quadrature phase, and so corre-
sponds to a measure of ordinary squeezing. We calculate
the second-order and fourth-order squeezing parameters
for some of the three-photon and four-photon states we
have generated, and we find that these states are neither
ordinarily squeezed nor squeezed to fourth-order.
Nonetheless, for the reasons already mentioned we consid-
er our states to be a generalization of squeezed states.

dependence of the couplings z& and zz so that, in the in-
teraction picture, the Hamiltonians are independent of
time; this corresponds to running the devices at resonance.

In the interaction picture the time evolution operators
are

U&
——exp[(za t —z*a)t],

Uq ——

exp�[�

(za —z *a )t ],
(2.5)

(2.6)

-coata +2
~

z
~

sin(knot —P)E", (2.7)

where z&(t)= ~z
i
exp[i(P kent)]. —The second form in

Eq. (2.7) requires the rotating-wave approximation, and
we have taken the electric field operator to be

E-(a +a) . (2.8)

For the rest of the paper we shall work in the interaction
picture, so the time evolution operator corresponding to
Eq. (2.7) is

U~ (z,z *;t ) =exp[(za "—z *a")t], (2.9)

where z =
~

z exp(iP).
The second form in Eq. (2.7) allows the classical inter-

pretation for the interaction as a nonlinear force oscillat-
ing at k times the natural frequency of the optical mode
to which it is coupled. (For k =1 this is resonant excita-
tion. For k =2 this is like kicking on a swing, where we
force at twice the fundamental frequency. ) This will excite
the mode where its phase differs by 0, . . . , 2~(k —I)/k
radians from the phase of the "force" zt, (t) and damp it at
the intermediate phases. Thus for k ) 1 we may expect
this interaction to produce phase dependent noise.

Equation (2.7) also suggests a realization of the interac-
tion, for which we make use of the macroscopic descrip-
tion for the electromagnetic field with matter; this is
given by the polarizability

(2.10)

Here P,'~" is the first-order susceptibility of the material
(which is simply X"'5;z for an isotropic material), X(") is
the nth-order nonlinear susceptibility, and the subscripts
correspond to spatial and optical polarization corn-
ponents. The electromagnetic energy density is

where z =
~

z
i
exp(iP) is a time-independent coupling

constant. The operators U& and Uz correspond to the
displacement operator and the squeezing operator, respec-
tively. U& and Uz are already time ordered here since H&
and Hz are time independent in this picture.

In this paper we study an idealized degenerate k-photon
parametric amplifier, which reduces to Eqs. (2.1) and (2.2)
for k =1 and k =2, respectively. In the Schrodinger pic-
ture its Hamiltonian is

Ht ——cuba a+i [zt, (t)a "—zt,"(t)a ]

zi(t)=
~

z
~

exp[i(P rut)], —
zz(t)=

~

z
~ exp[i(P —2cot)],

(2.3)

(2.4)
1 g [(k; + 4vrP; )E; + magnetic terms],

Sm
(2.1 1)

are time-dependent complex coupling constants.
Throughout the following, unless we write A explicitly we
shall use units for which 6=1. We have chosen the time

which from the decomposition in Eq. (2.8) has terms

y(k)(atk+ k)~ (t)+. . . (2.12)



35 GENERALIZED SQUEEZING 1661

where E,„, is an external "pump" field, and we have ig-
nored all but one spatial component and one optical polar-
ization. A comparison with Eq. (2.7) yields

z(t)- X~"~E,„,(t) V,
2

(2.13)

where V is the volume factor corresponding to the volume
of the nonlinear material. (Similar terms arise from
higher-order susceptibilities. )

This discussion shows how the model interaction in Eq.
(2.7) may be formed by a kth-order (or higher) susceptibil-
ity. Of course, as Eq. (2.7) is only a model for such in-
teractions, some details are left out. We have assumed an
ideal pump for which there is no depletion. We neglect de-
pletion since we only expect significant nonlinearities for
very intense sources. We are also neglecting the dissipa-
tion and fluctuations that go with the mode being coupled
to a thermal bath. Finally, we are glossing over the micro-
scopic nature of the nonlinearity and quantizing directly
the macroscopic equations of classical electromagnetism.

The Q-function also represents" the joint probability
distribution for a specially set up and balanced detector
making simultaneous measurements of "position" a +a
and "momentum" i (a —a). Hence we shall refer to con-
tour plots of Q on Im(a) versus Re(a) as "phase-space"
diagrams.

Let us define the rotation operator

R(6)—:exp( iB—a a);
then

(3.6)

and

R(6) ~a)= ~ae ' ), (3.7)

ae =R (6)aR (6)=ae (3.8)

Applying this rotation to p(t) is equivalent to taking
a~aexp( —iB) in Q(a, a';t), which corresponds to rota-
tion of the phase-space diagram. Also R(6) transforms
the time evolution operator Uk ( t) to

III. ANALYTIC PROPERTIES R (6)Uk(t)R(6)=exp[(ze'" a "—z*e '" a")t], (3.9)

Throughout this paper we are interested in the proper-
ties of the states generated from the interactions of Eq.
(2.7). To describe these properties we shall make use of a
quantum description which is closely linked to the phase-
space distribution for a classical system.

The description we use, called the Q-function, is itself a
probability distribution whose moments give "antinormal-
ly" ordered expectation values

n *m(a "a™)=tr[a "a™p(t)]= a"a™Q(a,a*;t),

i.e., z~zexp(ikB). When the initial state is the vacuum,
p(0)=

~

0)(0 ~, a rotation by 6=2m/k maps Q to itself,
so that the phase-space plot will have a k-fold symmetry.
This is familiar for k =1 and k =2, the coherent and
squeezing cases.

For convenience, we shall henceforth restrict the cou-
pling constant z to be real; when the initial state is the
vacuum, this corresponds simply to a rotation of the
phase-space diagram. We may now define a scaled time,
r =

~

z
~

t, so that the time evolution operator reduces to

(3.1) Uk(r) =exp[r(a "—a )] . (3.10)

where d a—:dRe(a)dIm(a), and

p(t)= U„(t)p(0)U„(t) . (3.2)

Here Uk(t) is the time evolution operator [Eq. (2.9)] for
our k-photon device, and p(t) is the density operator for
the state which determines the Q-function via '

Q(a, a*;t)—:(a
~
p(t)

~

a) =tr[p(t)5(a —a)5(a —a*)],
(3.3)

p i
~

z
~ [a i k a k

p ]
. dp

dt
(3.1 1)

Using the last expression in Eq. (3.3) and the relations

We now derive the evolution equation for the Q-
function. Although this is standard, ' we present it for
completeness. We start with the equation of motion for
the density operator in the interaction picture:

where
~

a ) is the harmonic oscillator coherent state,
a

~

a) =a
~

a). Equation (3.3) may be inverted to give

d2
p(t)= f 5(at —a*)5(a —a}Q(a,a*;t) . (3.4)

The expressions with operator-valued Dirac-delta func-
tions may be considered as purely formal expressions for
repeated Fourier transformations; we may write them as

[a,5(a —a*)]= t 5(a —a*)
Ba~

„5(a —a'),
Ba*

a[a,5(a —a)]= . — 5(a —a) .
BQ

(3.12)

5(a —a* )5(a —a)

5(a —a)5(a —a*)

d
expi a —a* exp &

* a —a
(3.5)

a 5(a —a),
Be

a5(a —a) =a5(a —a),
a 5(at —a*)=a*5(a —a'),

(3.13)

(3.14)

(3.15)
d= f exp[i&*(a a)]exp[i&—(a —a*)] . we find that the Q-function evolves according to
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=LQ—:a"—a+
Br Ba*

k Thus, Re(a) and Im(a) have mean values and uncertain-
ties given by

B
+ca —a + Ba

k

(3.16)
O'Re(~) — — 1 + k (k —1 )x() +0 (r ), (3.20)v'2 2

where L is the Liouvillian. Equation (3.16) has the formal
solution

ot ( )
— 1 ——k(k —1)x() .+O(r ), (3.21)

2 2

Q(r)=e" Q(0)=Q(0)+LQ(0)r+ —,L Q(0)r +
(3.17)

(Re(a)) -xp+rkxp '+O(r ),
( Im(a) ) =0,

(3.22)

(3.23)

=e [1+2r
~

a
~

cos(k9)]+O(r ), (3.18)

where a =
~

a
~

e ' . Thus, for r && 1, the Q-function
develops k lobes along 0=0,2'/k, . . . , 2~(k —1)/k and
dips between these lobes. We shall see later (Sec. V) that
this is in agreement with more detailed calculations and
even for such short times is different from the classical
behavior (Sec. IV).

Similarly, if we start in an initial coherent state with
real amplitude xp, so that p(0) =

~
xp ) (xp

~

and
Q(0)=exp( —

~

a —xp
~

), then to first order in r,

—~a —x
Q(r) —e ' [1+r(a"+a*"—2xp )]+0(r ),

and for xp »
~

a —xp ~,

Q(r)-exp
[Re(a) —x() —rkx p ]k —1 2

1+rk (k —1)xp

[Im(a)] O( 2) (3 19)
1 rk(k ——1)xp

where Q(0) is the initial value of the Q-function.
If we treat this perturbation series for Q(r) as an

asymptotic series (Sec. V), then it is indeed valid to trun-
cate the series to find the asymptotic behavior for small
time. For the initial state in the vacuum p(0) = 0) (0 ~,
corresponding to Q(0) =exp( —

~

a
~

), we find

Q(r) —e [1+r(a"+a*")]+O(r )

for r « 1; the standard deviations o.R,[ ] and o.
& [ ~

are in-
dependent of xo only for k =1 and k =2. For k =3, a
resonant three-photon parametric amplifier will initially
squeeze an in-phase coherent state at a rate proportional
to its amplitude. Also there would be no ordinary squeez-
ing of the vacuum for any of the k &2 processes. Similar
results have been obtained by Hillery, Zubairy and
Wodkiewicz. ' They have also shown that this generalized
parametric amplifier produces no ordinary squeezing of
the vacuum when k ~2, even for large r.

IV. CLASSICAL DYNAMICS

It is worthwhile calculating the classical dynamics asso-
ciated with the interaction in Eq. (2.7) in detail, not only
to confirm our intuition from Sec. II, but also to compare
it to the full quantum dynamics.

There is not always, however, a unique classical system
that one might associate with a quantum Hamiltonian. In
order to choose a classical Hamiltonian, we start by writ-
ing the quantum theory in terms of a path integral; the
classical Hamiltonian then appears as part of the classical
action in the path integral. Another route to the classical
Hamiltonian may be found in Milburn. '

In the coherent state representation of Klauder, ' the
full propagator is

a(t) =af t

(af, t
~
a;;0) = j, D(a(r))exp J dr[ —,

' (aa * —a*a) iH&(a*, a;r—)]
t

(4.1)

where D(a(r)) is the path integral measure, and

H&(a*,a;t)—:(a
~

H(t) a)

In a rotating frame (analogous to the interaction pic-
ture), the classical equation (after scaling out the coupling
constant

~

z
~

) is therefore

2+
~ ~

(
*k —k t k k t) (42)

is the appropriate classical Hamiltonian, which is just the
quantum Hamiltonian in normal order form, with a re-
placed by o. and a by o.*.The Poisson bracket then yields
the classical equation of motion

aQ„ „ , aQ„ , aQ„k —]. c + e 1 c

Br Be Ba

It has the asymptotic dynamics

Q, )
——e [1+2kr

~

a "cos(k8)]+O(r ),

(4.4)

(4.&)

aQ„ aH aQ„ aH aQ„
N~Qc) I

(4.3)

where Q, ) is the classical probability distribution in phase
space.

for an initial Q,) that corresponds to Q for the vacuum,
i.e., Q,)

——exp( —
~

a
~

). The lobes of Q, ) grow k times
faster than the corresponding quantum features [see Eq.
(3.18)], at least for r « 1.

We can make an interesting general observation about
these classical equations of motion at this point. Writing
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i =HJv a',a+, Q Q—H~ a+,a. ag . a „a
at Ba* Ba

(4.6)

BHN (jg dH~ ()Q
Ba Q~* Q~* Ba

the quantum equation of motion in terms of H&(a*,a),
we have

creases. This sharp structure is a feature of the classical
dynamics of many systems. ' We do not expect to see it in
the quantum system, for as it develops the higher deriva-
tives become significant. For instance, the sharp structure
develops along the lines 8=0,2m. /k, . . . , 2'(k —1)/k; so
expanding Eq. (4.4) about 8=0 with

1 a(a[ »max 1,
+(higher derivatives of Q), (4.7)

and

de I +k 1=km
d7

(4.8)

(4.9)

These classical trajectories conserve

H~~ —(a —a ),1 ek k

2
(4.10)

so the classical trajectories are curves of constant Im(a").
These curves describe a flow in phase space around an un-
stable fixed point with k directions of damping and k
directions of growth. Thus the Hamiltonian has a k-
saddle around the unstable fixed point. This is a generali-
zation of the generic saddle of unstable fixed points.

Integrating the characteristic equations numerically, for
k =3, gives Figs. 1(a) and 1(b); the threefold symmetry
and the development of lobe structure are apparent. We
also see that arbitrarily sharp structure appears as r in-

where the derivative 0 /Bn acts to the left. Thus, truncat-
ing the full quantum description of Eq. (4.6) to first order
in the derivatives of Q leads us to the same classical equa-
tion we derived from the path integral formulation [Eq.
(4.3)]. This truncation obviously leads to classical dynam-
ics, and the classical trajectories are given by solving the
characteristic equations for the resulting first order partial
differential equation. These characteristic equations (clas-
sical trajectories) for Eq. (3.16) are

ag ag (4.1 1)

one finds that for any k the term that dominates is the
diffusion term, leading to the equations

c}2Q = —,'k(k —1)
~

a
~

/a/ Bo
(4.12)

We see that this diffusion term vanishes for k =1 and is
independent of

~

a
~

for k =2. For k & 2, it is proportion-
al to

~

a
~

";thus any attempt to squeeze at a faster rate
as suggested at the end of Sec. III will have to fight this
diffusion. Numerical results suggest that even for k =4
this diffusion dominates.

It is worth noting that this "quantum diffusion" is not
the only way quantum mechanics may prevent fine struc-
ture being formed by the classical evolution. Milburn'
has studied a different nonlinear potential which produces
a negative-definite diffusion term; it prevents the classical
structure by forcing recurrences of the initial state.

V. QUANTUM DYNAMICS

There are at present no analytic techniques for dealing
with the full problem. One obvious method would be to
normal order the evolution operator Uk [Eq. (3.10)]; how-
ever, for k ~ 2 this is an unsolved problem. ' Fisher,
Nieto, and Sandberg look at the matrix element

k! (k!) +(2k)! (k!) +2k!(2k)!+(2k)!/k!+(3k)!
1

„(nk)!C
2'I 4! 6! (2n )!

by expanding it as a Taylor series in r. All the coefficients
C„are positive. They point out that this series has a zero
radius of convergence; in fact, the coefficients C„grow
like P", where P(k) is near 1. Thus, the vacuum state is
by definition' a nonanalytic vector with respect to the
Hamiltonian Hk. This does not, however, reflect on the
existence of the Hamiltonian, as they imply, or on the uni-
tarity of Uk. The nonconvergence is in fact a mathemati-
cal artifact caused by singular behavior on the imaginary
time axis, since Taylor series converge only up to the
nearest pole. (This phenomenon is quite common in para-
bolic equations; for example, the initial value problem for
the heat equation has no solution for negative time. )

There are many methods of analytic continuation avail-

able which obtain useful information from Taylor series
outside their radius of convergence. If that radius is actu-
ally zero, then we can still hope to extract information by
deriving an alternative form which does converge, since in
this case the Taylor expansion would be an asymptotic
series about r =0. One such method is that of Pade ap-
proximants, ' ' in which the [N/M] approximant is a ra-
tional function PM(r )=P~(r )/QM(r ), where P& (Q~)
is a polynomial of degree N (M). The coefficients of the
polynomials Pz and QM are chosen so as to match the
first M+N+ 1 Taylor coefficients of the function. (QM
has leading coefficient 1.) Pade approximants analytically
continue well because they tend to reproduce the pole
structure that limits the Taylor series' convergence. A
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common application is to form a diagonal series from the
[N /N) and [N /N + 1] approximants (these require
2N+1 and 2N+2 coefficients respectively); this often
has remarkable convergence properties. We restrict our at-
tention to this series.

In practice, one represents the rational function as a
continued fraction. Surprisingly, this means that succes-
sive Fade approximants can be calculated by generating
only one additiona1 continued-fraction coefficient. ' This
breaks down if there is a zero Taylor coefficient. Hence,
we regard Eq. (5.1) as an expansion in r; i.e. we analyti-
cally continue in r instead of r. The algorithms tend to
be numerically sensitive —about half a digit is lost for
every extra term required —so we worked in high pre-
cision throughout (-33 significant figures, with checks at
even higher accuracy). This is not a problem with Pade
approximants, but rather a characteristic of the numerical
treatment of analytic continuation methods in general,
which try to predict behavior far from the origin from the
first few terms of the Taylor series. For instance, in this
case to perform Borel summability instead of Pade ap-
proximation requires the numerical integration of rapidly
oscillating functions.

For k = 1 and k =2, the series of Pade approximants
converges rapidly to the known solutions

(0
I U, (r)

I
0) =exp( r /2), —

(0
I

Up(r)
I
0) =cosh '~ (2r) .

(5.2)

(5.3)

For k =3, we see convergence out to r —1.2 [see Fig.
2(a)]. One reason for this is that the first 56 continued
fraction coefficients are all positive, which gives the rela-
tions

for 2N +2 & 56; i.e., the odd and even Pade approximants
bracket their limit [see Fig. 2(b)].

PM in general has M simple poles, some of which mim-
ic the real poles of the function and some of which are
spurious. The convergence of the approximants will then
depend on whether the spurious poles are eventually can-
celed by zeros in the numerator or move off to infinity as
N and M~ao. In our case the poles initially lie on the
negative real axis (corresponding to imaginary r), cluster-
ing close to zero; this is the usual behavior on a branch
cut. However, coefficients 57, 58, and 168 are negative
which introduces spurious poles. These prevent conver-
gence for large r unless enough terms are included to
move the pole well past r [see Figs. 2(b) and 3].

We repeated these calculations for different matrix ele-
ments, enabling us to compute the Q-function. For a sys-
tem initially in the vacuum state, p(0) =

I
0) (0 I, a

decomposition in the number state basis yields

oo +n 2

Q(r)=exp( —
I
a

I
) g (n

I
Uk(r)

I
0) . (5.5)

o n!

We note that the finiteness of the vacuum-to-vacuum ma-
trix element of Eq. (5.1) determines the finiteness of all
the other matrix elements in the sum of Eq. (5.5). This is
because these matrix elements are nonzero only when n is
a multiple of k, in which case they can be written as sums
of derivatives of the vacuum-to-vacuum matrix element:

vk(r)
I
0) = (o

I
vk(r)

1 d
k! dr1, d(2k

I
v„( )Io) = k!+ , (oI v„( )Io),&(2k)! dr'

N N+1 N+1 NN+1+ N+2 + N+1 + N (5.4) (5.6)
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FIG. 2. (a) plot of the matrtx element, (0
I

Uk=3(r)
I
0), versus scaled time r, when calculated with 2N+ 1=167and 2N+2=168

Pade coefficients. This shows convergence of the matrix element out to r —1.2. C,
'b) Plot of the value of the matrix element,

(0
I

Uk —3(r}
I
0), versus N, for various times: r =0.05; r =0.2; r =0.4; r =0.7; r =1.0; r =1.2; and r =1.5. P~ and Pz+I are plot-

ted separately to show how they bracket their "limit" until they reach the spurious pole at 2N +2= 58. We also see that the spurious
pole moves out to higher times as N is increased.
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(o) N = 40/2

(b) N = 60/2

g w we w w w w w

(c) N = 120/2

-0.5

2

2

Hence, the normally ordered "squeezing" parameter be-
comes

2

(:(dao, ) ":)= 1 P(a, a*)(ae+ao —(ae~ ) )
"

cx g B
Q(a, a*)exp

7T Bo Ba*

y2 X(ae+ae —(ao~ &) ", (5.10)

(d) N = 160/2
aaaa%%~

eraaraaawww
-2.4 2

FIG. 3. Schematic plot of the positions of the poles in the
Fade approximant to (0

~
Uk &(r)

~

0) as a function of r, for (a)
2N +2=40; (b) 2N +2=60; (c) 2N +2=120; and
2N+2=160. This shows the accumulation of poles near the
origin (for r &0) which causes the difficulty with convergence
of the Taylor series. It also shows the motion of the spurious
pole, as in Fig. 2(b).

P(a,a*)=tr[p(t)5(a —a*)5(a —a)], (5.7)

which generates the expectation values of normally or-
dered operators, and the relation for reordering the
Dirac-delta functions

etc. Now
~
(n

~

Uk(r) ~0) (
is a probability so it is

bounded above by 1. Thus the sum in Eq. (5.5) converges
rapidly; e.g. , for a (5 we only need to include terms up to
n =74 (this corresponds to only 25 nonzero terms for
k =3) in the sum for each additional term to give a con-
tribution of less than one percent. The contour plots of
the Q-function are shown in Figs. 1(c)—1(e) for r =0.05,
0.2, and 1.0. Notice the threefold symmetry and the lobe
development, which is much slower and wider than in the
classical case (Secs. III, IV). Our techniques also work for
higher k [see Fig. 1(f) for k =4], but the numerical prob-
lems become more extreme.

As a final point we calculated two of Hong and
Mandel's "higher-order squeezing" parameters,
(:(b,ae, ) ":), for the quantum states in Figs. 1(c)—1(f).
Here the colons denote normal ordering, and

ae& ——ac+a~ is the quadrature amplitude defined at an
angle e to the Re(a) axis [Eq. (3.8)]. Using the P repre-
sentation '

after integration by parts.
These parameters are trivially positive for classical

states, and Hong and Mandel call a state squeezed to 2nth
order if (:(bae, ) ":)is negative. In each case described in
Figs. 1(c)—l(f), we calculated this parameter for n = 1 and
n =2, with 0=0,~/k, and found it to be positive in each
case; i.e., there is no fourth-order squeezing of the kind
described by Hong and Mandel, nor is there any ordinary
squeezing for these states (ordinary squeezing occurs
when their parameter for n =1 is negative). One reason
why we might have expected this is that their parameters
make use of an orthogonal decomposition of phase space
into quadrature amplitudes; instead our states have a k-
fold symmetry, which will not match this decomposition
when k ~2.

As pointed out by Fisher, Nieto, and Sandberg, the
self-adjointness and Hermiticity of the interaction Hamil-
tonian Hk i (za "—z*a")——is not in question. What is
questioned is the unitarity of the theory, but the only po-
tential problem we see would be if the matrix elements of
the time evolution operator Uk(r) did not exist. We have
demonstrated numerically that they do.

VI. CONCLUSIONS

We conclude that this generalization of "one-photon"
coherent and "two-photon" squeezed states to "many-
photon" states is possible and that these non-gaussian
states show quantum features quite different from the
classical approximation. These k-photon interactions for
k & 2 initially generate ordinary squeezing at a higher rate
than the usual k =2 parametric amplifier when they act
resonantly on a large amplitude coherent state. This
occurs, however, in competition with a quantum diffusion
which gets stronger for successively larger k.
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