
PHYSICAL REVIEW A VOLUME 35, NUMBER 4 FEBRUARY 15, 1987

Many-body theory of effective local potentials for electronic excitations.
II. Cseneral theory

Zeljko Crljen*
Serin Physics Laboratory, Rutgers Uniuersity, Piscataway, New Jersey 08854

Goran Wendin
Institute of Theoretical Physics, Chalmers University of Technology, S-412 96 Goteborg, Sweden

(Received 5 June 1986)

The major purpose of the present paper is to find effective energy-dependent one-electron poten-
tials for core excitations in atoms and solids in terms of the frequency-dependent density response of
the system. In the case of the photoionization amplitude we demonstrate how all effects of many-
electron interactions within the random phase approximation with exchange (RPAE) can be
represented by an effective one-electron wave function or an effective, nonlocal, electron-photon in-
teraction. We also demonstrate the usefulness of intermediate schemes with one-electron basis states
of the Hartree-Fock average-of-configuration potentials (V~ ') or the local-density approximation
(LDA) with which one calculates the density response within the RPA (no "exchange"), and we
make some comparisons with the time-dependent LDA. We also demonstrate how the form of an
effective one-electron wave function depends on the choice of dipole-length or dipole-velocity opera-
tor. We finally express the RPAE photoionization amplitude in terms of an average amplitude with
a Hartree-Fock 'P wave function and an average dipole-length —dipole-velocity operator and a
correction with a correlation wave function and a difference dipole-length —dipole-velocity operator.

I. INTRODUCTION

Many-electron effects play a fundamental role in elec-
tronic excitation spectra of atoms, molecules, and solids.
Although the bulk of the oscillator strength distribution
in most atomic or atomiclike systems is associated with
one-electron excitations, many-electron polarization, and
relaxation effects often provide essential modifications of
the independent-particle picture.

A well-known example of many-electron polarization is
the collective dynamics of the 4d shell in xenon. '

These collective effects are equally important for the 4d
shell of the surrounding elements' and the 5d shell of
the elements in the region of radon. ' ' ' Moreover,
collective effects also determine the behavior of the outer
shells of Ar, Kr, Xe, Rn, and the surrounding ele-
ments. ' ' ' ' ' ' ' In the case of Ba and La, Wen-
din' introduced the concept of giant dipole resonance,
borrowed from nuclear physics, to describe the collective
and resonant behavior of the 4d and Sp shells. This ter-
minology is now widely used to describe collective inner-
shell excitations in atoms, molecules, and solids, in partic-
ular, at the beginning of the various d transition-metal
series, the 4f rare earths and the 5f actinides.

The purpose of the present work is to define and to
derive one-electron type of local potentials which are able
to describe excited states in general, and collective effects
and giant dipole resonances in particular. Many-electron
effects may be described in terms of response functions
representing screening, relaxation, and correlation. In the
present work we consider the problem of ionization of an
atomic-like system by a frequency-dependent external

potential. We use dielectric response theory on the
level of the random-phase approximation with ex-
change ' ' ' (RPAE) to demonstrate how polariza-
tion (screening) effects can be put entirely either into an
effective perturbation driving the ionization process, or
into an effective one electron wa-ve function for the pho-
toelectron.

In particular, we shall demonstrate how polarization
and correlation within the RPAE may be represented in
terms of an effective one-electron wave function and an
associated energy dependent eff-ective local potential for ex-
cited states. Characteristic for this effective potential is
that the many-electron effects (collective effects, relaxa-
tion) mainly influence the core (inner well) regio-n, which
determines the overall distribution of oscillator strength
of the giant dipole resonance and makes it quite insensi-
tive to the chemical environment.

Whether the oscillator strength distribution is discrete
or continuous, or both, depends on the energetic position
of the inner-well region relative to the outer part of the
potential. This position depends on the character of the
transition (s-p, p d, d f, etc.) and -on the ioniz-ation stage.
Moreover, it is here that the atomic, molecular, or solid
character of the system appears: In a molecule or a solid
the resonances in the molecular potential well (shape reso-
nances, near-neighbor multiple scattering) may more or
less strongly modulate the inner-well collective resonance.
Again, the canonical example is solid Xe, the 4d-
photoabsorption cross section of which shows pronounced
oscillations around the atomic one. Very strong modula-
tion of the atomic cross section occurs in the 4d-
photoabsorption spectra of Ba and La halides. ' Very
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strong modulation also occurs in photoemission from ad-
sorbates, e.g. , Te adsorbed on Ni.

In a previous paper, hereafter referred to as paper I,
we have given an extensive overview of how polarization
and relaxation effects influence the dynamics of electronic
excitations in atomic-like systems. In paper I our interest
was focused on effective one-electron potentials which can
be directly obtained within the HF (Hartree-Fock) or
LDA (local-density approximation; see Ref. 8) schemes.

In particular, in an application to atomic Ba, within the
HF picture we investigated how the ground-state potential
applied to excited states (HF V ) changed upon inclusion
of a spherically averaged core hole (HF,„V ') and fur-
ther changed upon inclusion of relaxation and polariza-
tion effects (LS dependent HF, HFts V '). Moreover,
we compared HF and LDA potentials and found that the
ground-state LDA potential was closely similar to the re-
laxed (4def) HF„V ' potential in the core region. We
concluded that the LDA potential effectively contains a
hole in the core region and we gave a motivation for our
view that the LDA self-interaction simulates relaxation.

The plan of the present paper is the following. In Sec.
II we discuss one-electron potentials and independent-
electron pictures. In Sec. III we develop a scheme which
describes the photoionization matrix element in terms of
many-electron response functions (dielectric functions),
and give our definitions of effective electron photon i-n

teraction and effective one electron tva-ve function
In Sec. IV all effects of electron-electron interaction

within the RPAE are taken into account by an effective
one-electron wave function. We can then represent the
RPAE transition amplitude in terms of an effective
energy-dependent wave function and potential for the
photoelectron, and explicitly study the effect of ground-
state (initial-state) correlations in the discrete region and
in the continuum (the first results of this kind appeared in
Refs. 39 and 40). The price we have to pay is that the
RPAE wave function becomes operator dependent: It will
depend on whether we use the dipole-length (E r) or
dipole-velocity (A.p) form of the electron-photon interac-
tion when calculating photoionization matrix elements.

In Sec. V we consider the case that all effects of
electron-electron interaction (RPAE bubble and ladder in-
teraction) are incorporated into a non local effecti ve

electron-photon interaction. This nonlocality is solely due
to the ladder interaction. We then devise a scheme for
constructing a local, energy-dependent ladder interaction,
closely related to the Talman-Shadwick scheme for a lo-
cal exchange interaction.

Section VI discusses how to reduce or remove the non-
locality by choosing the independent-electron picture to
incorporate most of the electron-hole ladder interaction.
We also describe the local-density random-phase approxi-
mation (LDRPA) scheme' (RPA bubble interaction
and LDA basis) and discuss possible connections with the
TDLDA (time-dependent LDA).

In Sec. VII, finally, we analyze the properties of the
dipole-length and dipole-velocity forms of the RPAE
transition matrix elements. The RPAE effective wave
functions is written in terms of a final-state contribution
(TDAE, Tamm-Dancoff approximation with exchange)

and an initial-state contribution (correlation). As a result,
the RPAE ionization amplitude may be expressed as the
sum of a TDAE (=HP 'P) amplitude with an average
length-velocity operator, and a correlation amplitude with
a difference length-velocity operator.

II. ONE-ELECTRON POTENTIALS
IN THE INDEPENDENT-ELECTRON PICTURE

The many-electron response formalism to be employed
in subsequent sections is developed using a basis of one-
electron states. We refer to paper I (Ref. 38) for an exten-
sive discussion of one-electron wave functions and for
references to other work. Below we only give a summary
of necessary concepts and definitions.

In the one-electron approximation, the central electro-
static potential defines a basis of independent-electron
wave functions P;(r) via the Schrodinger equation (Ry
units)

[ —7'+ V;(r)]P;(r)=e;P;(r) . (2.1)

In the general case, the potential V, (r) is nonlocal and
state dependent and may be written as

V;(r) = —2z/r + Vtt(r)+ V; „,(r), (2.2)

where VIt(r) is the Hartree potential and V;„,(r) is a
state-dependent exchange-correlation potential. Denoting
the Coulomb interaction by (Ry units)

V(r, r') =2
~

r —r'
~

the Hartree potential is given by

Vtt(r) = y f«' V( , r)r~ yk(r')
~

' .
k

(2.3)

(2.4)

=P;(r) ' J V„(r,r')P;(r')dr'

=P;(r) 'X;(r), (2.5)

where

V„(r,r') = —V(r, r')n (r, r'),
n(r, r')= gPk(r)Pk(r'),

k

(2.6a)

(2.6b)

V„(r, r') is the usual nonlocal orbital independent ex-
change potential, and n (r, r') is the one-particle density
matrix. The summations in Eqs. (2.4) and (2.6) run over
all N electrons, and therefore contain Hartree and ex-
change self-interactions.

Since the one-electron potential is spherically sym-
metric we may separate out all angular dependence and
work with radial wave functions u„(r) defined by

P„(r)=r 'u„(r) YIm(0, $)
and given by the radial Schrodinger equation

[ d /dr +—V„' (r)]u„(r)=e„u„(r),

(2.7)

(2.8)

We shall mainly be concerned with Hartree-Fock one-
electron states; the exchange-correlation potential is then
given by the pure exchange potential

V;„,(r) = V~„(r)
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where

V„' (r)= V„(r)+1(1+I)/r (2.9)

is the effective radial potential including the centrifugal
term. The one-electron potential V„(r) can be written as
[Eqs. (2.3)—(2.6)]

V„(r)= —2Z/r + VH(r)+X„(r)/u„(r), (2.10)

III. LINEAR RESPONSE THEORY
OF THE EFFECTIVE IONIZATION AMPLITUDE

In this section we shall focus attention on dynamic po-
larization (induced field) effects, which modify the
independent-electron ionization amplitude.

We shall not consider many-electron descriptions of re-
laxation and shake-up. The core hole and the photoelec-

where the Hartree and exchange potentials VH(r) and
X„(r)/u„(r) can be expressed in terms of multipole contri-
butions. '

In the ground state, the Coulomb and exchange self-
interactions cancel; the resulting potential has a Coulomb
tail and represents interaction with N —1 electrons, a so
called HF V ' potential. However, when constructing
potentials for excited states using the ground-state orbitals,
there is no longer automatic cancellation of self-
interactions: If the ground-state HF operator is em-
ployed, the resulting potential has no Coulomb tail. This
so called HF V neutral-atom potential describes the po-
tential for adding an electron to the frozen X-electron sys-
tem.

For some of the later applications it is essential that the
HF one-electron potential V„(r) in Eq. (2.10) is the same,
or at least very similar, for ground and excited states.
This may be accomplished by explicitly removing the
Coulomb and exchange self-interactions in the HF V po-
tential. We thus define a self-interaction-free so-called
frozen-core HF,„V ' ionic potential, corresponding to
a spherically averaged hole in a specific one-electron orbi-
tal i of the ground-state charge distribution.

The frozen-core HF„V ' ionic potential for an ex-
cited electron is very close to the potential seen by the
same electron in the ground state. It represents one-
electron excitation in the absence of any kind of response,
like polarization or relaxation, and will therefore be em-
ployed as a zeroth-order basis set for describing the
many-electron response.

We finally note that by not performing any spherical
average over the hole i one may construct an LS-
dependent HF V ' ionic potential for excited states,
based on a frozen or relaxed core. ' Such a potential in-

corporates many-electron effects in the final-state but
omits initial-state effects.

If the wave function is known in numerical form, the
radial Schrodinger equation (2.8) may be inverted to give
the effective local potential

V„' (r)=u„(r) '(d /dr +e„)u„(r) . (2.11)
This relation is essential in all those cases where we use
many-body theory (e.g. , the RPAE) to arrive directly at an
approximate effective one-electron wave function, and
subsequently want to find an associated local potential.

tron will be treated in independent-electron approxima-
tions. The spectrum of emitted electrons thus consists of
single photoelectron (PE) peaks, one for each subshell,
without any satellite structure.

Let us consider ionization by an external potential with
frequency co, v,„,(r;co), not necessarily any dipole potential.
The resulting one-electron ionization amplitude has the
form

(3.la)

(3.1b)

which goes over into an effective ionization amplitude
M„(co),

M„.~M„.(co) (3.2)

under the influence of polarization effects.
The effective ionization amplitude M„.(co) can be calcu-

lated directly within a matrix formulation using finite- or
in finite-order perturbation theory 3 —6, i 3, i 5 —22 In this
work we prefer to use space representations in terms of ef-
fective perturbations and effective wave functions

M;(co) = (e ff ~

v ff(r, r', co)
~

i &

= fdrdr'P', *(r)u,rf(r, r', cv)P;(r') .

(3.3a)

(3.3b)

(e ff I
u-«r ~)

I
~ &M„.(cv)~ .

(e
~

v ff(r, r';co) ~i

(3.4a)

(3.4b)

Many-electron effects can be put into either the effective
nonlocal perturbation u,ff(r, r';co) or the effective wave
function P', "(r) or into both of them, as indicated in Eq.
(3.3). A question of some interest concerns whether cer-
tain effects are more naturally referred to u, fr than to P, ,

eff

or vice versa. Strictly speaking, this is a semantic ques-
tion: The only unique physical quantity is the ionization
amplitude M„(co), and the division into v' and P' rath-
er reflects on different physical pictures, different compu-
tational techniques, and different fields of physics. For
instance, in condensed matter physics it is natural to con-
sider electrons to be emitted by the action of screened, ef-
fective perturbations, while in atomic physics one often
works with effective (e.g., LS coupled) one-electron wave
functions and bare external or internal interactions.

In a mixed, condensed-matter inspired, approach such
as Eq. (3.3) the screening of the external perturbation may
go into u,rr(r, r';co), while the effect of the core-hole po-
tential may be taken into account by the photoelectron
wave function P', (r). Core-hole induced relaxation will,
in particular, screen the spherical part of the core-hole po-
tential and may be approximately taken into account by
calculating the effective one-electron wave function P', (r)
in the potential of the relaxed ion. However, since the
dynamic response is evaluated using P', (r), relaxation will
also be incorporated into the effective perturbation
v ff ( r, r';co ) which drives the ionization process.

In order to demonstrate the equivalence of different
representations of the effective ionization amplitude
M„.(co), we shall rewrite Eq. (3.3) to describe two extreme
cases,
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(a)
1 it j( 4'

i ir 1( g + ~////g

j'&
ueff =Uext+ V+Uext (3.9)

In this manner, Eq. (3.5) may be written in a number of
useful ways,

=Uext+ I +puext

u ext + V+Ou eff

(3.10)

(3.1 1)

(b) Equations (3.10) and (3.11) refer to Figs. 1(d) and 1(b),
respectively.

These equations are equivalent to the well-known in-
tegral equations for the dielectric susceptibility (response
function) g

(c) W L =Xp+X VXp (3.12)

or the effective electron-hole interaction I [corresponding
to Fig. 1(c)]

r= V+ry, v (3.13)

(d)

FIG. 1. Diagrammatic representations of effective wave
functions and interactions within the random-phase approxima-
tion with exchange {RPAE): (a) effective wave function P; {r);
(b) and (d) effective electron-photon interaction v,ff(r, r', co); (c)
effective electron-hole interaction I .

Ueff Vext +Vind ~

u;„d ——V5n

= VXV,„, .

(3.5)

(3.6b)

The induced potential may be represented in terms of
the response function Xp for the system of noninteracting
electron-hole pairs and the effective electron-hole interac-
tion I [Fig. 1(c)] according to

where all many-electron effects within the RPAE have
been put into either P' [Eq. (3.4a); Fig. 1(a)] or v,«[Eq.
(3.4b); Fig. 1(b)]. All the formulations in Eqs. (3.3) and
(3.4) can be related via a frequency-dependent nonlocal
function X =X(r3r4, ', r~rq, cv), which describes the linear
response of the system to a weak external perturbation
u,„,. Below we present a condensed description of some
important relations from standard linear response
theory, ' which we need for describing v,«and P', .

We shall use operator notation for g, u,„„v,ff, etc. to
describe the general relations governing the response, and
explicit space representations will only be introduced
when necessary.

Application of the external potential u,„, 1eads to polar-
ization and gives rise to an induced density 5n, an induced
potential v;„d ——V5n, and to an effective potential u, ff
[Fig. 1(b)]

(Bethe-Salpeter equation). From Eq. (3.10) we may define
an inverse dielectric function

—1
Ueff =6 V

C '=(+I +0 .

(3.14)

(3.15)

With the use of Eqs. (3.4b) and (3.14), the effective ioni-
zation amplitude M„(co) may be written as

M„(co)

=(E
~ fdrtE '(rr', r)r„co)v,„,(r), rv) ~i &

=fdrdr'dr&P, *(r)P;(r')s '(rr', r&r&, co)

X v,„,(r~,~) .

(3.16a)

(3.16b)

The effective wave function form of M„(cv) in Eq. (3.4a)
can now easily be obtained from Eq. (3.16b),

M„(~)=(~,«~ v(r, ;~)
~

t &

dr& ', *
r&,'CO; r& U,x, r&,'~

(3.17a)

(3.17b)

where

P', '(r~, co)P;(r&)= fdrdr'P, '(r)P;(r')E '(rr';r, r„tv) .

(3.18)

IV. EFFECTIVE WAVE-FUNCTION FORMULATION

In this section we shall discuss methods in which all of
the many-electron effects are included in an effective
wave function which gives an effective photoionization
amplitude

(~)= (e,« I
v,„,(r;~)

Through the wave function formulation in Eqs. (3.17)
and (3.18) we now have a link between the dielectric
response function and the effective-field approach on the
one hand, and direct methods for calculating wave func-
tions on the other.

Vy= ry, ,

ext +0 eff .

(3.7)

(3.8)

The necessary formalism has been developed in Sec. III.
Inserting the space representation of Eq. (3.15) into Eq.
(3.18), we obtain [Fig. 1(a))



35 MANY-BODY THEORY OF EFFECTIVE. . . . II. 1559

p', *(r;co)(I};(r)= fdr]dr2[t),'(r])(I};(r2) 5(r —r, )5(r —r2)+ fdr3dr4I (r, r2;r3I4 co)XQ(I3r4, rr;co) (4.2)

Since we have a complete basis of one-electron wave
functions, we may write down the spectral resolution of
the response function for independent excitations

$„(r3)ct]~ (r4)P„*(r])PJ(r2)
go(r3I4,'r]rq, co) = — "

.5" (fj f, } .—
nj njco co—i 5—sgn coni

(4.3)

=u, (r)— K,„(co)
+

Q)+ —Q) —l 5 6)& +CO

F,„(co)

effective wave function, which can be written as

effd
(

.
)

effd
( )

u„(r),

(4.8)

where

I „„~(co}=f dr]drzdr3dr4$, *(r3)P;(r4}

X I (r3r4, r]r2, co)P„(r])P~"(r2) . (4.5)

The effective wave function in Eq. (4.3) may also be
written in the form

The electron-hole air excitation energy is defined as
co„j=e„—c~ and ) denotes summation over discrete lev-
els and integration over the continuum. f; and f„are Fer-
mi factors (fk = 1 if k is occupied, and fk ——0 if k is emp-
ty). Using this spectral resolution we obtain [Fig. 1(a)]

P', '(r;co) =P,'(r)

j j j
I, .„;(co)(t)„*(r) (It) (r)+ '

.
' (f, f ), —

. co„~ —co —i5sgn(co„~) P;(r)

(4.4)

where u„(r) is defined according to Eq. (2.7) and

I „„;(co)~ F,„(co—),
r,„,,(~)-—I~,„(~) .

(4.9a)

(4.9b)

The angular coefficients have been absorbed into F,„(co)
and K,„(co), and co„=co„;. The change of sign arises be-
cause we now take the bubble interaction as our reference,
instead of the ladder interaction [see, e.g. , Fig. 1(b)—1(d)].

As it stands, the radial effective wave function in Eq.
(4.8) is complex. However, at the same time we know that
the radial wave function can be represented as a properly
normalized real function. This way it comes out from,
e.g., an LS-dependent HF calculation [corresponding to
the omission of the negative-frequency term in Eq.
(4.8)].' ' ' The connection is known from scattering
theory, and we expand the treatment of the RPAE in the
Appendix. The result is (e=ce~e;; P g denotes princi-
ple part integration)

I,l.„;(co)P„*(r) ct))(r)
P', '*(r;co)=P,'(r)+

n)F njco —co —i5 rI

j(F
I,„J;(co)ct)„(r) PJ*(r) '

. (4.6)
co„j.+co P;(r)

u', '(r)=[N"(co)]

X «, (r) —Pg [1,„(tel+1,„(tu)]«„(r)

=P', (r)/N'(co)

(4.10a)

(4.10b)

Here F denotes the Fermi level separating the filled and
the empty levels. I,J„;(co) is an effective Coulomb in-
teraction matrix element of the solution of the Bethe-
Salpeter equation (3.13) [Fig. 1(c)], and has the form of
the random-phase approximation with exchange (RPAE).

Equation (4.6) and Fig. 1(a) show how the zeroth-order
excitation QP(r)()];(r) becomes dressed up to an effective
excitation, the division by (II);(r) leading to an effective
one electron wav-e function for the excited state.

In the following we shall concentrate on excitations
within a single channel i n, e g , 4d -ef. . -

I „„;(co)P„*(r)P; (r)
P', '(r;co) =P,*(r)+

cont

I,„;;(co)P„(r) P,*(r)
+

co„;+co P;(r)

(4.7)

i distinguishes different (degenerate, co„;=co„;) mag-
netic sublevels. The dynamics is contained in the radial

V,„(co)I,„(co)= (4.1 1)

G,„(co)I,'„(co)=
CO„+CO

N'(co) is a normalization function

(4.12)

N'(co) = 1+i~V„(co) (4.13)

and

F,„(co)= [N*(co)] ' V,„(co),

I,„(co)= [N"(co)] 'G,„(co),

(4.14a)

(4.14b)

V,„(co) and G,„(co) are real quantities, given by the reac-
tion matrix equations

V,„(ce)=V,„—P g [1, (te)V „+1„(re)G,]
m

G,„(re)=G,„—P g [1, (ts)G „rl,„(te)V „]. -

(4.15a)

(4.15b)

where I,„(co) and I,„(co) are positive and negative fre-
quency response functions
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V,„and G,„are zeroth-order matrix elements of the
Coulomb interaction appearing in Figs. 1 and 2, represent-
ing final- and initial-state interaction, respectively. As-
suming that the angular dependence of the external per-
turbation v,„,(r;cv) is given by the Legendre polynomial
Pf. (cos0), V,„and G,„may be expressed in terms of
Slater integrals and 3j and 6j symbols according to

eI fi e

M. „(u) )

V,„=atR (ei;in) —g b&R (ei;ni),
K

G,„=aL,R (en;ii) —g c~R (en;ii),
K

(4.16a)

(4.16b)

FIG. 2. RPA integral equation for the photoionization am-
plitude. With inclusion of exchange matrix elements (ladders)
one obtains the RPAE.

where 1,=1„(single channel), and

K
K r (R (ab;cd)= u, (r~)ub(rz) z &

u, (r&)ud(rz)dr, dr2,„K+1
which makes u', (r) normalized according to

f u', (r)u', (r)dr =5(e' —e) . (4.20)

bfc
——( —1) + '(21; + 1)(21„+1)

I; E I; I„K I„

0 0 0 0 0 0

cx =( —1)~+'(2l, +1)(21„+1)

I; E I„ I„L I;X000 I„KI,

I, L I„

I„K I;

I; L I„
aL ——2(2L + 1) '(21;+ 1)(21„+1)

(4.17)

(4.18a)

(4.18b)

(4.18c)

In Sec. VII we shall make explicit use of the effective
one-electron wave function in Eq. (4.19) in order to study
the behavior of the length and velocity forms of the dipole
matrix elements. Moreover, in a subsequent paper (III) we
shall present extensive numerical results for effective po-
tentials derived from effective wave functions constructed
via Eq. (4.19). In paper I we have already presented some
such potentials.

V. EFFECTIVE-INTERACTION FORMULATION

A. Nonlocal interaction

u', (r)= iN(cv)
i

'P', (r),

i
N (cv )

i
=N= [ 1+fr —V„(cv ) ] '

(4.19a)

(4.19b)

A normalized real wave function which gives the same
ionization probability is then given by

In this section we would like to demonstrate how
transfer of all effects of electron-hole interaction to the
dressing up of v,„, leads to a nonlocal interaction v,ff be-
tween the effective field and the electrons.

The starting point is the integral equation (3.11) for
v ff ~ In the space representation we explicitly obtain

v,ff(r, r', cv) =v,„,(r;cv)5(r —r')

+ f dr&drz fdr" V(r, r")Xo(r"r";r,rz, cv) v,ff(r&, r2, cv)

(S.la)

(5.1b)

—f dr~dr2[ V(r, r')Xo(rr', r&r2, cv)]v,ff(r„r2;cv), (S.1c)

v,ff(r, r';co)

=v,„,(r;cv)5(r —r')

9'~.„(r,r')
cv„j cv i o sgn(cv„j)——

J, n

(5.2a)

X(n
I "ff(r~ rz ~)

l
j) (5.2b)

(S.la), (5.lb), and (5.1c) correspond to Figs. 1(bI), l(bII),
and l(bIII), respectively. Clearly it is the ladder part [Fig.
l(bIII)] that causes "complications:" In the absence of the
ladder term (5.1c), v, ff would be local.

Introducing the spectral resolution (4.3) into Eq. (5.1)
we obtain the final and explicit result for the integral
equation for the nonlocal, effective perturbation [Fig.
1(b)]

where

9'i„(r,r') = YJ„(r)6(r—r') —Yi„(r,r'),
YJ„(r)= fdr" V(r, r")PJ'(r")P„(r"),

Y~„(r,r') = V(r, r')PJ*(r')P„(r),

(5.3)

(5.4)

(5.5)

Y.„(r) is the electrostatic potential from the charge-
density displacement associated with the electron-hole
pair excitation nj (bubble interaction) and gives rise to a
local induced potential. YJ„(r,r ) is a pair potential ac-
counting for the direct electrostatic interaction between
the electron ( n) and the hole (j). This interaction will be
screened if core relaxation is taken into account. More-
over, this part of the induced potential is nonlocal and is
responsible for the nonlocal form of the effective driving
potential v,ff(r, r';co).
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Usually Eq. (5.2) is expressed on matrix form when it
comes to practical calculations. For example, inserting
(5.2) into Eq. (3.4b) one obtains the well-known RPAE in-
tegral equation (Fig. 2)

f dr&Xp(r;r~', cd) Vt (r&, cd)5n(r&co)

= —f dr&dr2Xp(rr;r&r2, co) V(r&, r2)5n (r&r2,'cd)

(5.1 1)

where, in analogy with Eq. (3.4b),

(5.6) or

Vt. (r;co) = —f dr'dr&dr2Xp '(r;r';co)Xp(r'r', r&r2, cu)

and

M J(co)=&n
I uerr(ri rz rd)

I j& (5.7)

(5.8a)

X V(ri r2)~n(r112 cd)[~n (1 co)l, (5.12)

where the frequency-dependent induced densities

5n (r&r2, ~)= fdr3dr+p(r&r2, r3r4, cd)u, ff(I3 I4 cd),

(5.8b)

6n (r&, cd) =5n (r&r&,'cd)

(5.13a)

(5.13b)
B. Local interaction

X V(r&, r2)n(r&, r2)[n (r)] (5.10)

This approach may be generalized to the dynamic case of
the RPAE in Eq. (5.1). We may then define an equivalent
local ladder (L) interaction VL(r&, co) according to [Fig.
3(b)]

n = i

r

i n

nj i'

{a)

FICi. 3. Diagrammatic representation of the averaging pro-
cedure for obtaining a local electron-hole interaction. (a)
Talman-Shadwick scheme for obtaining a local HF ground-state
exchange interaction using the static induced density. (b) Corre-
sponding procedure for obtaining a local ladder interaction from
the dynamic induced density.

The nonlocal effective interaction u,rr(r, r';co) in Eq.
(5.2) is not a very convenient object to handle numerically.
A more convenient scheme would be to define the
electron-field interaction to be local, u, rr(r;cd). This can
approximately be done in two ways: Either by (i) remov-
ing the ladder interaction from Eq. (5.1) via a suitable
choice of one electron-basis, as will be discussed in Sec. VI,
or by (ii) replacing the ladder interaction by an equiualent
local interaction.

In paper I we discussed various ways of producing a lo-
cal exchange potential for the ground state. In particular
we discussed the Talman-Shadwick (TS) scheme: This
scheme may be formulated in terms of the static suscep-
tibility by requiring that the local TS exchange interaction
give the same induced density as the nonlocal exchange
interaction [Fig. 3(a)]

f dr~Xp(r;r&, 0)V„(r,) = fdr&drzXp(rr;r&r2, 0) V„(r~,rz),

(5.9)

or, introducing the density matrix [Eqs. (2.6b)],

V„(r)=fdr'dr, dr2+p '(r;r', 0)Xp(r'r;r&rz, '0)

u ff ( r; co ) =u,„,( r; co ) (5.14a)

+ f dr& fdr' V(r, r';co)gp(r';r&, co) u, ff(r&, co),

(5.14b)

where

V(r), rp, co) = V(r], r2)+ Vt (r].,co)5(r] —rp) . (5.15)

It follows that the local effective interaction potential
u ff( r; co ) in Eq. (5.14) may also be written in terms of the
induced local density 5n (r;cd) [Eq. (5.13)],

u ff(r;cp ) =u,„,(r;cu ) + fdr' V(r, r';co )5n (r';cd) . (5.16)

This very simple form is obtained because the Coulomb
interaction V(r, r', co) now also contains a local, energy-
dependent form of the electron-hole (ladder) interaction
(5.12).

We note that there is an interesting similarity between
the TS local-exchange interaction (5.10) and the local
ladder interaction (5.12). The only difference is that the
averaging procedure for the Coulomb-exchange interac-
tion in Eq. (5.10) uses the static, ground-state density ma-
trix, while the averaging procedure for the Coulomb-
ladder interaction in Eq. (5.12) uses the dynamic,
induced-density matrix. If these forms are numerically
similar, the local, dynamic ladder interaction (5.12) may
be replaced by the local, static exchange interaction (5.10).
Consequently, the local ladder interaction VL (r;co) may
appear as equivalent to a local exchange interaction. We
shall continue this discussion in Sec. VI.

VI. INTERMEDIATE REPRESENTATIONS

The nonlocal effective interaction potential u,ff(r, r', cd)
in Eqs. (5.1)—(5.2) is not entirely a sound construction

enter in the same ways as the density matrix enters in Eq.
(5.10). The form of the local ladder interaction therefore
is not only frequency dependent but also depends explicitly
on the spatial form of the perturbing potential. Conse-
quently, in principle one first has to solve the problem
properly in order to derive a local ladder interaction.

With this local ladder interaction, Eq. (5.1) may be
written on local form,
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from a physical point of view, since it compensates for the
Hartree self-interaction by introducing a modified, nonlo-
cal, response to the external local field. This nonlocal
response then accounts for the full direct electron-hole
(ladder) interaction, and making the ladder interaction lo-
cal [Eq. (5.12)] does not change this conclusion.

We feel that a more physical and natural scheme is to
define a final-state effective one-electron tvaue function

e ff) to take into account the spherically averaged poten-
tial from the hole (monopole part of the ladder interac-
tion; cancels the Hartree self-interaction). In this way, the
average one-electron potential is (nearly) the same in the
initial and final states (see Sec. II and paper I), and the
remaining nonspherical part of the ladder interaction term
in Eq. (5.1c) will represent only a small perturbation. The
effective electron-field interaction u, tt(r;cu) then becomes
local (or nearly local)

~ei(tu) = (cert
l
vert(r cu)

I
i & . (6.1)

Although this division is not unique, it roughly means
that the bubble diagrams (many-electron polarization ef-
fects; density-density correlation) are taken into account
by a local effective (screened) interaction v, tt(r;co), while
the ladder diagrams (electron-hole attraction) are taken
into account by the one-electron potential V, (r) (Eq. 2.2).
Bound states, Rydberg levels, core excitons, etc. are there-
fore built into the one-electron response function Xo in Eq.
(4.3).

Let us first consider this representation in the case of
the single-channel RPAE. We then define the zeroth-
order approximation to describe Hartree-Fock-type one-
electron excitation with a core hole in a frozen environ-
ment. This leads us to ground-state HF wave functions
for occupied (hole) levels and to frozen-core HF,„V
wave functions for empty (particle) levels. With this basis
of effective one-electron wave functions

~
e,tt) =P,tt only

a minor part of the bare (unrelaxed) electron-hole ladder
interaction is left, leading to a weakly nonlocal interac-
tion U,~f.

However, relaxation effects can sometimes become large
and have dramatic effects on the photoionization cross
section. For instance, in 4d ionization of Ba and
La, ' ' ' ' and also of Ce, the region from the 4d thresh-
old to about 20 eV above threshold (giant dipole reso-
nance) cannot be described at all without proper inclusion
of relaxation effects.

In practice, the simplest approach is to use a relaxed
core when calculating excited state wave functions. This
has been discussed in detail in paper I, where we explicitly
showed the one-electron potentials for the frozen and re-
laxed 4d ef configurations ( V ' potentials) and for the
4d' ef configuration ( V potential). From these results
one finds that screening (monopole relaxation; spherical
contraction) reduces the bare electron-hole (ladder) in-
teraction (Fig. 4) by as much as a factor of 2 in the inner
mell core region. Alternatively one could say that in the
case of a 4d hole in Ba, relaxation effects raise the inner
well region by more than 1 Ry. This leads to an impor-
tant barrier ' ' in the effective one-electron RPAER
and HFR 'P 4d ef V ' potentials (R =relaxed), which
explains the shape (delayed onset) of the 4d ef photoioni--

(a) (b) (c )

FIG. 4. Diagrammatic description of relaxation through
screening of the electron-hole ladder interaction. (a) screened
ladder interaction; (b) bare ladder interaction; (c) and (d) lowest-
order dynamic screening corrections.

E rr, tt(cu)
I

i & (6.2)

(the external field E is assumed to be homogeneous) we
obtain for the effective dipole operator in the LDRPA
(Fig. 5)

with

Y'„(r)(n
~
r,tt(tu)

~
j)

reft(cu) r cd.
(cu„i —cu )/2cu„i

(6.3)

l, 1 l„
cJ 3 (~J 5 J)(2l +1)

Q Q Q
(6.4)

In the radial matrix elements the wave functions refer to
radial wave functions. The Kronecker 5-function 5;J (1 if
i =j; 0 if i &j ) explicitly removes the self-interaction, to
prevent that the electron-hole pair to be ionized through
the matrix element (e

~
r,ff( )c~ui ) interacts with its own

zation cross section in the threshold region.
It should be realized that the effect of relaxation around

the 4d core hole is really very large. Using a frozen-core
HF„basis, going beyond the RPAE we would still have a
strong ladderlike interaction to account for [monopole
screening part of the ladder interaction; Figs. 4(b) and
4(c)]. This would again lead to a strongly nonlocal effec-
tive interaction v, tt(r, r', cu). In a relaxed-core HF,„basis
the screened spherical ladder interaction is effectively tak-
en into account, resulting in weak residual perturbation
and a nearly local effective interaction u,ff(r, r';co).

A useful approach seems to be provided by the LDRPA
(local-density random phase approximation). ' ' ' In pa-
per I we have demonstrated that in the core (inner-well)
region the LDA potential is very close to the relaxed
4d ef HF,„V ' potential. An LDA basis therefore ap
proximately incorporates the short range par-t of the
screened ladder interaction (there is always a long-range
Coulomb tail in a finite system). One then uses an LDA
basis of one-electron wave functions to evaluate the RPA
equation (off-diagonal bubble diagrams only; self-
interaction removed), constructing the charge-density per-
turbations 5n(r;cu) using LDA wave functions. In this
way, the induced potential is the classical Coulomb one,
and exchange effects are assumed to be taken into account
by the choice of basis. The LDRPA approach is
described by Eq. (5.14), with VL(r&, cu)=0 in Eq. (5.15),
and with a scaled response function to describe the self-
interaction free response. Writing the effective ionization
matrix element according to
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reff

FIG. 5. RPA integral equation for the density response. Pro-
duces a realistic response if the one-electron basis set accounts
for the average, attractive potential of the core hole (monopole
part of the ladder interaction; ionic V ' potential).

induced field. Y~„(r) is the dipole part of the potential de-
fined in Eq. (5.4).

The LDRPA is clearly a hybrid scheme which does not
represent any self-consistent approach. In order for this
scheme to be equivalent to the RPAE we have to use a
HF type of one-electron basis which properly accounts for
the electron-hole ladder interaction; in order for the
scheme to be equivalent to the self-consistent time-
dependent local-density approximation (TDLDA) we have
to add a contribution from the density variation of the
exchange-correlation potential to the Coulomb potential
Yz'„(r) in Eq. (6.3).

It must be realized that the LDRPA can also be regard-
ed as the first step in a systematic evaluation of the atom-
ic linear response using an LDA basis. Due to physical
insight (and comparison with experiment), we may con-
clude that the LDRPA gives already a very good approxi-
mation for the average frequency dependence of the
response. However, inclusion of the full residual ladder
interaction to infinite order will then account for the
long-range part of the atomic potential and introduce the
Rydberg-like bound excited states. Moreover, this will
lead to a proper description and cancellation of all kinds
of self-interaction, meaning that relaxation effects now
have to be included explicitly via screening of the ladder
interaction.

The LDRPA method may be defined in terms of Eqs.
(5.14)—(5.16) for the induced response 5n (r;~) and effec-
tive perturbation U,ff(r&, cu) by referring the self-
interaction corrections to the Coulomb interaction instead
of to a scaled response function [Eqs. (6.3) and (6.4)]. In
this way, the interaction V(r&, rz, cu) in Eq. (5.15) takes the
form

(z &, rz, ~)= V(z &, rz)+ V' jf(r&, rz)

= (1—XJ '5~ ) V(r&, rz) . (6.5)

where the local "ladder" interaction

VTDLDA
( .

) g VLDA ig (6.7)

is the density variation of the exchange-correlation poten-
tial. Zangwill and Soven ' used the static limit of Eq.
(6.7), while Gross and Kohn recently have derived a fre-

On the other hand, if we consider the TDLDA, the in-
teraction V(r„rz, co) in Eq. (5.15) becomes

VT " (r„rz,.co) = V(r&, rz)+ V„, (r„co)5(r, rz), —
(6.6)

quency dependent interaction. As mentioned before, the
equivalent of a short-range screened ladder interaction has
been incorporated via the LDA basis. The residual ladder
interaction V„, (r&,~) in Eq. (6.7) is therefore quite
weak.

In the same way, one could also consider a time-
dependent Talman-Shadwick approximation (TDTSA),
which should represent the closest approximation to the
RPAE that gives a local induced density 5n(r;co) and a lo-
cal effective interaction v,ff(r;co). The Talman-Shadwick
scheme grovides an optimal orbital indep-endent local
form V„(r) of the ground-state HF exchange potential,
resulting in a one-electron potential VT (r) with a
Coulomb tail. This ground-state potential may then be
used for calculating a complete set of ground- and
excited-state one-electron wave functions and for calculat-
ing the response function Xz [Eq. (4.3)] which appears in
Eq. (5.14). Since V„(r) is orbital independent, in the
ground state there can only be partial cancellation of the
Hartree self-interaction in the core region. Therefore the
TS potential V (r) should be similar to the relaxed HF,„
V ' potential everywhere, and similar to the LDA po-
tential in the core region (but with a Coulomb tail at large
distances).

The interaction V(r &, rz, cu ) in Eqs. (5.14)—(5.15) is
given by

Since the equivalent of a screened ladder interaction has
been taken into account via the TS basis wave functions,
the residual local ladder interaction (6.9) must be quite
weak. A diagrammatic analysis suggests that the essential
ladder contribution is the one that removes the self-terms
of the RPA bubble diagrams. This leads us to believe that
a Talman-Shadwick based RPA scheme (TSRPA), in
analogy with the LDRPA in Eq. (6.5), should be a useful
scheme for describing both discrete and continuum excita-
tions in atomic systems.

Finally, for comparison we also give the corresponding
expressions for the RPAE with the local form
VPPAE(r&, co) [Eqs. (5.12)—(5.16)] of the bare ladder in-

teraction [Fig. 4(b)] and the local form WL (r&', co) of
the screened (relaxed) ladder interaction [Fig. 4(a)],

V (r~, rz, co)= V(r„rz)+ VI (r, ;~)$(r& —zz),

(6.10)

V (r],rz;co) = V(r„rz)+ WL (r].,co)5(r] —rz),RPAER RPAER

(6.11)

where

IVRPAER( . ) V RPAER( . ) + VSCR( .
) (6.12)

The precise definition of V(r&, rz', co) depends on the
zeroth-order response function go. If we work with a

(6.8)

where the local ladder interaction is determined by the
density variation of the local exchange potential

(6.9)
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frozen HF,„V ' type of basis sets, the residual (local)
bare ladder interaction VL (r&, cv) will be small. How-
ever, this is not a good point to break off at, since we
know that relaxation effects can be important, and ladder
diagrams containing the screening correction VL (r~,'co)

[Fig. 4(c) and 4(d)] remain to be included. If instead we
work with a relaxed HF,„V ' type of basis sets, the
static part of the residual (local) screened ladder interac-
tion IVI (r), cv) will be small, and the mean-field
description may be greatly improved.

In conclusion, performing the RPA (Fig. 5) with a
frozen or relaxed HF,„V ' type of basis gives a local
induced response and a good description of the dynamics
of many-electron screening in atomic systems.

Nd„. (cv)

V,„(rv)d„; G,„(tc))d;„
Q) —CO CO + CO

=dpi P Ien u dn; +I,„cu din

Nd „(tv ).

V,„(cv)d„; G,„(to)d;„

COn —Q) COn +CO

=d„—P I,„co dn;+I, n d;n

(7.5a)

(7.5b)

(7.6a)

(7.6b)

VII. DIPOLE-LENCJ TH —DIPOLE-VELOCITY
FORMULATIONS OF PHOTOIONIZATION

Using the properties of the zeroth-order one-electron
basis functions we have

A. Operator dependence of the effective wave functions
L L

din =dni r (7.7a)

(7.1a)

where

(7.1b)

d =r
d =d/dr+I /r .

(7.2a)

(7.2b)

In Eq. (7.2b), the + sign is to be chosen for the l~l + 1

transition and the —sign for the l~l —1 transition. l&
is the larger of the angular momenta for the initial- or
final-state orbitals.

The photoionization cross section may now be written
on the form [a fine-structure constant, ao Bohr radius,
c„ from (6.4)]

The form of the effective wave function P', (r) in Eq.
(4.7) was derived under the assumption that v,„(rr;co) is an
ordinary function of r like E.r, and not any operator like
A p ( A is the vector potential and p the electron momen-
tum). However, the distinction is crucial: In our formu-
lation it will lead to operator dependent -forms of the effec
tive wave function and potential

In the following we shall work with the radial wave
functions and operators, and (

~ ~
& will denote radial ma-

trix elements. The matrix elements of the length (L) and
velocity ( V) -dipole operators are defined according to

V V
din = dni (7.7b)

(7.9)

Nu', (r) =u, (r) —P ]f [I,„(tv) I,„(o)c] u(r) . —
(7.10)

(7.11)

We have here formulated the RPA(E) in terms of a sin

gle effective wave function (L or V) including ground state-
correlations. As a consequence, we have to pay for this by
a operator dependence of the effective wave function.

We now introduce the definitions

Eq. (7.7b) is strictly true only if the occupied and empty
states have been calculated with the same one-electron po-
tential. In the case of the present self-energy corrected
HF average basis, Eq. (7.7b) is approximate but fulfilled
with good numerical accuracy. The RPAE equations
(7.5) and (7.6) may then be rewritten according to

Nd~;(tv)=d„—P )f [I~„(tv)+I~ (co)]d„;, (7.8)
n

Nd„(to) =d„—P ~~) [I,„(to) I,„( c)o]d„;—.
n

The velocity formulation in Eq. (7.9) now has a form
closely similar to the length formulation in Eq. (7.8). We
can therefore derive an effective radial wave function also
in the dipole-velocity case,

Nu', (r) =u, (r) —P )j [I,„(to)+I~(tv)]u„(r),

cr(a)) =4~ aaoroc„~ d„(co)
~

where

(7.3) (ETDAE) N u (P) —g I „(M)ll„(l') (7.12a)

(7.12b)

d„(cv) for dipole length (L)

co 'd„(cv) for dipole velocity (V) .

(7.4a)

(7.4b)
(
e„„)= rr ' $1,„(flu„(r), —

which gives

(7.13)

The RPAE equations for the dipole matrix elements
have the form [see Fig. 1(d); cf. Sec. IV and Eqs.
(4.9)—(4.1 5)]

~
eRpAEL &

=
~

eTDAE & +
l

ecorr &

RPAEV ATDA E Fg()r1

(7.14)

(7.15)
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Applying the Schrodinger equation in reverse [Eq.
(2.11)] to the wave functions in Eqs. (7.14) and (7.15) we
obtain the corresponding effective potential. An example
is shown in Fig. 6 for continuum d 1evels in Kr in the
case of 4p-ed transitions close to threshold (@=0.1 Ry).
Clearly, the effect of ground-state (initial-state) correla-
tions with in the RPA(E) is quite dramatic.

From the properties of the RPAE we have that

d,',"' (co) is the average length ve-locity dipole matrix
element in the Hartree Foc-k 'P basis and Ad„(co) is a
correction which leads to the APAE. The high-frequency
behavior of these terms can easily be found. At high fre-
quencies, G,„(co)~G,„.

In the limit of co—+ op we then have

(7.21)
da~ (~) (~RPAEL I

d
l

~ ) (7.16a)
and

&&RPAEv
~

d ~i ) (7.16b)

which allows us to write the RPAE dipole matrix ele-
ment, using Eqs. (7.12)—(7.13), according to

d„(to)= , (E—rDAE
~

d +Co 'd
~

l ) (7.17a)

+ 2 (~„„,I d —to 'd
~

i ), (7.17b)
Eq. (7.17) represents a separation of the RPAE dipole ma-
trix element into an average length-velocity part involving
HF 'P (TDAE) final-state wave functions, and a correc-
tion describing ground-state correlation.

We now rewrite Eq. (7.17) according to

(co) =d'„"' (co)+~d„(to), (7.18)

where

(to) +p (ErDAE
~

d +co 'd
~

t )

=dpi &
P I&„co dni 1+con~et) 7.19a

and

=d„—2 co 'P Jf V,„(co)d„; (7.19b)
n CO+ —CO

&&d„(co)=~ ,
' (e„„~d —co 'd

~

i )—
I~yg co dna 1 —Q)~ /Qj (7.20a)

G,„(co)d„;
CO„+CO

(7.20b)

I' ~
I /

/

I

I
I
I
I
I

I

f

I I I

4 9
r (a.U. )

FIG. 6. Effective local (1=3) potentials for 4p-ed transitions
in Kr calculated in simplified RPAE (SRPAE); @=0.1 Ry.
( ) length, potential; ( —~ —~ —~ ) length, wave function;
( ———) velocity, potential; (—~ ~—) velocity, wave function.

5d„(m) —, N '~ ' g—G,„d„. (7.22)
n

Since G,„ is roughly factorizable, ' one qualitatively has

G,„d„;=d„G„„&0 (7.23)
n n

because the one-electron dipole matrix element d„- is al-
ways positive at high energies e, and the diagonal matrix
elements G„„ofthe exchange interaction are also positive.

In a more accurate, numerical, treatment we note that
the major contribution to the sum (integral) comes from
low energies co„. Numerically, for 4d Ff transition-s in Ba,
we find that G,„ is negative when n lies in the low-energy
region and e lies at high energies. Since the one-electron
dipole matrix element d„; is negative in the low-energy re-
gion, the inequality (7.23) is indeed valid. The RPAE di-
pole matrix element (7.18) (as well as the cross section)
therefore lies below the average one at high energies.
Moreover, to first order in co

' there is cancellation (see
below) between the interaction terms in Eqs. (7.21) and
(7.22), so that the RPAE result, in fact, rapidly tends to-
wards the one-electron result d„.L

We can also say something about the general behavior
of the correction term (7.20) in the low energy region-
where the cross section is large and often strongly influ-
enced, or dominated, by collective behavior. Comparing
Eq. (7.20b) with the second term in Eq. (7.19b) we note
two things: (i) the signs are opposite; (ii) the frequency
factors (co„—co)/(co„+to) and (co„+co)/(co„—co) are each
others inverses and change sign in the same manner; the
cancellations in the integrals will therefore be similar.
Therefore, since V,„(co)=G,„(co) the two contributions
beyond the zeroth-order HF„approximation will have
similar co dependence but opposite sign. However, the
correction term b,d„.(co) in Eq. (7.20b) will have a smaller
absolute value and will, roughly speaking, reduce the os-
cillation of the second term in Eq. (7.19b) around the
zeroth-order contribution.

This is further illustrated in Fig. 7, showing photoioni-
zation cross sections for the 4p shell in Kr in the low-
energy region. This region is characterized by collective
behavior, reflected in the large displacement of oscillator
strength relative to the zeroth-order, independent-electron
result. ' ' ' The RPAE cross section cr (which is
quite close to experiment) lies well above cr'" in the thresh-
old region, crosses o" on the high-energy side of the max-
imum, and then stays well below o.".

The crossover occurs typically in the region where the
continuum oscillator strength begins to fall. In systems
which may be described in terms of a collective (giant di-
pole) resonancelike behavior, similar to the 4d ftransi--
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Now taking the high-frequency limit, co~ oo, we obtain

40—

20—

P.

/ (
'

~

Nd" E( )

=d„+co Jf co„[V,„(co)+G,„(co)]d„;

+ —,'cu ' f [V,„(co)—G,„(co)]d„; .
n

From Eq. (7.16) it also follows that

&~RPAEId co d
I

l&=0

from which we can derive the relation

(7.25a)

(7.25b)

(7.26)

0
IO 20

a) (eV)
40 50

FIG. 7. Photoionization cross sections for 4p-ed transitions
in krypton. (—~ ~—) HF„, length or velocity; ( ) HF 'P,
average length velocity; ( ———) HF 'P, length; ( ——~ —~ ) HF
'P, velocity; ( ~ ~ ) RPAE.

Nd RPAE(

=d„—P V,„co +G,„cu d„;
Q)n —CO

+
2~ P

p 2 ~en M Gen ~ dni
n n

(7.24a)

(7.24b)

tions in Xe, Ba, and La, the crossover occurs around the
collective resonance energy, which is precisely where the
oscillator strength begins to fall. Note that the cases of
dramatic differences between HF length and velocity ma-
trix elements and cross sections are indeed associated with
systems showing pronounced collective behavior, similar
to the outer-shell np cross sections in the rare gases and
the inner-shell 4d' cross sections in Xe and the surround-
ing elements.

The fact that the RPAE cross section usually will be
closer to the HF 'P length result from threshold towards
the maximum in the cross section, and then quite rapidly
decrease and become closer to the HF 'P velocity result is
of course well known and expected: Here we have only
analyzed the reason for this behavior in terms of devia-
tions from an average HF 'P length-velocity picture.

It must be remembered, however, that even though the
RPAE dipole matrix element may be closer to the HF-
velocity result at higher energies, the RPAE never tends
to the HF 'P (TDAE) result in any sense because the
high-frequency behaviors are qualitatively different: The
TDAE matrix element d', ,

". ' (co) in Eq. (7.21) tends to-
wards the independent-electron limit di (=co 'd„. ) as
co ', and the correlation matrix element Ad„.(co) in Eq.
(7.22) tends towards zero also as co '. However, the sum
of these matrix elements, i.e., the RPAE matrix element
d„. (co), tends towards the independent-electron limit

d~; as co . To see this, one needs to sum Eq. (7.19) and
(7.20) before taking the limit,

f [V,„(co)—G,„(co)]d„;=0. (7.27)
n

As a result, due to the well-known interference between
the positive and negative frequency contributions (final-
and initial-state correlation effects), the RPAE dipole ma-
trix element tends towards the one-electron matrix ele-
ment such as co . Note that the approximation to set
V,„(co)=G,„(co) (simplified RPAE, SRPAE; Refs. 4, 5,
12, 17, 19, and 50) automatically fulfills Eq. (7.27) and
gives the correct high-frequency behavior.

We may conclude that it is a meaningless question to
ask whether the HF LS lengt-h or velocity (or average
length-velocity) formulation is the best at high frequen-
cies, because neither form has the correct frequency
dependence.

The average form —,(d +co 'd ) of the dipole opera-
tor was used by Miller and Dow ' on the grounds that
it would lead to better fulfillment of the oscillator sum
rule. However, this procedure can be generalized and
made more precise: We may state that, as long as we
want to arrive at the RPAE, the form of the dipole opera
tor is intimately connected with the form of the effectiue
toaue function for the excited electron. If one starts with
the dipole-length operator in Eq. (7.16a) one will have to

CL

L

Q)

4 9
r(a.u. )

FIG. 8. Effective local (l=3) potentials for 4p-ed transitions
in Kr. ( ) length formulation, SRPAE, e=0.1 Ry;
( ———) length formulation, SRPAE, a=0.2 Ry; ( —.—- —~ )

velocity formulation, SRPAE, e=O. l Ry; (—- ~—) velocity for-
mulation, SRPAE, @=0.2 Ry; ( ~ ~ ~ ~ ) Miller et al. (Ref. 52).
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work with the associated RPAE-length wave function
(7.10) and potential (Fig. 8). In an analogous manner one
could also start from the velocity formulation in Eq.
(7.16b), combining the RPAE-velocity dipole operator
with the associated wave function (7.11) and potential
(Fig. 8). The final RPAE amplitudes and cross sections
will be the same.

In the case of the average dipole leng-th dip—oie velo-city
operator, we cannot use the methods of this section to de-
fine an associated wave function that will reproduce the
analytical RPAE results. However, we have already noted
that when we divide the problem according to Eqs.
(7.18)—(7.20), the variation of the correction term bd„.(cv)
(7.20) will roughly average to zero over the relatively low-
frequency region which gives the major contribution to
the oscillator strength sum rule. Assuming that 4d„(cv)
in Eq. (7.20) vanishes, the average dipole operator in Eq.
(7.19) has to be combined with the HF 'P (TDAE) effec-
tive one-electron wave function in Eq. (7.14). This then
approximately gives the RPAE amplitude and cross sec-
tion, which agrees quite well with experiment when relax-
ation effects have been taken into account. In fact, the
potential obtained by Miller and Dow, ' (Fig. 8) from
fitting theory to experiment turns out ' to be quite close
to the HF 'P V ' potential, as it should according to
the above discussion. Figure 8 rather demonstrates the
similarity with the SRPAE-length potential: At low ki-
netic energies the (S)RPAE and HF 'P cross sections are
quite close and so are the (S)RPAE-length and HF 'P po-
tentials.

Finally, one should note that the separation in Eq.
(7.17) could have been made more general,

d„(cd)= —, (eTDp, E I
ad +(1—a)cv 'd Ii ) (7.28a)

With the average dipole-length dipole-velocity opera-
tor and the HF 'P basis, we have a first approximation
which roughly fulfills the Thomas-Reiche-Kuhn oscillator
strength sum rule. Starting from Eq. (7.19) the average
photoionization cross section can be written as (HF=HF
'P= TDAE)

o'„"(cv)

(7.29a)

(7.29b)

+( I &eHF I

d'
I

i & I I &eHF
I

d'I i & I )J

or in terms of HF 'P length and velocity cross sections

o.,',"( o)=c—,'
I —,[c7„"'(cv)+o.„"(cv)] (7.30a)

(7.30b)

+ —,(e„«
I
ad —(1—a)cv 'd

I
t ) . (7.28b)

One could then determine a by requiring that, e.g., the
average cross section cr'„".(cv) fulfill the oscillator strength
sum rule. However, judging from Fig. 7, this value of a
should lie in the vicinity of a= —,.

B. Comparison with other theoretical approaches

The "truly" average HF 'P cross section can thus be ex-
pressed in terms of the average of the arithmetic (7.30a)
and the geometric (7.30b) mean values of the length and
velocity HF 'P cross sections. Since the arithmetic and
geometric mean values must be similar, we approximately
have

=[a„"(cv)cT„" (cv) J'~

(7.31a)

(7.31b)

Kelly et al. have calculated the 4d-photoionization
cross section of atomic Ba, both with the frozen and re-
laxed ion core potential, using the geometric mean of the
HF 'P length and velocity cross sections alone in an
ad hoc manner. They obtained quite reasonable results,
although of course distinctly different from the RPAER
(relaxed RPAE). From their results one can see that the
arithmetic and geometric means indeed give very similar
results, and therefore their approach is valid. It should be
noted, however, that Eq. (7.31b) has been derived for par
tial cross sections, wile Kelly et al. applied the geometric
mean formula to the sum of the l ~l+1 cross sections.

VIII. SUMMARY

The general purpose of the present investigation has
been to describe the many-electron dynamics of inner-
shell excitations in atoms, molecules, and solids in terms
of energy depend-ent effective 1ocal potentials In part. icu-
lar, we want to describe the influence of screening, relaxa-
tion and correlation in the core region, i.e., the inner-well
region of the atomic potential. The idea is that such po-
tentials eventually may be used as "inner potentials" in
solid-state calculations.

In a previous paper we have discussed and compared
various one-electron schemes for the ground state and ex-
cited states (HF, Slater, LDA, Talman-Shadwick). We
also presented numerical results which demonstrated the
effects of polarization and relaxation.

In the present paper we have developed a general
theoretical framework for describing the photoionization
amplitude using dielectric response theory. The major
purpose has been to incorporate all many-electron effects
(screening of the external perturbation, relaxation, correla-
tion) into an effective one electron wav-e function for the
photoelectron. Acting with the Schrodinger equation in
reverse we are then able to derive a local effective one
electron potential which incorporates many-electron
dynamics. Numerical results of various applications will
be presented in a subsequent paper. Some examples
have also already been given in a previous paper.

%e have also studied an approach where a11 effects of
many-electron interaction are represented in terms of an
effective (screened) electron photon interaction-. Due to the
electron-hole ladder (Hartree) interaction, this effective
electron-hole interaction becomes nonloeal (RPAE). We
have invented a procedure (related to the Talinan-
Shadwick scheme) for constructing a local, energy-
dependent form of the ladder interaction. RPAE with
this local ladder interaction (and with local exchange)
should be equivalent to a time-dependent Talrnan-
Shadwick approximation.
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Furthermore, we have investigated an intermediate
scheme where the average electron-hole ladder interaction
(including static relaxation, if desired) is included through
an appropriate choice of an effective one-electron wave
function. This leaves essentially only the electron-hole
bubble interaction (RPA) to be included through a local
screened electron-phonon interaction. In one-electron
schemes like HF» V ', Talman-Shadwick, and LDA,
the excited electron effectively sees a full core hole in the
core region, which approximately takes care of the
ladder interaction. It is therefore meaningful to use RPA
schemes based on HF,„(SRPAE, simplified
RPAE), ' ' ' ' ' on LDA (LDRPA), ' or on a
Talman-Shadwick basis (TSRPA). We have defined the
LDRPA and discussed the relation to schemes like
RPAE, SRPAE, TDLDA, and TDTSA.

It should be mentioned that the similarity between a re-
laxed HF,„V ' potential and the LDA (or TS) potential
only occurs for core excitations from outer and inner
valence shells' ' ' for which relaxation and self-
interaction shifts are comparable. For deeper shells (in
Xe and Ba this means 3d and deeper) the self-interaction
shift is much larger than the relaxation shift and has to
be corrected for.

In this paper we have also established relations between
the RPAE, on the one hand, and different schemes using
average dipole length-velocity formulations on the other.
In particular, we find that the average HF 'I' cross section
should be defined in terms of an average HF 'P amplitude
based on an average length-velocity dipole operator. The
key procedure is the separation of the RPAE one-electron
wave function into a final-state TDAE (=HF 'P) part
and an initial-state (correlation) part. The RPAE ioniza-
tion matrix element can then be expressed as the sum of
two parts: (i) a TDAE (=HF 'p) matrix element of an
average dipole-length —dipole-velocity operator, and (ii) a
correction in the form of a difference dipole-length —-
dipole-velocity operator evaluated with the correlation
part of the photoelectron wave function.

We have demonstrated that the photon energy depen-
dence of the correction term is such that the RPAE cross
section lies above the average cross section in the thresh-
old region, and lies below the average cross section at
higher photon energies. The crossing typically occurs just
above the cross-section maximum where the oscillator
strength starts to fall quite rapidly. As a result, the
RPAE cross section will typically be closer to the HF 'I'
length cross section near threshold and closer to the HF
'I' velocity cross section at somewhat higher energies
(above the maximum). However, at high energies the
RPAE cross section will tend to the cross section for in-
dependent electrons much faster than any HF 'P (TDAE)
scheme (length, velocity, average). This is due to interfer-
ence between the initial- and final-state interactions in the
RPAE, and is provided by the correlation correction to
the HF 'P (TDAE) average amplitude.

In the applications of the present work, ' the poten-
tials have been derived by numerical procedures from nu-
merical wave functions. On the low-energy side of a giant
dipole resonance the many-electron modification of the
one-electron potential is strongly energy dependent. This

energy dependence is necessary for a good description but
is difficult to parametrize for solid-state calculations in
the low-energy region.

However, the Schrodinger equation can be applied in
reverse to the analytic expression for the effective one-
electron wave function. This results in an analytic expres-
sion for the local effective one elec-tron potential in terms of
response functions and equivalent quantities. Polariza-
tion, relaxation, and correlation effects can then in princi-
ple be represented in terms of dynamic contributions to an
effective one-electron potential. In particular, it should be
possible to extract the energy and space dependence in the
form of corrections to an average, static potential. This
work is still in progress and will be published separately.

The numerical applications of the present work to Kr,
Xe, and Ba will be published separately.

APPENDIX

In this Appendix we consider the effective wave func-
tion given in Eq. (4.8) at a kinetic energy e=co+e;. This
function can be written in the form

u', ' (r) =u, (r)-
F,„(m)u„(r)

~
E,„(m)u„(r)

n nCO —CO —l 6
tl

M +COn

F,„(co)u„(r)=u, (r) —P
n n

)
I(,„(co)u„(r)

ivrF„(co)u,—(r), (A 1)

P „denotes principle part integration over the continu-
um. This wave function is a complex quantity and we
shall show that it can be written in the form of a real
function of r times a complex normalization constant.
F,„(co) and K,„(co) satisfy the coupled set of equations

F, (co)V „E,(co)G „F,„(co)= V,„—
~m CO &~ Cum +

(A2a)

K, (co)V „F,(co)G „K,„(co)=G,„—
COm +CO Q)m —CO —l 5

(A2b)

The solution of these equations can be written as

F,„(co)= V,„(co)/N'(co),

K,„(co) =G,„(co)/N*(co),

(A3a)

(A3b)

which gives a proper normalization of the wave function

N'(co) = 1+i~V„(co)

V,„(co) and G,„(co) are reaction matrices

(A4)
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V,m(co) V ~ G.m(co) Gm.
V,„(co)= V,„—P

COm —CO & COm + CO

(A5a)

G, (co)V „V,(co)G „
COm + CO COm —CO

Re W„,(co) = ReF„,(co)+ ReK„,(co)
CO& +CO

Im W„,(cu) = lmF„,(co)+ ImK„,(co)
CO„+CO

(A10e)

(A10f)

Inserting Eqs. (A2a) and (A2b) in (Al) gives

V,„(co)u„(r)
u', ' (r) =N'(co) ' u, (r) —P

CO+ —CO

G,„(co)u„(r)
co„+co

=P', (r)/N'(co),

which is the desired form of the wave function.
Moreover, the following theorem holds.

(Asb)

(A6a)

(A6b)

P,'(r) era, P', (r)

1+~ a, 1+~ a,
(A 1 1)

Comparing the real and imaginary parts of Eqs. (A9) and
(Al 1), we obtain the following relations:

P'()
2 I (co) Y(——r, cu), (A12a)

1+sr a,
era, P~ (r) =R (cu)Z(r, cg) . (A12b)1+~ a

We suppose that the effective wave function is of the
form (A7) and we write it as

Theorem. In the RPAE, the effective wave function in
a single channel can be written in the form (A13a)

Equating the r dependent and r independent parts gives

P', (r) = Y(r, co) =Z(r, co),

u', '(r)=N'( )co'P', (r),
(co)= 1+i+a, ,

(A7a)

(A7b)

1

~ =I(a)),
1+m a,

(A13b)

where a, is a real function of co and P', is a real function
of r and co if and only if F,„(co) and K,„(co) satisfy the re-
lation

F„(co)+ K,„(co)=a„[N'(co)]
CO+ +CO

(AS)

where a„ is a real function of co.
Proof. Equation (AS) is fulfilled in the RPAE, as can

be easily verified with the help of Eqs. (A3) to (A5), and
we have already shown that in this case the effective wave
function can be written in the form (A7). To prove this in
an opposite way, we start from Eq. (Al) for the effective
wave function. Writing explicitly the real and imaginary
parts of the matrices F,„(co) and K,„(co),we obtain the ef-
fective wave function in the form

7TQ ~

2 =R(co) .
1+7? Q ~

(A13c)

Inserting Eqs. (A10c) and (A10d) into (A13b) and (A13c),
we easily find that F„(co)has the form

F«(co) =
1+ima,

(A14)

ReK«(co)
I (co)

ImK„(co)
=const=g, ,R (cu)

(A15a)

which is indeed Eq. (AS) for n =E.
Let us show that Eq. (AS) is satisfied for n&e, too. In-

serting Eqs. (A10a) and (A10b) into relation (A13a) and
taking into account the linear independence of the basis
functions u„(r) we obtain

u', * (r) =I (co) Y(r, co) iR (co)Z—(r, co),

where

(A9) Re W„,(co)

I (co)

Im W„,(co) =const =a„.
R (co)

(A15b)

ReK«(co)
Y(r, co) =u, (r) 1—

2coI (a) )

u„(r) Re W„,(co)
PW

co„—ci) I (co )

ImK«(co )
Z(r, co) =u, (r) 1+

2coR (co)

u„(r) Im W„,(co)
+P co„tip R (c—i) )

I (co) = I+~ In&'«(co),

R (co ) =m. ReF„(co),

(A10a)

(A job)

(A10c)

(Alod)

Combining Eqs. (A15) with Eqs. (A10c)—(A10f) we ob-
tain

K«(co) =
1+i~a,

(A16a)

CO„—CO a„
F„,(co)+ K„,(a))=, n&E

co„+co 1 + l &a~
(A16b)

which completes our proof.
Using the method presented above, we are able to calcu-

late the transition process into the discrete state n (photo-
absorption case). The effective wave function is given by
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Eq. (A6), but the discrete energy co is displaced versus the
zeroth-order energy co„and obtained as the solution of the
equation

(A18)

co —co„—V„„(co)=0 .

The normalization constant N is given as

(A17) We calculate the norm of the wave function choosing
the sign so that the resulting wave function has a positive
slope at the origin.
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