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The Wei-Norman ordering technique is utilized to present a unified approach to the time ordering
for SU(2), SU(1, 1), and SU(3) coherence-preserving Hamiltonians. It is shown that the characteristic
equations of the ordering method can be cast in the form of a generalized Bloch equation in an

SU(2), SU(1,1), and SU(3) space. The laws of conservation, linked to the Casimir invariants of the
algebra, are also directly derived from the Wei-Norman characteristic equations.

I. INTRODUCTION

Algebraic methods have been recently exploited to deal
with a very large number of problems in quantum elec-
tronics. They have been particularly useful for the
analysis of quantum-mechanical systems, subjected to
strong and time-dependent perturbations. '

Unitary symmetries, the well-known keynote to
penetrate the ordering code of elementary particles and
nuclear spectra, have indeed been shown to be a poten-
tially unique tool to understand the dynamics of multilev-
el systems.

On analyzing the equations of motion of a three-level
atom driven by an electromagnetic interaction, Elgin and
Hioe and Eberly exploited the SU(3) symmetry and
proved that the "torque" equation of the two-level case
can be generalized to an equation of motion describing a
rotation in an eight-dimensional space. Furthermore, they
also indicated how unitary groups may usefully be ex-
ploited to discover a number of previously unforeseen
constants of motion. Later on the techniques suggested in
the above quoted papers have been applied to a
multilevel-type device like the free-electron laser and it
has been shown that its dynamics is governed by equa-
tions formally identical to those stated in Refs. 4 and 5.

The principle of unitary invariance applied to the study
of N level quantum s-ystems was further extended by Hioe
in a series of interesting and elegant papers. In those
notes the conditions have been discussed under which the
dynamical space of a quantum system strongly interacting
can be decomposed into independent subspaces, thus indi-
cating subsets of independent constants of motion. In
developing this view to the X-level dynamics Hioe estab-
lished a clear link with elementary particle physics„also
suggesting the fascinating idea that a parallel can be
drawn between the existence of the various types of
quarks and the existence of the corresponding solitons in
the decomposed dynamical subspace (see the second of
Ref. 8).

More recently, renewed interest in group-theoretic
methods has been motivated by the rediscovery of
rigorous time-ordering techniques proposed more than
two decades ago. ' '" In fact, the ordering problems, aris-

ing in dealing with the evolution of quantum systems
governed by Hamiltonian time-dependent linear combina-
tions of Lie group generators, can be conveniently treated
by means of the algebraic method developed by Wei-
Norman. " This technique, resorted and suitably rehan-
dled, ' has proved a great help in treating a wide class of
problems, ranging from the harmonic oscillator with
time-dependent frequency to the propagation in optical
fibers. ' It has been stressed that the obtained results
holds, mutatis mutandis, for any problem whose dynami-
cal variables" ' can be embedded to form an SU(2) or
SU(1,1) group. In this paper we also discuss the relevance
of the Wei-Norman (WN) technique to the SU(3) case,
solving for the first time the problem of finding the ap-
propriate Weyl-type disentangling for this group. In so
doing we indicate the possibility of treating, from a gen-
eral point of view, the temporal behavior of quantum
states ruled by Hamiltonian time-dependent linear com-
bination of SU(3) group generators.

We develop in this note a unified view to the problem
of the time ordering for SU(2), SU(1,1), and SU(3)
coherence-preserving Hamiltonians.

We show that the characteristic equations of the order-
ing procedure can be cast in the form of generalized Bloch
rotations in SU(2), SU(1,1), and SU(3) spaces, thus getting
a direct connection with previous results (see, e.g. , the al-
ready quoted Refs. 4—6 and 14).

The problems related to the laws of conservation are
also discussed within a more direct framework and are de-
rived from the Casimir invariants related to the general-
ized Bloch rotations. '

The paper is organized in three sections and one Ap-
pendix. In the forthcoming sections we discuss the order-
ing theorems and the relevant generalized Bloch equa-
tions. Finally, to stress the flexibility of the method, we
show in the Appendix how the procedure can be extended
to a more complicated Hamiltonian operator.

II. SU(2), SU(1,1), AND SU(3)
ORDERING THEOREMS

To make the paper self-consistent we sketch briefly the
main aspect of the WN method. We consider the follow-
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U(t) = + exp[gj(t)L~]1, gj(0) =0 .

The problem of finding the explicit expression of U(t)
reduces therefore to the equivalent one of looking for the
appropriate connection between g~(t) and a~(t) functions.
Without entering the details of the derivation, otherwise
quite straightforward, we recall that the two sets of func-
tions are connected by" '

j=li =1
(3)

where the overdot means time derivative and g; J depend
on the algebra structure constants. From the already in-
voked linear independence, we finally get

k, z

~ ~ (4)

~n kn, 1 knng„,
It is therefore clear that once the explicit forms of az(t)
and g;z are known one can determine the functions gz(t)
by solving a system of nonlinear differential equations.

We can now utilize the above results to discuss the case
of the real simple split three-dimensional Lie algebra. We
therefore specialize the Hamiltonian operator (1) to

H(t)= F,+0"(t)F+ —Q(t)F
2

ing Hamiltonian operator:
m&n

H(t)= g a~ (t).L~,
j=1

where LJ. are the generators of the Lie algebra, aj(t) are
linearly independent functions of t, and the index j runs
from 1 to m &n, n being the dimensionality of the alge-
bra.

The obliged step, once the time behavior of the quan-
tum states driven by (1) is needed, is the search of the evo-

lution operator U(t). Wei and Norman looked for a con-
venient form of this operator, which preserves its unitary
nature without any a priori recourse to perturbative
methods as in the more conventional Feynman-Dyson ex-
pansion (see Refs. 12 and 16 for further comments). The
most natural expression for the U operator is the follow-
ing:

According to (2) the evolution operator can be written as

U(t) =exp h (t) —i/2 J co(t')dt' Fo
0

)& exp[g (t)F+ ]exp[f (t)F ]1 .

Furthermore, from the relation (4) one gets the following
system of differential equations for h, g, and f functions:

h (t) =5g (t)f(t),

g(t) = —iQ*(t)exp 2h(t—)+i I ~(t')dt'

h(t)—g (t), (9)

f(t) =iQ(t)exp 2h (t) i j cu—(t')dt'

It is also well known that the solution of (9) depends on a
single Riccati equation, namely

A (t)=e "'", A (0)=1, A (0)=0,
a ( t)=f (t)e " '", w (0)=0, a (0)= ifl(0),

(10)

which both obey the same second-order differential equa-
tion,

y(t)+p(t)y+5
~

Q(t)
~ y =0 .

The introduction of the functions (10) has a threefold
motivation.

(1) They enter directly in the elements of the transition
matrix, as shown below.

(2) They can be exploited to establish a connection be-
tween the ordering theorems and the SU(2) and SU(1,1)
Bloch vector evolution as discussed in Sec. II A (see also
Ref. 17).

(3) Finally, also in view of the second point, their gen-
eralization to the SU(3) case results in a simpler form of
the differential equations involved in.

u —u +p(t)u —5
~

Q(t)
~

=0, h(t)=u(t),

u(0)=0, p(t)= — +iso(t) .
Q(t)
Q(t)

It is, however, more convenient to introduce the func-
tions

In the following we give an example of the structure of
the matrix elements involved in the evolution of SU(2)
and SU(1,1) states.

A. SU(2) transition matrix

The matrix elements relevant to this case take the form

s „(t)=(J,n
~

U(t)
~

J,m) (12)

(7)
(the ket~ J,m ) labels a generic angular momentum state)
and can be calculated exploiting the properties of the an-
gular momentum operators; after some algebra one gets

where co(t) and Q(t) are time-dependent nonsingular func-
tions real and complex, respectively, and the F operators
obey the commutation relations

[FO,F+ ]=+2AF+, [F+,F ]= 5FO . —(6)

It is straightforwardly recognized that the SU(2) and
SU(1,1) algebraic structures can be recovered by means of
the correspondence

SU(2)~ 0 3' + + '

A, =5=1,

SU(1 1) Fo ——2K3) F+ —IC+ y F K
k= —5=1 .
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S „(t)=
). /2J+n J—n

J+n& J —n) exp i—n tp(r)dr M' '"+ [sgn(n —m) ~ ]0

&&exp[ —iX(n —m)] zF&( —J —n, J —n & +1;n —n & +1,
~

~
~

)

where 2F& ( ) is the hypergeometric function.

[X=arg(M ), n &
——max(m, n), n &

——min(m, n)], (13)

B. SU(1,1) transition matrix

The matrix elements to be evaluated in SU(1,1) problems are of the type

S „(t)=(n,k
~

U(t)
~

m, k),
where m and n are integers and k is the Bergman index. ' Using the properties of the K operators

E
i
n, k) =(n+k)

i
n, k),

K+
~

n, k) =v'(n +1)(n +2k)
~

n + l, k ),
K

~

n, k)=&n(n+2k —1)
~

n —l, k)

n) +2k —1

n &+2k —1
exp —i (n +k) tp(t')dt' exp[ —iX(n —m)]

0
S „(t)=

n

(the notation
~

n, k) means
~

2n ) or
~

2n +1) according to whether k = —,
' or —,

'
), we find the following expression:

r

1/2
n

(14)

&&A
"+ + "I[sgn(n —m)

~

M ] ' ' zF~( n; —n ——2k +1 n —n & +1;— ~
~

~) . (15)

The above results complete our short analysis of the SU(2)
and SU(1,1) time-ordering theorems. Their connection to
the generalized Bloch vector dynamics and the possibility
of getting exact solutions will be discussed in Sec. II C.

It is more convenient to use the interaction representa-
tion, which yields an interaction Hamiltonian of the type

H,„,(t) =[0 r(t) T++H. c.]+[A „*(t)U+ +H. c.]

C. The SU(3) case

In this section we discuss the WN ordering technique
applied to linear combination of SU(3) generators. We
consider therefore the following Hamiltonian operator:

+ [A,*(t)V++ H. c.],
where

Q r(t) =Or(t)exp i f [2cpr(t')+to„(t')

(17)

H(t) =ter(t) T, +

far�(t)

T+ +f) r(t) T

+co„(t)U,+A,„*(t)U++f),„(t)U

+tv, (t) V, + f1„*(t)V+ +A, (T)V (16)

co„(t')]dt'—

+to, (t'))dt'
Just to share a common language with the Gell-Mann and
Ne'eman eightfold way notation, we have exploited the
usual (T, U, V) spin notation, whose commutation rela-
tions are given in the Appendix. To be more precise the
Hamiltonian (16) underlies an SU(2)SU(2)@SU(2) group
structure rather than SU(3), which can be recovered by
embedding U3 and V3 to get the standard hypercharge
operator. We remark that the co's and 0, 's are complex
time-dependent nonsingular functions, real and complex,
respectively. The Hamiltonian (16) is a rather direct gen-
eralization of the operator (5) and this is, in our opinion,
one of the advantages of choosing its actual structure
rather than starting with SU(3) from the very beginning.

A,*(t)=Q,*(t)exp i f [ ter(t')+ o—„(tc')

+2', (t'))dt'

Within this framework the time evolution operator writes

U(t) =exp i Hp(t')dt' —U;„,(t),0

H p(t') =

Cur�

(t') T3 +Cpu ( t ') U3 + tp, ( t' ) V3

(19)

As for U;„,it is more convenient to deal with the follow-
ing ordered expression:
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U;„,(t) =exp[2hT(t) T3 ]exp[gT(t) T+ ]exp[fT(t) T ]

X exp[2h„(t)U3]exp[g„(t)U+ ]exp[f„(t)U ]

Xexp[2h„(t)V3]exp[g„(t)V+ ]

Xexp[f„(t)V ], (20)

which is a direct generalization, apart from an inessential
minus sign in front of the f functions, of the ordered
product (8).

According to what has been discussed in Sec. II we in-
troduce the following functions:

(t)=exp[ —h (t)], A (0)=1, A (0)=0,
(t) =f exp[ —h (t)], a (0)=0, a (0)= i Q—(0),

S (t)=g exp[+h (t)], S (0)=0, S (0)= iQ—'(0),

+iA, M TA T,

+Q„"wTA r] .

(22)

(21)

(9'TA „)=i($1„$—„+QTA TA „),dt

~g~T=/9 ~ [0~(1+9 T~T) fIU~T~T]

(a=T, U, V) .
As already stated, the problem is now to find the proper
link between the above functions and those entering the
Hamiltonian (16). After very tedious algebra we get

The above system of differential equations looks quite
complicated, it is, however, the most general answer to the
problem of SU(3) time ordering. In any case, apart from
simplifications inherent to a well specified problem under
study, Eqs. (22) can be reduced to a simpler form, accord-
ing to the following comments.

(1) The solution of the system (22) depends on the solu-
tions of only three equations. Indeed the first four equa-
tions are solved once the following coupled two can be
solved:

(II„*)Qr
(~TA „)

(23)

(2) Once the solution of the first set is found the remaining three can be solved if the following second-order differen-
tial equation admits a solution:

(24)

The main achievement of this section is the explicit
derivation of the motion equations of the ordering pro-
cedure. In Sec. III we show how to get from Eqs. (11) and
(22) a set of Bloch-type equations and how to derive from
the ordering procedure the "intrinsic" laws of conserva-
tion.

III. CONCLUSIONS

The results we have presented so far show that the WN
ordering method is in principle a powerful tool to solve
the Schrodinger equation when a time-dependent Lie-

algebraic Hamiltonian is involved.
The actual forms of the Eqs. (11) and, in particular, of

(22), may result complicated and, as they stand, not really
helpful for the analysis of practical problems. It is
worthwhile, therefore, to add some comments aimed to re-
cover the connections with previous works. To this aim
we will consider separately the SU(2), SU(1, 1), and SU(3)
cases.

A. SU(2) and SU(1,1)

We have shown that, in this case, the solution of the
evolution problem depends on a single Riccati equation
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or, equivalently, on a second-order differential equation
with time-dependent coefficients.

It is, however, well known that the SU(2) dynamics can
be treated using a set of equations equivalent to those of
nuclear magnetic resonance. Indeed, the equations
governing the evolution of the amplitude probabilities of a
two-level problem can be cast in a vector form describing
a rotation in an O(3) space.

More recently (see the last of Ref. 14) it has been shown
that the SU(l, l) dynamics can be described by means of a
rotation in a Lobatchevsky space [O(2, 1)]. The SU(2) and
SU(l, l) torque equations will be referred to as Euclidean
and non-Euclidean Bloch equations, respectively. A
relevant question is therefore whether a link exists be-
tween the Bloch-type dynamics and the characteristic
equations of the ordering procedure.

Such a correspondence can be shown almost straight-
forwardly. Since Eq. (11) has the same structure of the
amplitude probability equations, one can embed the two
independent solutions ~ and A to form the following
three variables

8'= Iwf —5IA

U=v5(aA +w*A "),
V = i V 6(—w ~ W'4—*

) .

(25)

Identifying ( U, V, W) as the components of a vector Ms,
taking the time derivatives, and exploiting the equations
(9), we find the following Bloch-type equations:

~g ——Qg&~g, (26)

where

H(P, q, t) = + —,II'(t)q ', Q(t) =co(t)M(t),
2M (t)

(29)

where both M(t) and Q(t) are time-dependent nonsingular
and real functions.

The relevance of the algebraic method to the Hamil-
tonian (29) is easily understood by noticing that the
harmonic-oscillator dynamical variables can be cast to
form a SU(1,1) noninvariance group as follows

k+ (i /——2)q, k =(i/2)P, k3 = , (iq p+——,'
) . (30)

These operators can be identified as SU(1,1) generators
with relations of commutation

U(t, to) =exp(2hk3)exp(gk+ )exp( fk ), — (32)

where, according to (9), the functions (h, g,f) obey the
equations

h= — ge 2h

M(t)

g = —A (t)e "—hg, (33)

f= e'", h (to) =f (to) =g(t, ) =0,
M(t)

which can be solved once the following second-order
equation for A and ~ [see Eq. (10)] can be solved:

[k+,k ]=—2k3, [k3,k~]=+k~ .

The evolution operator can be therefore immediately writ-
ten as

Q5—= (25 ReQ, 25 ImQ, +~) . (27)
ln[M(t)) g+

dt 0'(t) /=0. (34)

Equations (26) are Euclidean or non-Euclidean according
to whether 5=+1, respectively. A particularly important
consequence one can derive from the above Bloch equa-
tion is the conservation law linked to the norm of M~,
namely,

(28)

Equation (28) is the Casimir invariant of the ordering pro-
cedure, and it can be shown to be linked to the average
value of SU(2) or SU(1,1) Casimir invariant (for further
comments see Ref. 17).

To give an example of the utility of the method just
described, we will discuss its application to a particularly
interesting problem. We will indeed consider the evolu-
tion of quantum states ruled by a harmonic oscillator
Hamiltonian with a time-dependent mass and frequency.
This kind of problem has been already discussed, in par-
ticular two of the present authors (Dattoli and Torre) and
Solimeno have analyzed the case of the time-dependent
frequency' while Abdalla' studied the time-dependent
mass.

We dwell on this specific problem for its intrinsic im-
portance and because it is mathematically equivalent to
the analysis of other phenomena such as the wave propa-
gation in self-focusing optical fibers.

The Hamiltonian we will consider is of the type

We notice that the procedure so far developed is signifi-
cantly simpler than the canonical treatment proposed by
Abdalla' which leads to characteristic equations more
complicated than (34). Furthermore, the solution of the
Schrodinger equation can be found almost straightfor-
wardly. Indeed, in the hypothesis that initially the system
is described by harmonic-oscillator functions, the wave
function at a generic time is

(~2+~+-2) —I /4

P(t) =exp[i0„(t)] (n!2" )'/

&& exp —,ri =&Mcoq,
2(~ '+~')

(35)

—(n + —,
' )arctan[f (t)]

[H„() are the Hermite polynomials].

B. SU{3)

We have already stressed that Eqs. (22) are the most
general answer to the problem of the SU(3) time ordering.
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n'=S Ar~, p'=SU, (36)

which, as immediately verified from the first three equa-

The characteristic equations, as they stand, do not appear
easily solvable even in the case in which all the couplings
are constants. Furthermore, it is not evident what the link
between the result (22) and the previous works is.

In this section we will discuss the problem in full analo-

gy to the SU(2) and SU(1,1) case by showing how Bloch-
type motion equations can be derived and what kind of
physical information can be drawn from the above
analysis.

Before going into more technical details, let us stress
that the characteristic equations of the SU(2) case can be
immediately recovered from (22) by setting two of the
three coupling constants equal to zero.

One of the most remarkable successes of the introduc-
tion of the SU(3) symmetry in dealing with a three-level
system has been the possibility of characterizing its evolu-
tion by means of a generalized Bloch equation in an
eight-dimensional space.

The natural question is whether we can derive, as in the
previous case, a generalized torque equation directly from
(22).

To this aim, following Refs. 15 and 21, we introduce
the new variables

tions of (22), obey the following equations of motion:

m'
n'

0
—iQT
—~AU

0

—)QU m'
n' (37)

w'I ——2Re(m'p'*), w2 ——2Im(m'p"),

w3 ——
~ p ~

—
~

m ~, w& ——Re(p'n" ),
w 5

——2 Im(p'n '*
), w 6

——2 Re(m 'n '*),
w7 —2 ™(m'n*), ws = 1~~3(2

(38)

After some algebra it can be checked that the time deriva-
tive of the vector u' takes the form

w q f~ ttrwpQ~——(A&I3&y= 1, . . . , 8), (39)

where f~ ~ „areSU(3) structure constants and Ar is a
component of the vector

The structure of Eq. (37) is immediately recognized as
that of three coupled harmonic oscillators.

By simply applying the Schwinger-Wigner realization
of SU(3) (Ref. 22), we construct an eight-dimensional vec-
tor w' with components

II:—( —2ReA„,—21mB„,O, —2 ReQ„,—21mB„—2 ReQr, —2 lmAr, O) . (40)

Equation (39) is the SU(3) Bloch equation, and has the
same structure of that proposed by Elgin and Hioe and
Eberly.

The combination (36) is not unique. Indeed from (22)
one can pick out further combinations satisfying the same
equation (37). In particular we have

and

(m")*=

(43b)

(41)
and

and

(43c)

(42)

The above relations can be implemented with the fol-
lowing ones, also derived from (22):

(43a)

It goes without saying that from (41)—(43) one can get
a Bloch-like equation identical to (39). It is also clear
that, once one has the solutions for (m, n,p) one can get
the explicit time dependence of the (~,S,A ) func-
tions.

Let us therefore comment about the possibility of solv-
ing Eq. (37). When all the 0 are time independent the
solution is almost straightforward. When Q are time-
dependent functions the solution cannot be found for any
time dependence. However, if fI =i

~

Q (t) ~, Eq. (37)
can be rewritten as
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P=&xQ,
H—:(m, n,p), (44)

APPENDIX

Recall that introducing the notation
A A A A A A A AF= [T„T2,T3, V1, V2, U1, U2, Y], (A 1)

where

3 ] =W3+ 1/v 3W8, g
&

—
W& +~~21 2

A2 ——(A1)*, A2 ———w3+ I/v 3W&,

21= W+11w , 333=(A1)

A3 ———u'2/3ws, A2 ——W2+1W3, A3 —(A2)* .

(46)

The invariants (45) have been constructed by adapting to
the present case the procedure of De Swart to derive the
SU(3) algebraic invariants. We must stress that the in-
variants (28) and (45) are intrinsic in the sense that they
are implicitly contained in the ordering procedure. How-
ever, their physical interpretation needs specification on
the nature of the initial wave function on which the evolu-
tion operator is acting (for further comments see Ref. 15).

As a final comment we must underline that the prob-
lem of SU(3) ordering [as well as of SU(2)] depends on the
solution of a set of equations which are fully equivalent to
those governing the amplitude probabilities evolution [see
Eqs. (11) and (37)]. Therefore, from the mathematical
point of view, the degree of complexity of directly tack-
ling the solution of the Schrodinger equation or the
Heisenberg equations of motion is the same.

An exact global solution of the SU(l, l), SU(2), and
SU(3) problem is hampered by the impossibility of finding
an analytical solution to Eqs. (11) and (37) for any time
dependence of Q(t). However, for a large class of Q(t)
functions solutions in terms of zF&( ) hypergeometric
functions can be found (see also Ref. 24). This last prob-
lem and specific applications of the technique developed
in this paper will be discussed elsewhere.

i.e., the three-level problem can be "mapped" on a two-
level problem, and thus it can be solved using well-
established techniques.

Before concluding this paper let us add a few comments
about the possibility of deriving from the ordering equa-
tions the invariants of motion of the three-level dynamics.

As to the SU(2) and SU(1,1) case we have seen that the
intrinsic law of conservation is that related to the Casimir
invariant of the characteristic equations. To derive the
laws of conservation relevant to the three-level dynamics
we must therefore construct the Casimir invariants associ-
ated to the SU(3) characteristic equations. This can be
done almost straightforwardly. Following indeed a stan-
dard procedure we get

3 8

Iw
I

= —,
' g ApA2P= g w;,

P, l, =l i =1
(45)

where the operator "hypercharge" Y is given by

]Y= (U3+ V3),
3

(A2)

the SU(3) group is characterized by the following commu-
tation relations:

[F Fp]=if.,p, ,I', (~af3&y=1, , 8) .

The structure constants f p r are explicitly given by

(A3)

f1,2, 3, =1

f 1

2, 4, 6

1

3, 6, 7

1

f1,47 2 i J 1, 5, 6

1 ~ 1

f2, 5,7 2~ 23,4, 5 2

V 3 3/3
f45 s=

2 ~ fe7s=

(A4)

A)A t AA I ATAA AK+ a 1a 2, K =a1a2, Kp = —,(a 1a1 +a2a 2)

(A5)

Furthermore, introducing the "vector" with components

E++E
E) ——

2
K2 ——

E+ —K
2l

K3 ——KP, (A6)

the following angular-momentum-like commutation rela-
tions can be stated

[K,Kp] =i e p rK&, (A7)

where e~ p y is linked to the Ricci tensor by

6 3ea p, y ( —1) e~ py—— (A8)

(5 is the Kronecker symbol and e is the Ricci tensor), the
evident analogy with the SU(2) case, allows one to extend
the considerations developed in the paper and relevant
to SU(3) to group structures of the type
SU(1, 1)cg1SU(1,1)SU(2), whose generators can be recog-
nized as

1 AfA A Af 1

T3 (a 1a1 +a2a 2) V3 2 (a 3a3 a 2a2)

and zero otherwise.
In the paper we have mentioned the SU(1, 1) group,

which has recently gained significant attention within the
framework of parameter amplifiers. It is well known
that given two harmonic oscillators a straightforward
realization of this group is the following:
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T+=a )a2,

T =ala2~

+V+ ——a2a 3

V =a 2a3,
1

U3 ———,(a,a, +a3a 3), U+ —a 1a 3,

(A9)

U =a]a3 .
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We can therefore define an eight-dimensional vector

F=(T, , Tp, T3, V, , Vq, U), U2, Y), (A 10)

thus finding

[F Fp] if p rFy (A 1 1)

where the new structure constants are linked to the old
ones by

f p r fa——p r( —1) r', a,g, y=1,2, 3 or 6, 7,8,
5 5f.pr f——.p, ( —1) ', a,@y=1,5,6,

(A12)
f p r f —

p—r( —1) ", a, /3y=1, 7,4,

f Pr f ——P r( —1) r', a, P,y=6, 7, 8 .
It is clear that the whole previous formalism for the time
ordering applies with only few changes even for this new
structure (the details will be given elsewhere' ).
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