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N-level atom and N —1 modes: Statistical aspects and interaction with squeezed light
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A model is presented to investigate the problem of interaction between an N-level atom and N —1

modes of the field. The model includes detuning. Constants of motion are obtained. The evolution
operator is calculated, and the probability distribution function for the photon numbers is computed
for different initial atomic states. The characteristic functions are computed. Different statistical
quantities concerning the photons or the atomic system are given. The case of a three-level atom
and two modes is considered for its different configurations. The phenomenon of collapses and re-
vivals is discussed for squeezed light, and the effect of squeezing is shown in this phenomenon.

I. INTRODUCTION

The interaction between electromagnetic (e.m. ) fields
and atoms lies at the heart of quantum optics, ' some
nonlinear phenomena, ' laser theory, ' and laser spec-
troscopy. ' Some models have been presented to discuss
different phenomena. The Jaynes-Cummings model for
the two-level atom has been investigated extensively to
study emission, saturated absorption, dynamic Stark ef-
fect (see Refs. 2 and 8—11), and collapses and re-
vivals. '

The three-level atom model has been introduced to
study stepwise and two-photon excitations"' ' which
were first pointed out a long time ago, nonlinear con-
stants, ' coherence trapping, and two-photon
lasers. ' The semiclassical treatment of the problem
may be found in Refs. 21—24, 29, and 30. Recently, the
problem has been discussed in a full quantum-mechanical
manner ' to discuss dynamics of the system and col-
lapses and revivals. The multilevel atom has been con-
sidered to treat the Dicke model for a system of two-
level atoms in interaction with e.m. fields. ' ' It has
been used recently to discuss the multimode laser. '

In this article we present a model for the interaction be-
tween an N-level atom and N —1 modes of the radiation.
This model includes a detuning parameter A. Its
schematic representation is shown in Fig. 1, where we
have an atom whose levels have energies ~1 & cu2 &

- . - & coN. The lower level of energy cok+1 is connected
to the upper level with a photon of energy Qk. The de-
tuning parameter 6 is given by

A=coj —coj+1—Qj, j =1,2, . . . , N —1 .
The Hamiltonian for such a system in the rotating-

wave approximation (RWA) can be written in the
form2 4 8 9 14 16 32 41

N N —1

H Q cojSJJ + Q Qja zaj.
j=l j=l

AJ(St J+taj. +a JS)+),) . (1.2)
j=1

N —1
A A 4~(S) J+)aj+a J.SJ+) t) )

j=l
(1.3)

where the operators a and a are the boson operators for
the photon fields; the S,J. the generators of the unitary
group U(N). ' They satisfy the following commutation
relations: '

A A A A
[a;,a l] =6), ,J

[a;,az]=0, [ak,SJ]=0, [a k, SJ]=0.
(1.4)

In the rest of the paper we look for the constants of

FIG. 1. Interaction scheme for the N-level atom and N —1

modes.

Under the condition (1.1) which may be considered as a
direct generalization to the two-photon resonance, ' the
Hamiltonian (1.1) can be cast in the form

N —1

H=(cot —6)1+6,S),+ g QJ(a J.aj. —SJ.+) J+, )
j=1
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motion and calculate the evolution operator in Sec. II.
The probability distribution functions are given when the
atomic system is supposed to be initially in one of its pure
states. This is the subject of investigation of Sec. III.
Some statistical aspects are given in Sec. IV related to the
characteristic function and its utilization to compute dif-
ferent statistical averages of the photon number operators.
The case of the three-level atom and two modes is investi-
gated in some detail in Sec. V. We discuss the three dif-
ferent configurations for this system (A, ladder, and V
configurations) and give some statistical quantities and
their relations in the three configurations. Then the in-
teraction with two squeezed modes is investigated. We
specify different states of squeezing and coherence and
study their effect on the time evolution for the photon
number. We investigate the phenomenon of collapses and
revivals and find it is observable in this model but with
some difference in the detailed features from the case of
two-level atom and a single mode. In Sec. VI we consider
the case of multiphoton processes; we give the time evolu-
tion for the photon number in this case.

1
exp( —iCt) =exp( —

2 bit)
Bp B1

—B1 B2
(2.4)

(p)where Ba is the single element matrix I b ii I where

pb ii' —— cos(pt) — sin(pt)
2p

(2.4a)

(1)the matrix Bi is the 1 XN —1 row matrix [b i k] where

. sin(Pt)
b i k= i — kkttk, k& I1,2, . . . , N —1I

p
(2.4b)

+A,;a;v ' cos(pt) e"~ ' '+— sin(pt) A, aJ J

and B 1 its Hermitian conjugate, and finally the matrix B2
is the (N —1) &((N —1) square matrix [b,'J '] where

b (2) e (1/2)i b, tg
lJ lJ

II. THE EVOLUTION OPERATOR

Xj=a JaJ —SJ+1 J+1——nJ SJ+1J+

j =1,2, . . . , N —1 (2.1)

are constants of motion. They also commute with each
other. Therefore the Hamiltonian becomes exactly solv-
able and breaks up into

H =C+D, (2.2a)

The Hamiltonian (1.2) under the conditions (1.1) cast in
the form (1.3) helps in showing easily that the following
operators

ij E I1,23, . . . , N —1I .

The operators p and v are given by
N —1

p, = g A.J(nJ. +1)+b, l4=v+b, l4 .
j=1

They satisfy the following relations:

akim =deka k

and

A2A A A2
P ak=akPk

where

N —1

p, i, =kknk+ , g XJ(nJ+1)=vk+b, /4.
j=1
(j&k)

(2.4c)

(2.4d)

(2.4e)

where

N —1

C=bS»+ g AJ(S& J+ia~+a JSJ+i i)
j=1

(2.2b)

U (t, O) is obtained by taking the Hermitian conjugate of
U(t, O). It can be easily proved that U U = I.

Once the evolution operator U(t) is obtained, the time
evolution for any operator 0 can be easily calculated
through the equation

O(t) = U(t, o)O(0) U '(t, o) . (2.5a)

The expectation value of any operator and its time depen-
dence can be easily obtained through

(O(t)) =Trp(t)O(0), (2.5b)

N —1

D=(co bi, )I+ g QJN) . (2.2c)
j=1

The operators C and D commute with each other and
they are constants of motion. Bearing these facts in mind
we find that the evolution operator U(t, O)=exp( iHt)—
takes the following form:

N —1

U(t, O) =exp[ i (cubi h)—t] + exp—( i OJ.N~)—
j=1

where p(t) is the density operator of the system.
The density operator p(t) is initially assumed to have

the following form:

&& exp( iCt) . — (2.3)
p(0) =p~ (0)pF(0), (2.6)

The first two factors produce phases that will not affect
the results that follow, while calculations of the third fac-
tor show that it takes the following compact matrix form:

which means that the atomic system and the fields were
decoupled at time t=0. For t &0 the field density opera-
tor pF(t) is given by
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PF(t) =Tr„p(t), (2.7) III. THE PROBABILITY DISTRIBUTION FUNCTION

where the trace is taken over the atomic states.
Once this operator is calculated, the probability distri-

bution function for finding n; photons in the mode i is
given by

P([nj j)=&ni n2, nx —i lpF(t)
l
ni nz . nN 1)—

We start by calculating the function of (2.8) by consid-
ering the atom initially in the state of energy cok+1
(k&0), and then when the atom is initially in its upper
state of energy cu1.

A. Atom in the state with energy &ok+& ( k&0)

We assume the atom to be in this state. In this case
equation (2.6) becomes

=P(n), np, . . . , ny )) . (2.8) p"+ (0) =pF(0)Sk+] k+~ . (3.1)

In the following section we calculate this function for
different initial atomic states.

Taking this into account we find the probability distribu-
tion function

Pa ([nJ j,t)=kk(nk+1)
2 P(n), n,2. . . , n k+1, . . . , n~, )

k+1 2 sin (pt)

p
N —1

+ le""'"+Ak I'P([n, j)+4(nk+I) g l A, . l'P(n&, n2, . . . , n, —I, . . . , nk+1, . . . , n~ &), (3.2a)
j=l
(j~k)

where

A = ~n cos(p t) e" " . '+ —sin(p t)
J J

and P( [nj. j ) is the initial value for the probability distribution function of the fields.

(3.2b)

B. Atom in its upper excited state

In this case the density operator p(0) is given by

p (0) =pF(0)IIS„.
The probability distribution function takes the form

(1) 2
sin (pjt)

Pt, ([nz j,t)= cos (pt)+ 2
sin (pt) P([n~ j)+ g A.z nj. 2

P(r &, n.z, . . . , nj. .—I, . . . , n&, ) .
4p 2

p~

(3.3)

(3.4)

The formulas (3.2) and (3.4) give the time evolution for
the probability distribution function when the atomic sys-
tem starts initially in one of its pure states. If the atom is
not in a pure state, but it has probability distribution pj
for the atom in the state of energy ~j. Thus the probabili-
ty distribution function in the general case

N

P(n), n2, . . . , n~ „t)= g p)P (n), n2, . . . , n~ ), t).
j=l

(3.5)

In the following section we compute the characteristic
function and calculate some statistical quantities.

N —1

X(P, ,Pz, . . . , Ptv ~)=exp i g P~ nj. .(4.1)

XJ(P) =exp(i/3nj) . (4.2)

Their development in time can be obtained when multi-
plied by p(t) and traced over the atomic and photon states.
Thus we obtain, using the definitions of the probabilities,

N —1

g(P„P2, . . . , P~, )= g exp i g I3 n Pt, ([n j,t)
In. I j=1

for N —1 modes. For a single mode we may define the
following characteristic function:

IV. STATISTICAL ASPECTS

The characteristic function operator is defined by and

(4.3)
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XJ(p)= g exp(ipnj)Pa(Injj, t),
I n,. I

(4.4)

where P( [nj I, t) is given by one of the expressions (3.2),
(3.4), or (3.5).

Once the characteristic and probability distribution
functions are known, it is easy to compute the statistical
moments (nk ) of the photon numbers in the jth modes
and their correlations (nf(t)nz(t) . n& i(t)). This can
be done by using the relations

In particular, we find in the following the characteristic
functions and first and second moments for the photon
number in the jth mode, and the correlation function. We
now look for these quantities when the atom starts in one
of its states other than the upper state.

A. For the state with energy &ok+1

The single-mode characteristic functions can be calcu-
lated in this case for the modes j&k. We find

and

(nk (t)) = g nk P( [n~] )=
In, j a(ip)-, , gj~"+a"(P)= g P( I ni I )exp(iPn~ )

Inrj

(n f(t) . . nk(t) . . ng, (t))
= g nf nk. n&,P(Inj))

&&[1+(e'~ 1)A—~(n)+1)
I

Ak
I ],

(4.6a)

a/+'''+&+'''+iy(Ip I)
(4.5)

a( p, )' a( p„) . . a( p„,)' (t, )=(0)

where j&k.
The characteristic function for the kth mode is given

by

2

+k —6 (p)= g P( [n& I )exp(ipnk ) 1+(e ' —I) ink i +(&k ~knk) I
Ak I

(k+1) 2
sin (pkt) 2 2

Pk
(4.6b)

The multimode characteristic function is given by

N —1

Xa"+"([P~I)=g P([nj I)exp i g P~n~
In I j=1

;p„2 sin (pkt) & —&;tt;tt„1+(e "—1)&knk, + g (e ' "—1+;(n, +1)
I

Ak
j=1
(j&k)

(4.6c)

The expectation value can be calculated from (4.6). Thus we find the photon number expectation values in the jth mode

ag(k+1)
(ni(t))'t,"+"—— nj. + g P(——[n;I )Aj~(nj. +1)

I
Ak

I

0=o
I n,. j

where j&k. It is always greater than its initial value The kth mode has the photon number expectation value

a(ip)
sin'(pkt)

+ (vk ~k nk )
I

Ak
I

'=nk —y P( [nj. I ) Aknk,
P=O In. j

(4.7b)

This shows that the photon number in the kth mode is always less than its initial value. When we put 6=0 we get the
results of Ref. 41.

The second moments are given by

pe(k + 1)

(nz(t))t, + —— =nz +[(nj(t))I, + ' nz]+2 g P([n; ])A—J(nj —1)
I

Ak
I

(4.8a)

where j&k. For the mode k we find
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Xk (P)
&n, (t)&a

a(ip)'

2 ~ (k+1) 2 sin (pkt) 2 2=nk —[(nk(t) &t) n—k] —2 g nkP([nj I ) &knk 2 +(vk —'((knk)
I

w

In, ) Pk

The correlation function for the N —1 modes is given by

(4.8b)

(n1(t). . . nk(t) . . nN, (t) &a"+"

g(N —1)y(k+1)(p p
~(iP)). . . ~(iPk) . .

N —1

n~ —g P( [n) ) )
j=1 In I

2
sin ((Mkt) N —1

~k + g g n ~ (n +1)(n +1 nk)
I ~k

I
nk

j=1 Pk j=l r=1
(j~k) (r~j)

(4.8c)

It is noted that (nl(t) & )nj for j&k, while (nk(t) & (nk. The system can develop once the mode k is not in a vacuum
state.

B. For the upper state with energy co&

The single-mode characteristic function is given in this case by

2

Xa' J(p)= g P([nj I )exp(ipnz) 1+(e'~ 1)XJ—(nj+1)
In, I p

where j= 1,2, . . . , X —1. The multimode characteristic function is given by

(4.9a)

g(a"([pj I)= g P([niI )exp i g pjnj
In. j j=1

The expectation value for the photon number in the mode j can be calculated by using equations (4.9), and we find

(4.9b')

&„-, &(1)
a(i p)

2

=nj+ g P([nj I )AJ(nj. +1)
p

(4.10a)

where j=1,2, . . . , N —l. It is found in this case that for any mode (nj(t) &t,")ni Even if al.l modes start initially in
vacuum the system can develop and we find

X2

(n, (t) &~("=n)+ ' sin(Xt)

where

N —1 g2

j=1
The second moments are given by

pe() ) 2

( n J(t) &a' ——
2 nJ [(nl(t) &——z"——nj]+2 g P( [nj I )A&(nz+1) (4.10b)

where j = 1,2, . . . , N —1, while the expectation value for the multiplication of photon numbers is

(P(~ . .g(N —1) (1)

(n, (t) . nk(t) . . nN 1( )&g = Pk PN

N —1 N —1

IIn + XP(
j=1 In I

N 1 N 1 sjn2(pt)
[nj I ) g II n„A~(n~+1)

j=l r=1 p
(r~j )

(4.10c)
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C. The atomic state occupation number

These numbers can be computed easily from the con-
stants of motion of (2.1). This equation means that the
difference between the occupation number in the state
with energy co~+& and the photon number in the mode j
that connects this energy level with the upper level of en-
ergy co1, is a constant through the time development of the
system.

Thus we can get the time development for the occupa-
tion number in the level of energy coj+& from the follow-
ing:

tially occupied level co& is given by

Q2
(S11(t)&"'= g P(I nj [) cos (pt)+ sin (pt)

In I 4p

(4.13b)

In what follows we restrict the number of levels to
three. This means we consider a three-level atom in in-
teraction with two modes.

V. INTERACTION OF A THREE-LEVEL ATOM
WITH TWO MODES

jE I1,2, . . . , N —1I . (4.11)

Therefore we find the following formulas for the occupa-
tion numbers in the atomic states.

I. Atom initially in state of energy oak+1

When the atom is initially in one of its states other than
its upper state, let it initially occupy the state with energy
level a1k+1 where k =1,2, . . . , N —1. Using (4.7a) and
(4.7b), we obtain

In this section we consider the three-level atom and
two-mode system. We first give the average photon num-
bers when initial conditions are stated. We consider next
the interaction with two squeezed modes of light.

When we restrict the numbers of levels to be three in
the foregoing study, we get the so-called A (or inverted)
configuration. However, there are two other configura-
tions, namely, the V and ladder or cascade configuration. .
These configurations are shown in Fig. 2.

A. The A configuration

= g P(In)I )ii)~(n~. +1)
~

Ak
~

In-I

(4.12a)

where j&k, while for the level with energy ask+1 we get

& ~k+1,k+1(t) &'"+"

For this we have the Hamiltonian (1.2) with N=3
while the condition (1.1) becomes

6=co~ —Q)2 —AI =Q)
~
—QP3 —Q2, (5.1)

which is the two-photon resonance, ' and the constants of
motion of (2.1) are now

=(nk(t)&' +"—(rlk —1) n 1 ~22 +2 n 2 ~33 (5.2)

sin (pkt)=1—g P(Inj j ) I1knk
fn. I Pk

We look now for the expectation values for n and n
which are the special values of equations (4.5) in this case.

+(vk ~k+k )
I Ak (4.12b) I. Atom initially in its ground state (of energy cos)

The expectation values are given by

& tt 1(t) &A n 1 + X P(rt1 n2)~1(n 1 + 1)
l
A2

l

'
nl, n2

(S11(t)& + = g

P(In&�)

)Aknk
(k+&) sin (pkt)

In. j

(4.12c) nd

The occupation number in the upper-most state of energy
co& is given by (5.3a)

2. Atom initially in its uppermost state (of energy cod)

When the atom starts initially in its uppermost state
with energy to1, we use (4.10a) to obtain the following:

~ I Gd 2 63 2

= g P(Injj)AJ~(nJ. +1)
I n,. I P ladder yt j

(4.13a)

for j = 1,2, . . . , N —1. The occupation number in the ini-
FICx. 2. The different configurations for the three-level atom

and two-mode system.
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sin (pzt)
~ n2(t)&A n2 g P(nl n2) ~2nz

nl, n2 Pz

and

(S„(t))s"= g kznzP(nl „)
n&, n&

Sill (pzt)
2

P2
(5.5c)

+A, , (n, +1)
~

Az
~ The time evolution for n &, n 2, and n &n2 is given as fol-

lows:

where

and

~n co. s(p t) —e "~. ' '+ sin(p t)
J

(5.3b)

(5.4a)

( n ', (t) )sA'=n'I+[(nl(t) )A' —nl]

+2 g ~lnl(nl+ 1)P(nl
n&, n2

~ n 2(t) &A n2 [(nz(t))A n21

(5.6a)

p, =vl +b, /4, v, =A'In I +Az( n 2+ 1)

pz ——vz+ 6 /4, vz =XI(nl + 1)+kznz

(5.4b)

(5.4c)
2 sin (Pzt)—2 g P(n„nz) Aznz

n&, n2 P2

The occupation numbers for the ground state, intermedi-
ate state, and upper state in this case are given respective-
ly by

+X'Inz(nl+1)
~
Az

~

'

33( )&A= +[& "2( )&A —Z]

( Szz ( t ) )A' ——( n (It ) )A' —n, ,

(5.5a)

(5.5b) and

(5.6b)

(nl(t)nz(t))A' ——nInz —(nl(t))A'+ g P(nl, nz)[AI(nI+1)nz
~

Az
~

+nI
~

e" ' '+kz~nzA2
~ ] .

n&, n2

(5.6c)

2. Atom initially in its intermediate state (of energy olz)

In this special case we find the following

( n I(t) )A"= (nz(t) )sA'

of (5.4b), but with 1~2; and

( n, (t) )'"=(n, (t) )"

(5.7a)

(5.7b)

of (5.4a), but with 1~2. The occupation numbers for the
three states are given by

It is observed that if we take the second mode to be in
vacuum, i.e., we assume P (n I, nz ) =P (n I )5 p the systemn2

never develops in time whatever the nature of the mode
one.

If the system starts with the mode one in vacuum, it
will stay without any change and never develop in time.

3. Atom initially in its upper state (of energy all )

For this case we find the evolution in time for the pho-
ton number operators of the two modes is given by the
formulas

(nl(t))A n, + g A, (In I+1)——P(n In )2

2 sin (pt)

n&, n2 p

(5.9a)

(nz(t))A=nz+ g kz(nz+1)P(nl, nz)2 sin (pt)

n&, n2 p

(5.9b)

~ S33(t) )A ~nz(t) &A n2

( Szz(t) )A ——1+ ( n, (t) ) '" n, , —
(5.8a)

(5.8b)

where

p =v+6, /4, v=AI(nl+1)+Az(nz+1) . (5.9c)

and

sin'(p lt)
(SII(t))A"——g "A, n, P(nI, nz) z

n1, n2 p)
(5.8c)

which is the same as (5.5c) with 1~2. For the expecta-
tion values of n ~, n 2, and n]n2 they are the same as in
the ground state but with 1~2. and

(S33(t))A= (nz(t))A nz, —

( Szz(t) )A ——( n I (t) )A n I, —

(5.10a)

(5.10b)

The occupation numbers in this case for the ground, inter-
mediate, and upper state are given by
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sinz(pt)
(S»(t))A ——1 —g P(n, , n2)v

p,
(5.10c)

respectively F. inally, the time dependence for the expec-
tation values of n 1, n z, and n

& n2 is given by the formu-
las

( n )(t))~ n——~+[(n~(t))x —n &]

1. Atom initially in its ground state (of energy cos)

(n](t))y=n[ —y k]n/P(n[, n2)
sin (p't)

n&, n2 p
{5.13a)

The expectation value for the photon number operators
in this case are given by

sin'(pt)
+2k& g n, (ni+l)P(n„nl) z

nl, np p

(S.1 la)

(n z(t) )~ is the same formula as above but with 1~2 and

( n, (t)n, (t) ) ~~

(n2(t))II'=n2 —g A2nzP(n&, nz)
sin (p't)

nl, n2 p

p =v'+b, /4, v'=A, n, +, kznz .

(5.13b)

(5.14)

= n) nl+ g P(n„n2}[A((n(+ l)np
n&, n2

+Az(nl+ l)n~] z
2 sin (pt}

p

They may be compared with (5.9) of the A configuration
where the stimulated emission process is apparent. The
occupation numbers for the levels of energy ~3, co2, and ~1
are given

(5.11b)

In this case the system develops in time even if the two
modes start from vacuum states. From these formulas
the different correlation functions can be calculated easi-
ly' once the initial conditions are stated.

B. The V configuration

and

(S»(t) &f=1—g, , P(n„n, ),v sin (p t)

n, , n2

( S»(t) )P =n, —(n, (t) )'P,

(S„(t))'P =n—,—(.-, (t) )II',

(5.15a)

(5.15b)

A.

+A2(Sp3ap+a 2S32) . (5.12a)

We now look at another configuration, namely, the V
configuration (see Fig. 2). In this model the Hamiltonian
in RWA is given by

3 2

H = g coJSJJ + g flja )~a) +A, )(S)3a, +a tS3 ) )
j=1 j=1

where (n&(t))P and (n2(t))II' are given by (5.13a) and
{5.13b) while we find

( n ((t})I}'=n )
—[(n [ ( t) ) I(' —n ] ]

A, )n (sin (p t)—2 P(ni, n2),
n), n2 p

The detuning parameter 6 is given by

5=Q) 1
—C03 —Q 1

=Q)2
—CO 3

—02 (5.12b)

in contrast to (5.2} in the A configuration. The constants
of motion in this configuration corresponding to (5.2) are
given by

and the same expression for (n z(t))IIl but with the sub-
scripts 1 and 2 interchanged.

The summations appearing in the formulas (5.13) will
be computed in Sec. &I for two squeezed modes of the
field; and the phenomenon of collapses and revivals is dis-
cussed.

+1 n 1+~11 s +2 +2+~22 (5.12c)

This means that the summation (rather than the differ-
ence in the A case) of the occupation number in a level
and the photon number in the mode connecting it with the
ground state is a constant of motion of' the Hamiltonian
(5.12a) under the conditions of exact two-photon reso-
nance (5.12b).

2. Atom initiaily in its intermediate state (of energy co&}

In this case we get

( n &(t))~v n 1 2 ~2(n2+1) I
4 i I

'P(n i n2) (5 17a)
n&, n2

(nl(t))'v ——n2+ g A2(n2+1)
I
Al I + l sin (p(t) P(n), nq) .

nl, n2 p]

Compare these with (5.4) of the A configuration and atom in ground state.
The occupation numbers are given by

(5.17b)
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sin (p, t)
(S33(t))v= g Xz(nz+1) z P(ni, nz)

n&, n2 P1

while

(5.18a)

and

(Szz(t) ) v
——1 —

[ (nz(t) )'v —nz I (5.18b)

(S))(t))'v= —I'(n, (t))'v —n& ] .

For the second-order operators, we find

(5.18c)

and

(n &(t)) v=n
&

—[(n, (t) )v —n&] —2 g Azn |(n z+1)
~
A,

~

P(n~, nz)
n&, n2

~ 2 in 2 ~ in 2
sin (p, t)2

(n z(t))v=nz+[(nz(t)) v nz]+2 g Aznz(nz+1)
~

A~
~

+ z P(ni, nz) .
n&, n2 P1

(5.19a)

(5.19b)

3. Atom initially in its upper state of energy cot

When the atom starts in the upper state, we only ob-
serve that the same formulas of (5.17)—(5.19) go through
with the interchange 1~2. For example,

of motion, while the difference between the photon num-
ber in the second mode and the occupation number in the
lower level is a constant of motion. We now look at the
time evolution for the different operators when the atom
is initially in one of its states, in this configuration.

(nl(t))v=n]+ y ~)(n]+1)
n&, n2

sin (p, zt)+ z P(n|, nz)
P2

1. Atom initially in its ground state

The expectation value for the photon number operators
is found to be

(5.20)
( n, (t))P=n& —g P(n&, nz)kznz

~
Ao

~

(5.22a)
which is (5.17b) with 1 and 2 exchanged.

The phenomenon of collapses and revivals is investigat-
ed when the summation appearing in this formula is cal-
culated for two squeezed modes in Sec. VI.

C. Ladder (cascade) configuration

n&, n2

(nz(t))P =nz —g P(n&, nz)lznz
~

Ap +r 2 sin (p't)

nl, n2 p

(5.22b)

where

The scheme in this case is shown in Fig. 2. The Hamil-
tonian takes the form

H= g co~S;;+ g f1;a;a;+A~(S~ za&+a ~Sz&)

Ao= cos(p't) e' ~ "+i—, sin(lz't)
V 2p

(5.22c)

+Az(Sz3az+a zS3z) .

The detuning parameter for this model is

b = —(co( —coz —0))=coz —co3 —Az

while the constants of motion are

(5.21a)

(5.21b)
( S33(t) )F= 1+[(nz(t) )tF nz ], —(5.23a)

with lz' and v' given by (5.14).
From these and the constants of motion in (5.12c), we

can calculate the occupation numbers for the ground, in-
termediate and upper states. They are, respectively,

X1——n1+S», X2 =n2 —S33 (5.21c)

Compare these with their counterparts in the other con-
figurations (5.1) and (5.2) and (5.12b) and (5.12c). Here, it
is the sum of the photon number in the first mode and the
occupation number in the upper level which is a constant

and

(Szz(t))F= g P(nt, nz)Aznz
sin (p't)

n&, n2 p
(5.23b)

(5.23c)
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The second-order operators develop in time according
to the following:

(n ', (t))P=n] —[(n](t))f—n, ]

( n 2(t) )f'=n2 —[(n2(t)) f' —n2]

2 sin (p't}—2 g P(n], n2)A2n2
~

Ao
~

+
n ),n2 p

n&, n2

p(n], n2)g2n2
~

Ao
~

(5.24a)
while the correlation function

(5.24b)

(n](t)n2(t))p=n]n2 —g P(n], n2)A2n2 n]
n&, n2

sin (p't) +(n]+n2 —1}
l
Ao

I

'
p

(5.24c)

2. Atom initially in its intermediate state

The photon numbers in the two modes are given by

( n](t)n2(t))L

=n ]n 2+[(n ](t)—n]]
sin (p]t)

( n (]t) ) L=n —] g P(n n])2A, n]]
n&, n2 p)

and

(5.25a) 2 sin (p]t)y P(n], n)2]nn(2A, ]+i )2
n&, n2 p)

(5.27c)

sin (p]t)
( n2(t})L n2+ y p(nl n2)~2(n2+ 1}

n(, n2 pI

3. Atom initially in ~ts upper state

The expectation values for the photon number opera-
tors in this case is given by

(5.25b)

which means stimulated absorption for mode one and
emission for mode two. When we use the constants of
motion of (5.21c), the occupation numbers in the atomic
levels are obtained as follows:

( n (]t) ) L n]+ g P——(n n])A2, ,(n +]1)
n&, n2

p
(5.28a)

( S33(t) )L = (n2(t) )L —n2, (5.26a) and

Q2
(S22(t))L = g P(n], n2) cos (]]i,]t)+ sin (]M]t)

4 2
n&, n2 p

(5.26b)

( n2(t) )L n2+ X P(n1 n2 }i(1(n]+ 1)
I

A
n&, n2

where

(5.28b}

and

(S (]t])) Ln —] (n](t))L . (5.26c)

= 2 cos( t) ei (A/2)t+ t2ib, sin( t}
2 p

(5.29)

In this case, the expectation values for n ~, n 2, and n &n2
are

where ]]2 and v are given by (5.2c).
The occupation numbers for the energy levels are

(n '](t))L =n'] —[(n (]t)) L n]]—
sin (p]t)—2 g p(n], n2)X2]n]

n&, n2 p)
(5.27a)

(S33(t))L" ——(n2(t) )L —n2,

(S22(t))L = g P(n], n2)A, ](n]+1)2 sin (pt)

n&, n2 p

(5.30a)

(5.30b)

( n 2(t) )L = n 2+ [(n2(t) )L —n2] (S„(t))L=1—[(n](t))L n]] . — (5.30c)

and

+2 g P(n „n2)72(n21+1)
n&, n2

sin (p]t)

p)

(5.27b)

Compare these formulas where the stimulated emission
is apparent with the formulas (5.22) and (5.23) where the
stimulated absorption process takes place.

The time evolution for the second-order operators takes
the following:
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( n )(t) )L ——n )
—[(n )(t) )L n—( ]

+2 g P(n&, nq)A, , (n&+1)

( n 2(t) )L". =n 2 [(n2(t) )L n2]

+2 g P(n), n 2)A)(n)+1)(n2+1)
l

~
l

(5.31a)

+~0 the distribution is always broader than Poissonian.
P(n

&
) and P(n2) are given by the expression (6.2) with

(a, ,r, ) and (az, r2) for the two modes, respectively. We
consider the effect of collapses and revivals in the system.
We shall neglect the effect of detuning (i.e., write 6=0),
and asymmetries in interaction (i.e., take X& ——A, 2

——X). We
concentrate on the sub- and super-Poissonian distribution
effects on the phenomenon of collapses and revivals in
this system.

To show these we compute the following quantities:

n&, n2

(5.31b)
bnI ,

g' ——(n)(t))P n(, — (6.4a)

and the correlation function

(n, n, )L

=n~n +2g P(n&, n2)A&(n~+1)
n j,n2

where we use Eq. (5.13a), and

b, n', "' =(n)(t)) p n),— (6.4b)

X 12n2 2 +(n1+n2+ 1)l ~sin (pt) 2

p

(5.31c)

With this, we conclude the discussion of the different con-
figurations for the three-level atom and two-mode system.

VI. INTERACTION WITH SQUEEZED LIGHT

P(n], n2) =P(n ) )P(n2), (6.1)

which means that the two modes are initially decorrelated.
For the squeezed mode

l
a, r) the distribution function

P(n) is given by

P(n) = [(n!)coshr] '( —,tanhr)"
l
H„[ p/u'si nh(2r)]

l

We investigate in this section the phenomenon of col-
lapses and revivals in the system of a three-level atom and
two squeezed modes. The distribution function P (n &, n 2 )

which appears in Sec. V, is assumed to be in the form

where Eq. (5.20) is used. The behavior of these quantities
is shown in the following set of figures.

We first consider sub-Poissonian distributions, i.e., we
take 0~ ——02 ——0. In Figs. 3 and 4 we present the time
development for b n Ig' and b n '~"', respectively, for

l
a&

l

=
l az

l

=4 and r, =r2 =sinh '(1). The collapses
and revivals are very clear in these figures. They oscillate
in a very fast way for short times. In Fig. 3, we note that
the amplitudes after the first and second collapses are al-
most the same. While Fig. 4 shows a bigger amplitude
after the second collapse in contrast to Fig. 3, and the case
of the system of a two-level atom and a single mode. '

This behavior is a characteristic feature of the three-level
atom system.

The same behavior appears in the interaction with two
coherent modes. We would expect this similarity be-
cause the coherent excitation is rather dominant in n of
(6.3a) for the set of parameters taken (

l
a&

l

=16»sinh r~ ——1). The increase in the amplitude after
the second collapse could be explained by writing (5.20) in
the following:

Xexp[ —
l pl + —,tanhr(p +p *)], (6.2)

where p=acoshr+a*sinhr, when r~0 we get the
coherent state

l

a ) .
We find the following values for the mean photon num-

ber n and variance: -025-

lt
10 20 30 40 50 60 70 80 90 100

n= lal +sinh r (6.3a) -a50-

var(n) = —,sinh (2r)

+
l

a
l

[cosh(2r) —sinh(2r)cos(20)], (6.3b)

-0.75

where r )0, and 0 is the angle between the direction of
the coherence excitation and the direction of squeez-
ing. ' When a

l
is dominant in the mean photon

number (i.e.,
l
a »r) the distribution is sub-Poissonian

for 0=0 and super-Poissonian when 0=~/2. When

FIG. 3. Evolution of An'& ' of Eq. (6.4a) against A, t for 6=0,
0) ——Op ——0, a l

——a2 ——4, and r )
——r 2 ——sinh '1 {i.e.,

n l ——n2 ——17).
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0.75-

0.50-

025 '

20 30 40 50 60 70 80 90 100

Q25-

II

10 20 30 40 50 60 70 80 90 100

FIG. 4. Evolution of hn '~"' of Eq. (6.4b) against A.t for the
same parameters as in Fig. (3).

FIG. 6. Evolution of An'~"' against A.t for the same parame-
ters as in Fig. (5).

while the second collapse disappears and chaotic behavior
starts to build up after that. It is observed that the oscil-
lations are somewhat slower while the times during which
the oscillation take place are longer than in the sub-
Poissonian case. Their centers are shifted towards the ori-
gin and the amplitudes are smaller than their correspond-
ing values in the foregoing figures.

The chaotic behavior is the only feature that is present
when ! a! ~0. This is apparent in Figs. 7 and 8 for
An '&

' and An '&"', respectively, where we have considered
the following values for the different parameters
6, =82——0, ! a, !

= Ia2! =0, and r&
——r2 ——sinh '4. Each

of the two modes is initially in the squeezed vacuum state.
The two distributions P(n&) and P(nz) are very broad
and peaked around n =0, Ref. 17. Thus, the chaotic
behavior is apparent from the beginning. It does not start
somewhat later as in the thermal distributions considered
in Ref. 36, where the distributions are peaked around
n &0.

n(+ 1
b, n ',"' = g P(n „n, )

1)2(n ~+np+1

)&[(n, +n, -+1)sin (Qn~+nq+ lkt)

+4n2sin ( , Qn, +n—~+ll t)] . (6.S)

VII. MULTIPHOTON PROCESSES

In this section, we look at processes where more than
one photon are involved in the interaction. We assume
that the transition between the two levels co& and cu& + &

is
effected through mj photons of energy QJ of the jth
mode. Thus, instead of the form (1.2) for the Hamiltoni-
an we now have

10 20 30 40 50 60 80 90 100

It is apparent that there are oscillations with frequen-
cies (A, /2)+n &+nz+1, and with double its value. Since
the distributions are dominated by the coherence excita-
tions; thus they are peaked around (n&+n2). ' Therefore,
the first part of the sum contributes mainly to the first
main block, then the two parts contribute to the second
block, and hence the increase in the amplitude.

Apart from this, the figures also differ from the two-
level atom and a single-squeezed-mode system' in that
the oscillations persist for a longer time before they col-
lapse down, then the period of collapse is longer than in
th mentioned system. ' This could be understood whene men

13we use the saddle-point approximation, but with the
mean photon number n

& +n2 ——2n
&
.

For distributions of initial super-Poissonian statistics,
the behavior of hn '&

' and An '&"' have some differences in
the details from the foregoing mentioned discussions.
Figures 5 and 6 show their behavior for the set of parame-
ters 0~ ——02 ——~/2 and the same prescribed values for the
other parameters (i.e., ! a, ! =!a, ! =4 and r

&
r2-—

=sinh '1). The first collapse occurs in the two figures,

gt
10 20 30 40 50 60 70 80 90 100

-025

-0.2-
-0.50-

—0.4

- 0,6

l'~a ill&
i I ~Ijgj)(, (l, llill, lI!Iv" IIIIII) !, , ,&(!!&P I!!lI!l!!&! '

FIG. 5. Evolution of An '&
' against A.t for 6 0, A, ( ——A.2 ——A, ,—11~~ =~2=~m

I a~
I
=

I a~
I
=4»«i =r2

FIG. 7. Evolution of An
&

' against A, t for 6=0, X& ——A, 2
——A, ,

8, =0,=0, Ia, I
= Ia2I =0, and r~=r2=sinh '4.
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m (n; )!

( n; / m; ) ( n; —m; )!

1/2

=b f;(n;) . (7.2a)

as
The relation between the operators nb ——b; b; and

t

n; =a;a; is given by

n. =m) l1b1 (7.2b)

Q3 The form (7.1) now takes the form

I

20 40
I

60 80 100

H= g coJSJ.)+ g mJ. AJb~b~
j=1 j=1

FIG. 8. Evolution of An'&"' against A, t for the same parame-
ters as in Fig. (7).

N N,—1

H= g MJS& J+ g QJQ JQ~
j=1 j=1

N

AJ[S, ~+,a J '+(a~) 'SJ+~ ~] . (7.1)
j=1

This form can be cast in a form close to (1.2), by using the

generalized boson operators b; defined as follows:

+ g AJ[S~ J+~bjf(n~)+f(nj)b JS~+~ ~] .
j=1

(7.3)

For this model to be exactly solvable, detuning parameter
b of (1.1) now takes the form

5=co( —coj+, m~ f),—J (j.=1, . . . , N —1) . (7.4)

The whole argument of Secs. II and III go through, but
with each operator in (2.4) a; replaced by b;f (n; ). For
example, we find that the corresponding formula to (4.7a)
in this case is given by

(nj(t)) +~,', nj+m——j g P( Inj I )A.jkk
fj.I j

and the corresponding formula to (4.7b) is given by

nk!
(7.5a)

nk!
(nk(t)) „+~„nk™——k g P(Inj I )kk

(nk —mk )!

sin (pkt) nk!
+(vk ~k), IMk I'

(nk —mk )!
(7.5b)

2
vk ~k

(nk —mk )!
2 (n;+m;)!

+
n;!

(i~k)

where the vk and pk in this case are given by

(7.6a)

which corresponds to (4.10a) for this case.
When the number N of the energy levels is restricted to

three, we get the case of the three-level atom in interaction
with multiphotons of the two modes.

Q2
Pk —Vk+

4

while

Mk =vk cos(pkt) e' "+i sin(—pkt)
2Pk

(7.6b)

with

j=1,2, . . . , N —1 (7.7)

2 + g~ + 2 (n;+m;)!
P = + 4,. n;!

(7.8)

When the atom is initially in its upper state, we find in
this case that

r

(nj.(t))"„~„——nj+m, g P([n; I )A,J
(nq+ ~)' sin (pt)

nj. P

VIII. DISCUSSION AND CONCLUSIONS

The model for the interaction between an N-level atom
and N —1 modes presented in this investigation contains
a detuning parameter 6, which is a generalization to ear-
lier models. ' ' In general, the following features are
manifest in this model.

Independent of the specific form of the initial probabili-
ty distribution function of the photons in the modes; the
system develops in time when the atom starts from its up-
perrnost state of energy cu1, whatever the number of pho-
tons in the field modes, even if all modes are in vacuum
state. On the other hand, the system never develops in
time when the atom starts from any state of energy
coj+1&cu1, and the mode that connects this energy level
with co1 is in vacuum. When this mode is not in the vacu-
um state the system evolves. For t&0 the mean photon
number in the mode that connects the energy level that
was occupied at t=0 with the uppermost level, is always
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less than its initial value, while in the rest of modes, it
exceeds its initial value. It is noted that the mean photon
numbers in all the modes and the occupation number in
the uppermost state, i.e., (S»+ g, ,

' n;) is a constant of
motion.

The case of the three-level atom and two-modes is dis-
cussed in some detail with the different configurations
considered. The relations between the statistical quanti-
ties in the different configurations are shown. Then, the
interaction with two modes in the squeezed state is con-
sidered numerically and the phenomenon of collapses and
revivals is shown. However, some differences from the
case of the interaction between a two-level atom and a
squeezed mode' are exhibited. These differences are
characteristic to the three-level-atom system, and they ap-
pear in the interaction with coherent modes.
Squeezed light gives an opportunity to discuss the effect
of sub- and super-Poissonian distributions for the two
modes on the collapses and revival phenomena in the sys-

tern. This is apparent when we compare Figs. 3 and 4 and
Figs. 5 and 6. It is obvious that for highly squeezed light
and for longer periods the system develops to a chaotic
behavior. On the other hand, when the coherence excita-
tion is predominant, the system develops almost like in in-
teraction with coherent light, and it takes a very long time
before chaotic behavior starts to appear especially for
sub-Poissonian distribution (8& ——Oq ——0). However, chaot-
ic behavior is more pronounced when we take
0& ——02 ——~/2, i.e., super-Poissonian distribution.
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