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A continuous-wave maser operating on a two-photon transition between Rydberg levels is expect-
ed to oscillate with about one atom and a few tens of microwave photons at any time in its supercon-
ducting cavity. We analyze in detail the characteristics of this new microscopic quantum electronics
device presently under construction in our laboratory.

I. INTRODUCTION

Lasers operating on two-photon atomic transitions have
been widely studied in theoretical papers over the last
twenty years.!~!! The continuous operation of such sys-
tems would present many interesting features, making it
very different from ordinary one-photon lasers (field
dynamics and photon statistics in particular are quite dif-
ferent in one- and two-photon oscillators®!!). To our
knowledge however, only one report of two-photon ampli-
fication in a pulsed system'? has been published up to now
and, in spite of numerous attempts, no realization so far
of a cw two-photon oscillator has been successful. This is
due to severe experimental difficulties related to extremely
low two-photon gain in usual transitions and to the ex-
istence of very strong competing nonlinear processes®
(multiple-wave mixing and stimulated Raman effect tend
to deplete the pumped level before two-photon amplifica-
tion can take place). In this paper we show that Rydberg
atoms in a superconducting cavity seem to provide an
answer to the various problems mentioned above and we
describe the principle of an experiment in progress in our
laboratory to realize a cw two-photon maser.

Rydberg-atoms—cavity systems have in the past years
developed into new kinds of quantum electronic devices,
with fascinating charactenstlcs, Rydberg masers with
very low thresholds,'* down to a smgle atom at a time in
the cavity either in a transient'* or in the cw (Ref. 15) re-
gime have been obtained and the theory of these “micro-
masers” has been derived in detail.!>16—19

The advantages of Rydberg atoms for these studies lie
in their very large electric dipole coupling to radiation and
to their long-wavelength resonances, making it possible to
realize low-order closed very-high-Q cavities. The com-
bination of these factors explains the reduction of the
threshold down to a single atom in these systems. These
oscillators have been restricted so far to one-photon-
allowed transitions (nS—n’'P or nP—n'D transitions in
Na, Cs, and Rb atoms; n and r' are the principal quan-
tum numbers and S, P, and D refer, respectively, to 0,1,2
angular momentum states).

For two-photon transitions, Rydberg atoms offer
another very attractive feature: a relay level can be found
in the Rydberg-states spectrum nearly halfway between
the initial and the final levels of the transition, thus great-

35

ly enhancing the two-photon transition amplitude.?0—%2

Figure 1 shows the relevant levels in an alkali-metal
Rydberg-state energy diagram. The transition of interest
occurs between the nS and (n —1)S states and is thus
two-photon allowed and one-photon forbidden. To sim-
plify the notations, these states will be called |e) and
| f) in the following (energies E, and E ). The inter-
mediate level (n —1)P3,, (called |t) energy E;) is de-
tuned by the amount

(E,+E;)
2

from the average of the energies of the |e) and |f)
states.?

The quantum defects of the nS and nP,, 3, series
differing in all alkali metals by about 0.5, #A turns out to
be quite generally a small fraction of the energy interval
E, —E;. Moreover, there is a slow variation with n of the
quantum defects, which has been measured in detail in
very precise spectroscopic experiments.?*~2’ This varia-
tion entails that A crosses zero value around experimental-
ly accessible n values in rubidium and cesium; we show in
Fig. 2 the detuning of the (n —1)P;,, level as a function
of the principal quantum number (n —1) for these two
species. It appears that A is exceedingly small for
n—1=39 in rubidium and n—1=43 in cesium
(A/27m=—39 MHz and —33.3 MHz, respectively). The
corresponding nS—(n —1)S transitions are particularly
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FIG. 1. Energy levels relevant to the two-photon Rydberg
maser.
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FIG. 2. Variation with the principal quantum number n of
the detuning A/27 of the (n —1)P;,, state from (E,+Ef)/2h.
(a) for ®Rb. (b) for !3Cs. Data are deduced from Refs. 26 and
25, respectively.

well suited for two-photon amplification. [The detuning
is even smaller for n —1=38 in Rb and n —1=42 in Cs.
It is then, however, so small that is is difficult to discrim-
inate the direct two-photon nS—(n —1)S process from
the resonant one-photon cascade nS—(n—1)P;,,
—>(n —1)S. We thus choose in the following to consider
the very small but nonzero detunings corresponding to
n —1=39 in Rb or 43 in Cs; see Sec. V.]

We show in this paper that a two-photon maser operat-
ing on a degenerate two-photon transition between these
levels in a Q ~ 10® cavity should oscillate with only about
one atom at a time in the cavity and a few tens of mi-

crowave photons. Such a micromaser is in principle quite -

similar to the one-photon masers already operating in
Rydberg transitions.'>!® Due to the extremely low field
intensities in the cavity, the potentially damaging non-
linear competing effects mentioned above should in this
case remain negligible, as well as the cavity nonresonant
one-photon amplification towards the intermediate level
[i).

The outline of this paper is as follows. In Sec. II we
present a qualitative semiclassical analysis of the two-
photon maser operation and give an estimate of the
threshold and field intensity in the cavity. This intensity
being very small, a full quantum description of the basic
interaction process between the atoms and radiation, in-
cluding spontaneous as well as stimulated effects, appears
necessary. We present this analysis in Sec. III where we
use the dressed-atom formalism to describe the two-
photon Rabi nutation of a Rydberg atom in a quantized
field. We are then able, in Sec. IV, to present a more
quantitative but nevertheless simple model of the two-
photon Rydberg maser and we calculate some important
characteristics such as the average field evolution and the
photon-number variance under various conditions. Con-
clusions of this study are presented in Sec. V.

II. QUALITATIVE ANALYSIS
OF THE TWO-PHOTON RYDBERG MICROMASER

Assume that atoms with the level configuration of Fig.
1 cross a cavity tuned to the frequency

(E,—E/)
w= 2% .

This cavity contains a field which—in the present qual-
itative analysis—is supposed to correspond to a large
average photon number N (N >> 1), so that the atom-field
interaction can be considered as purely classical.

The atoms are initially prepared in the excited state
| e) and they undergo in the cavity a coherent second-
order Rabi nutation process between the levels | e) and
| £). The order of magnitude of this nutation frequency
can be evaluated in a very simple way. The field ampli-
tude associated with N photons in a cavity of frequency

(2)

and volume V'is /
E(N)~&,V'N 3)
with
1/2
ficw
= 4
o5 .

being the field “per photon” in this cavity. The couplings
of the allowed atomic transition |e)— |i) and
| i)— | f) to the field in this cavity are defined by the
elementary one-photon Rabi frequencies

' (e|D|i)&

RIS s
and
(i |D|f)&

h )

where (e |D |i) and (i | D | f) are the matrix elements
of the electric dipole operator D (assumed to be real).

If the cavity were tuned in resonance with the first-
order one-photon transitions |e)— |i) or |i)—|f),
the atom would undergo an ordinary one-photon Rabi
precession between the corresponding levels at frequencies
proportional to the field amplitude &,V'N, i.e., very close
to Qe,-\/l_v_ and Q,-f\/ﬁ, respectively (we neglect here the
change of &, when w and V are slightly modified to put
the field in resonance with the one-photon transitions).

When the cavity is in resonance with the two-photon
| e)— | f) transition instead, the Rabi precession occurs
between levels coupled to second order by a matrix ele-
ment given in frequency units as

_ Q.VNoNVMN  Q.N
Qef(N)z A = A .

More precisely, the probability P,(¢) to find at time ¢ the
atom in level |e), if it has been prepared in this level at
time zero, is given by the well-known Rabi formula gen-
eralized to two-photon processés?!

P, (1)~1—sin’[Q.+(N)t]= 5 {1+ cos[ QN )t]} (7

Qy=— (5b)

(6)

with the Rabi precession frequency given by

— — 2Q,0,N
Q(N)=mef(N>=—A—’N : ®)

We get a pulsation proportional to N, i.e., to the field
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intensity (and not to the field amplitude as in the case for
ordinary one-photon transitions) and inversely proportion-
al to the frequency mismatch A, which corresponds to the
enhancement effect discussed in Sec. I.

‘Let us notice at this stage that the above results—
obtained by qualitative and semi-intuitive arguments—are
at best approximate. The field, described only by an aver-
age photon number, is considered here as “classical” and
spontaneous emission in the cavity mode is neglected.
Moreover, we have only considered the second-order cou-
pling between | e) and |f) and disregarded the dynami-
cal Stark shifts?®?? induced by the field slightly  off-
resonant with the |e)— |i) and |i)— | f) transitions.
These shifts are also second-order effects in the atom-field
coupling and inversely proportional to A. A is so small
here that these effects cannot a priori be neglected even
for relatively small fields. If the cavity is resonant with
the free two-photon atomic transition frequency [Eq. (2)],
it is no longer exactly resonant for the shifted level transi-
. tion and the Rabi frequency must accordingly be modi-
fied. All these effects will be considered in Sec. III and
we will show then that Egs. (7) and (8) describe qualita-
tively correctly the Rabi precession between levels |e)
and | f), provided the average number of photons is large
compared to unity and (,; is not too different from Q.

Another approximation comes, of course, from the fact
that we consider here only one relay level and neglect all
the other states of the atom not represented on Fig. 1.
This is, however, a very good approximation since A is
very small compared to all the other frequency
mismatches.

Due to the large value of {e |D |i) and (i |D |f)
(proportional to n? in Rydberg levels), the frequencies Q,;
and Q are intrinsically huge. Let us consider here the
case of the 405 —39P and 39P—39S transitions in rubi-
dium at @ /27 =68.415 GHz, in a cavity of volume V'~70
mm3, We find then with the matrix elements
(e |D |i)=1443gay and (i | D | f) =1479qa,,

Qi ~Qyp~Tx10° s7! .

Combining these values with A/27=—39 MHz, we get
from Eq. (8), :

Q(N)~—BN 9)

with B =4000 s~!. The two-photon Rabi pulsation is
thus as large as 10° s™! for a field of only about 25 pho-
tons.

With this order of magnitude in mind, the principle of
a Rydberg two-photon micromaser appears very simple:
Rydberg atoms are prepared by laser irradiation in the
upper level |e)= |nS) and cross a microwave cavity
having a damping time f,,=Q0/w (Q is the cavity-
quality factor). The time separating consecutive atoms in
the cavity is #,, each atom interacting with the field dur-
ing its transit time ¢;,,. The condition

tat Ztint (10)

ensures that the number of atoms at any time in the cavity
is of the order of one (micromaser condition), whereas the
condition

tcav >>tat’tim (11)

means that a large absolute number of photons will even-
tually be able to build up.

We have symbolized this system in Fig. 3 where we
have assumed for sake of simplicity a regular flow of
atoms, separated by a distance L, crossing the cavity of
length / at a constant velocity v. Then one obviously has
tiw=1/v and t,, =L /v with the condition L > 1.

A qualitative estimate of the operating parameters of
such a device is given by the following equations:

QN )ty ~7 (12)

which implies that each atom yields a large fraction
(ideally all) of its energy to the field, and

— 2t

N=—2 (13)

tat
which means that the atomic flux is able to maintain the
N-photon field in the cavity [each atom leaves two pho-
tons, hence the factor 2 in Eq. (13)].
“Combining Egs. (12) and (13) with Eq. (9), we get
1 T '

—_—=— (14)

Zat 2Btinttcav »
With a quality factor Q =2 10®%—feasible with a niobi-
um superconducting cavity at this frequency’®?*—we
have t,,=Q/w~4.7Xx10"* s. On the other hand, #;,
~2.5%107% s for a 7.5-mm-long cavity crossed at
thermal velocity (v =300 m/s). Taking the B value quot-
ed above, we then get

1 33%10% ! (15)
at
and
2,
N="%_30. (16)
La

The atomic flux given by Eq. (15) should be easy to
achieve with cw laser excitation of an atomic beam.?* The
corresponding value t,,=3X107> s is consistent with
condition (10).

For a slightly more quantitative analysis of the system
operation, we can write the rate equation giving the pho-
ton number evolution in the cavity,

dN N 2 l—cos[Q(IT/)tim]]

(a”n
dt teav  lat

2

The average photon number N evolves under the com-

‘v.
-—

(S

L

-

L

FIG. 3. Scheme of the two-photon micromaser.
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bined effects of the cavity losses [first term in the right-
hand side of Eq. (17)] and the atomic Rabi nutation pro-
cess (second term); for each atom undergoing a pulse of
“area” Qty, a “fraction”

" 1—cos[ QN )t;n ]
2

of the photon pair is released in the cavity and this pro-
cess repeats itself at the rate ¢ . _

Figure 4 represents the variations with N of the cavity-
loss and atomic-gain terms, respectively, for increasing
atomic fluxes. The losses are linear in N and the gain
curve appears as a cosine function of N. Q(N) has been
chosen so that a 7 pulse corresponds to N =30. The ¢,
values of curves a, b, ¢, d correspond, respectively, to
tae=0.17t oy, 1, =8.4X 107 % ,,, t,,=4.2X 10" %,,, and
ta=2.1%10"2%,,.

A possible operating point of the maser is represented
by an intersection between the loss and gain curves. This
point will be a stable solution if the gain slope is smaller
than the loss one (stable solutions are shown by open cir-
cles on the figure). Threshold is reached for the gain
curve b. It corresponds to ¢, =8.4X10"%,,, ie.,
ta=4X10"° s for t,,=4.7X10"* s, a value in good
agreement with the above qualitative estimate. Curve a
corresponds to a maser below threshold (no intersection
other than N =0 between loss and gain curves) whereas
curves ¢ and d correspond to an oscillating system.

Above threshold, the N =0 point is classically stable
(since the loss linear in N is larger than the gain qua-
dratic in N around N=0). In the semiclassical theory,
the two-photon maser needs to be triggered by an initial
field corresponding to an average photon number larger
than the abscissa of the first nonzero crossing of the gain
and loss curves (shown by black circles on curves ¢ and
d). The field will evolve according to Eq. (17) and even-
tually stabilize on a open circle solution. (A one-photon
maser above threshold will, on the other hand, always
start on ‘“spontaneous” or “blackbody” noise without
external triggering.) We will not discuss here in more de-
tail this well-known feature of two-photon maser or laser

a
4]

I

O
~

FIG. 4. Classical model of the two-photon maser: loss and
gain contributions to dN /dt vs N. The loss term is linear in N
and the gain term a cosine function of N. Curves a, b, ¢, and d
correspond to the decreasing ¢, /t.,, values given in the text.
Threshold corresponds to curve b. Stable operation points are
shown by open circles.

devices.>’

Figure 4 also shows the possibility of multistable opera-
tion® for high pumping rates (two stable intersections of
the gain and loss curves shown by arrows on curve d).
This multistable behavior depends, however, on the fact
that there are no fluctuations of ¢, and t;, in this simple
model and disappear if the atoms are introduced with ran-
dom rates and velocities in the cavity.

III. TWO-PHOTON RABI NUTATION:
AN EXACT QUANTUM-MECHANICAL
DESCRIPTION

It has been shown?>?? that the coherent evolution of an
atomic system in a field resonant with a two-photon tran-
sition can be described as the evolution of a two-level or
pseudospin-% system (represented by a Bloch vector) ro-
tating in a fictitious static field whose amplitude is pro-
portional to the two-photon Rabi frequency. This pseu-
dospin model, however, is based on a classical description
of the field and applies only to usual situations where
there is a very large absolute photon number in the cavity.
A full quantum-mechanical treatment of the two-photon
Rabi precession has been recently derived by Yoo and
Eberly.®® This treatment, valid for arbitrarily small pho-
ton numbers, is well adapted to the two-photon micro-
maser case and takes into account all the effects neglected
in the intuitive approach of Sec. II. In this section, we
adapt this treatment to our problem and derive—with the
notations introduced in Sec. II—the exact expression of
the two-photon Rabi frequency and Rabi nutation
signals—only approximated by Egs. (8) and (7). These ex-
pressions include both spontaneous- and stimulated-
emission processes and take into account the dynamical
Stark shifts induced by the quantized field on the atomic
system. ‘

It is convenient here to make use of the dressed-atom
formalism in which one considers the eigenvalues and
eigenstates of the combined atom plus field Hamiltoni-
an.3! This Hamiltonian can be written as

H=H,+Hp+Hiy (18)

with H,, Hp, and H;,, being, respectively, the atom, field,
and interaction terms

Hy=E,|e)e | +E |i)i|+E;|f)f|, (19

Hp=#w(a'a+1), (20)
Hi=#Q(a |e){i | +at|i){e])
+#Qda [ | +at | F)G ). 1)

In these equations, a and a T are the photon annihilation
and creation operators, {1,; and {); are given by Egs. (5a)
and (5b). In H;,, we have made the rotating-wave ap-
proximation which amounts to neglecting terms such as
al |e){i | which couple levels whose energies differ by
E, —E; +fio~2%w.

Figure 5(a) represents the energy levels of the Hamil-
tonian H, + Hp, neglecting for the moment the atom-
field coupling. The energy diagram consists of a succes-
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sion of triplet manifolds |e,N), |i,N+1), |f,N+2)
separated from each other by one-photon energy .
These levels represent the atomic states |e), | i), and
| f) with N, N +1, and N 42 photons, respectively, in
the cavity. We assume also for the sake of simplicity that
the field is exactly resonant with the two-photon transi-
tion [Eq. (2)] so that in each manifold the levels |e,N)
and |f,N +2) are strictly degenerate. This assumption
is, of course, not essential and could be relaxed at the ex-
pense of a slight complication of the following equations.
The level |i,N+1) is separated from the
|e,N),|fsN +2) doublet by the mismatch #A, much
smaller than #iw.

Let us now take H;, into account. There is no cou-
pling at all between different N manifolds. Within the
Nth manifold (|e,N), |i,N+1), |f,N+2) levels in
this order), H;,, is represented by the matrix

0 Q. VNF1 0
HY=#|0,VN+1 0 QVNT2|. @
0 QN +2 0

Carrying out the exact diagonalization of H;,, we find
the three dressed energies [measured from the energy
E,+(N + 1) of state | eN )],

Ei(N)=ﬁ£—[liV1+(4/A)Q(N)] -

(23)
Eo(N)=0,

corresponding to the normalized eigenstates
Q. VN +1 1
7277 K. |e,N)
4Q(N) *
A

1+

A
- 1
2 +

1
— |i,N +1
+Ki |i,N +1)

Qif" N +2
172
4Q(N)
A

L
K+

| fL,N+2),

A
— |1+ |1
s

QN +2
VAQ(N)

Q0 VNTI (24)

N+2) .
[N

0.4 = Rz

‘G,N)—

In these equations, we define the frequency
QLN +1)+ QYN +2)
- A

and the normalization constant

Q(N)

172
1

4Q(N)

A

1+ |14

A
3o

1/2]

In the situation of interest here, we can approximate
these formulas by much simpler and nevertheless quite ac-
curate ones by remarking that Q(N)/A is very small.

(a) (b)
ITN+2> I-.N>
li,N+1> I+N>
W
1-N-1>
le,N-1

If,N+1>
li,N> 1+N-1>

FIG. 5. Energy diagram of the atom-field system. (a) Cou-
pling neglected. (b) Coupling taken into account: dressed states.

With Q,; ~Qy~7%x10° s~! and A/27=—39 MHz, we
have indeed

0% +207
- A
and | Q(0)/A|~1075. Even with N as large as 10°, we
still have |Q(N)/A| <1072 It is thus legitimate to ex-

pand the exact solution in powers of /A and to retain
the first-order term. We then get

Q(0) ~—6X10%s!

E_(N)=—#Q(N) , (27)
Eo(N)ZO N
and
Q, VN +1
|+,N)z————A———— |e,N)+ |i,N+1)
QN +2 ‘
+——f‘f—* | AN +2),
Q. VN +1 - QN 12
| =\ N)=——F————|e,N) + ———— | /LN +2),
VAQ(N) VAQ(N)
(28)
QN +2 - QuVN +1
0’ v U ’N — T ’ .
0N =—am oV~ Ve SV )

The dressed energies in the Nth manifold are represent-
ed in Fig. 5(b). The |0, N ) level is unshifted with respect
to the |e,N),|f,N+2) doublet whereas the | +,N)
and | —,N) states are shifted by #A and —#AQ(N),
respectively.

Let us now assume that the system is initially in the
| e,N ) uncoupled state representing the atom in level | e )
suddenly introduced in the cavity containing N photons.
This state is—to the approximation mentioned above—a
linear combination of the two |—,N) and |O,N)
dressed eigenstates, separated from each other by #Q,

N)—M N) M O,N)
leN) == | Nt Vaam OV

(29)
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The state of the system at a subsequent time ¢ is simply
RV N +1 ein(N)t| —,N)
VAQ(N) ’
N QN +2
V' AQ(N)

and the probability of finding at time ¢ the atom in the in-
itial level | e) is

PM(t)=|(e,N |e,N(1))|?
205 Q4N +1)(N +2)

=1 APOEN) {1—cos[Q(N)]} .

|le,N(2))=

|0,N) (30)

(31)

In the dressed-atom picture, the system evolution does
reduce to a two-level problem in the subspace spanned by
the two | —,N) and |O,N) dressed states, provided we
assume |Q/A| <<1. Carrying out the exact calculation
based on Egs. (23) and (24) is more cumbersome but not
difficult. It merely adds to the main nutation component
at frequency Q(N) a small contribution oscillating at the
much higher frequency A, corresponding to the tiny pro-
jection of | e,N) on the | +,N) state. This contribution
is completely negligible in the maser problem.

Let us now analyze in more detail formula (31). The
atom + field system evolves at the two-photon Rabi pul-
sation () given by Eq. (25), which we can also write as

B (QZ%+9Q%) .
A

A is the spontaneous two-photon Rabi frequency which
describes the rate at which the atom flip-flops from |e)
to |f) and back if it is initially prepared in an empty
cavity tuned at the two-photon resonance. This two-
photon spontaneous Rabi nutation effect cannot, of
course, be accounted for semiclassically. BN, on the other
hand, is the stimulated two-photon Rabi frequency, pro-
portional to the photon number, which describes the rate
of nutation induced by N initially present photons.

For large N’s (classical limit), we have

(33b)

in-i-ﬂ?fN

Q(N)=~BN = A

This result reduces to the intuitive expression given by
Eq. (8) for Q,=Q but is generally different for
Q,#Q;. This difference can be assigned”>* to the
dynamical Stark shifts of the levels | e) and | f).

The above calculation shows that the |e,N),
| ;N +2) degeneracy is lifted by the atom-field coupling
by an amount #{. It is possible to derive this result in a
slightly different way which will allow us to clearly
understand the influence of the Stark effect. Instead of
considering globally the triplet manifold
|e,N), |i,N +1),|f,N+2), let us focus on the degen-
erate doublet | e,N),|f,N +2) and analyze the second-
order perturbation of this doublet by H;,,. This approach
is legitimate as long as Q,;V'N +1,Q;V N +2 <<A. The
second-order perturbation matrix to diagonalize in this
doublet manifold is

(35)

Q(N)=A4 +BN (32)
with
Q% 4202
A =.(e—'+.__£_) R (333)
A
|
Q%(N +1) Q.2 N+ 1N +2)
A A
=t 0,00/ TN T DN 72 OUN +2)
A A

The diagonal matrix elements of Vy represent the Stark
shifts of levels | e) and | f) due to the field and the off-
diagonal elements describe the coupling between these lev-
els responsible for the Rabi oscillation. When the condi-
tion

Q, VN +1=0,/N +2 (36)

is fulfilled, the differential shift between the levels |e)
and |f) is zero. Substracting an irrelevant constant, we
find that the eigenvalues of ¥V, are then

N Q. Q;V (N +1)(N +2)

A
and the corresponding Rabi frequency is, for large N’s,

20,,0,N
A

Q(N)=~

in full agreement with Eq. (8).

In general, however, Eq. (36) is not exactly satisfied and
we have to take the diagonal part of ¥y into account.
The eigenvalues of ¥y are then

EO :0

and

(Qe)X(N +1)+ QYN +2)
E_=—#
A
in agreement with Egs. (25) and (27).

The difference between expressions (8) and (25) is thus
clearly due to the Stark shifts which slightly detune the
dressed-state transition from the cavity frequency and
thus change the Rabi pulsation. These shifts also modify
the maximum transition probability between levels |e)
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and |f) as is shown by Eq. (31). When Eq. (36) is satis-
fied, i.e., when the two levels are equally shifted, the atom
and the field stay in exact resonance and Eq. (31) reduces
to Eq. (7). The Rabi oscillation is then complete [ P,(¢)
oscillates between 0 and 1]. As soon as Eq. (36) is not ful-
filled, the contrast of the Rabi oscillation becomes some-
what smaller than one [the minimum P (¢) value is larger
than zero]. The Stark-shift detuning decreases the effi-
ciency of the two-photon transition process between the
levels.

In the case of the Rydberg transition we are considering
here, Q. and Q; are very close to each other
(Q¢; /Q2yp~0.97), and for N much larger than one, Eq.
(36) is approximately satisfied so that the Rabi nutation
occurs with a contrast close to unity.

We have so far only considered the Rabi oscillation
produced by a pure Fock state | N ). It is straightforward
to generalize Eq. (31) in order to describe the two-photon
Rabi nutation in a field having a photon probability dis-
tribution m(N).>® When Q(N)/A << 1, we simply get

QLOQHUN +1)(N +2)
P,(t)=1—-23 n(N :
@ 2 =) A20X(N)
X {1—cos[Q(N)]} . (37)

P,(t) merely appears as a sum of elementary Rabi nuta-
tion signals weighted by the probability distribution 7(N).
Generalization to the case when Q(N)/A is not negligible
is straightforward. P,(¢) then includes a small component
at frequency A. Equation (37) generalizes to the two-
photon case similar expressions already derived in the case
of ordinary one-photon Rabi oscillation.’?=3* P,(¢) is in
this case a superposition of terms oscillating at frequen-
cies proportional to V'N. The study of this superposition
reveals that the Rabi oscillation collapses after some time
and then revives after a longer time, the effect being due
to the dispersion of elementary frequencies over an infi-
nite but discrete set of values. Considerable theoretical in-
terest has been given to this effect’”3* which can now be
observed with Rydberg-atom—cavity systems.> The
two-photon version of this effect reveals interesting new
features,’C basically related to the fact that the elementary
Rabi frequency is now proportional to N instead of VN .

IV. QUANTUM-MECHANICAL THEORY
OF THE TWO-PHOTON RYDBERG MASER

We now come back to the study of the field evolution
in the two-photon Rydberg maser. The system is still
symbolized by Fig. 3; initially excited atoms cross the cav-
ity at a rate t5, each atom spending a time ?;; in the
cavity mode.

In a first stage, we assume for simplicity that ¢, and
tin: are fixed times. Later on, we will make the analysis
more realistic by allowing these times to fluctuate from
one atom to the next (random density and velocities in the
Rydberg-atom beam).

The condition

Lint <Iat | ‘ (38)

will, however, be always assumed, which means that there
is at most one atom interacting at any time with the field.
This condition is fulfilled—as seen in Sec. II—in a very-
high-Q cavity. It will allow us to keep the theory simple
by neglecting all atom-atom correlations in the cavity.

We also separate in this simple approach the atom-field
interaction from the field-relaxation process. We will
consider that the field is not damped at all during the
time each atom crosses the cavity and relaxes only during
the time interval ¢, —t;,, between the exit of one atom
and the entry of the next one. By this separation, we keep
as shown below a very simple description of the atom evo-
lution in the cavity and considerably simplify the theory.
In order to take realistically into account the actual field
relaxation, we must, of course, correspondingly increase
the field-relaxation rate so that the damping occurring
during ?,, —t;, is on the average the same as if it occurred
during the whole time ¢,,. We thus replace in the equa-
tion the real cavity-damping time ¢_,, =Q /o by an effec-
tive time:

9

_ Lint
Leav =

1— (39)

tat

This procedure corresponds only, of course, to an approxi-
mation becoming increasingly better as ¢;,, /., approaches
zero.

We also consider that the atom-field coupling remains
constant during ?;;,. Taking into account the true atom-
field coupling variation amounts to replacing in the calcu-
lation Qt;,, by the integral of the Rabi angle over the
atom path in the cavity mode. It merely amounts to re-
normalizing what we call #;, in this theory. At last, we
neglect the residual blackbody field in the low-
temperature cavity; we assume that the field relaxes to-
wards the vacuum state. All the above simplifications are
similar to the ones already made in the theory of the one-
photon micromaser. !’

The elementary step in our calculation will consist in
computing the change undergone by the field during a cy-
cle of duration ¢,;, between the entry of two consecutive
atoms in the cavity. Let us first assume that the cavity
contains exactly N photons at the beginning of this cycle.
According to the above assumptions, the atom-field evolu-
tion during the time t;,, is given by the Rabi-nutation pro-
cess analyzed in Sec. III. At time #;,, the system is thus
in a linear superposition of states | e,N) and |f,N +2).
The state of the field, obtained by tracing over atomic
variables, is thus described by a density operator with a
probability ‘

(N =PN(t,,) ’ (40)
of being in state | N) and
m(N +2)=1—PN(t,.,) (41)

of being in state | N +2), where P is given by Eq. (31).
This analysis immediately generalizes to a field being ini-
tially (time ¢) in an incoherent superposition of Fock
states described by a diagonal density operator, the proba-
bility of having N photons in the field being m(N,t). At
time ¢ +t;,,, we merely have
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TN, t +ti) = 7(N,t)PN(2,0)
+m(N =2,0[1—PN ~2(t;,)] . (42)

Let us emphasize that this simple equation holds only be-
cause the field is not damped in the cavity during this
time interval, so that the atom-field system is supposed to
undergo a pure coherent Rabi precession.

From time ¢ +t;, to time ? +t,, 7m(N,t) evolves ac-
cording to field relaxation alone. #(N,t ¢, ) can be ob-
tained from (N,t 4+, ) by integrating over the time in-
terval t,, —t;,, the well-known field damping equations,*®

LaWn=—aw ot T e 41,0, @

cav tcav

Explicit integration of this differential equation is
necessary since the field, at maser threshold, loses about
two photons during such a cycle. A first-order approxi-
mation of this equation is not precise enough.

By a numerical iteration of transformations (42) and
(43), one straightforwardly gets the probability m(N,N,,)
of having N photons in the field after N, atoms have
crossed the cavity. This result depends, of course, of the
initial condition, i.e., on (N,0). which- describes the
“triggering” field present in the cavity before the first
atom has crossed it. Notice that we have replaced here
the time ¢ by N, in the expression of the 7’s according to
the obvious relationship

Ny = tL . (44)

at

After having computed 7(N,N,), we get the mean
number of photons in the cavity

N(Nat)=2NTr(N,Nat) (45)
N

and the field variance
AN¥N,) |2
N(N,)
2 G2 172

> (N“—N “)m(N,Ny)
N N(N at) )

Figures 6(a) and 6(b) present N(N,) and V(N,,) for
e =1.4X10"21s,, 1, =3X10"%,,, and Q,;=Q;
Moreover, Q,;, Q;; and A are chosen so that Q(N)ty,, =

for N =40. All these parameters are realistic values for a
two-photon Rydberg maser and close to the values as-

V(Nat)= [

(46)

sumed in the qualitative discussion of Sec. II. For the ini-,

tial field, we have chosen a Poisson distribution with a
mean value N =40,
40N 4o .
m(N,0)= N1 ¢ .
We see on Fig. 6(a) that the field increases in the cavity
and reaches—after about 50 cycles—a steady-state value
corresponding to N =52. Figure 6(b) shows the corre-
sponding variance. It decreases from 1 to about 0.55
which means that the maser field is—in these
conditions—sub-Poissonian and nonclassical.

47)

The necessity of triggering the two-photon maser ap- ’

L

0 50

100 Ny

FIG. 6. Evolution of the micromaser as a function of the
number N, of atoms having crossed the cavity. (a) average
number of stored photons N(N,). (b) Photon-number variance
V(N,). Initial field is an incoherent Poisson field with N =40.
tine = 1.4 X107 %y, 1o =3 X 1072t ,,, and Q(40)t;, =1

pears clearly when comparing Fig. 6(a) with Fig. 7 which
represents the variation of N(N,,) for a maser operating
under exactly the same conditions as above, but without
any triggering,

m(N,0)=0. (48)

The mean photon number increases only very slightly
above zero in this case and reaches a limit of the order of
0.3. This residual field originates in the spontaneous
emission of the two-photon transition. This case obvious-
ly corresponds to the N =0 stable solution of the classical
discussion of Sec. II, slightly modified to account for
spontaneous effects.

02
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FIG. 7. N(N,) for the same conditions as Fig. 6, except that
the initial field is in vacuum state.
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FIG. 8. Average photon number N(N,) for a two-photon
micromaser with fluctuating ¢, and t, —#;,. Average values
of t;,; and ¢, are the same as in Figs. 6 and 7. Mean-square-
root  deviations are Aty =5.6X10"%,, Aty —tin)
=1.1X10"%,,. Triggering field is the same as for Fig. 6.

It is easy to generalize the above model to account for
fluctuations of #,; and ¢, —t;,;. We can randomly choose
these parameters in each cycle of the calculation, assum-
ing a Maxwellian distribution for 1/¢;,;, and a Gaussian
statistics for #, —t;,,. Figure 8 shows N(N,,) for a sys-
tem in which ¢, and ¢, have the same average values as
above (Fig. 6) withh a mean-square deviation
Aty =5.6X10"3,, and Aty —tn)=1.1X10"%t,,. We
see that a given realization of the maser field presents now
large temporal fluctuations but that, on average, the pho-
ton number increases to a value close to the one reached
by a fluctuationless system.

The two-photon maser just described corresponds to a
system initiated by a statistical mixture of Fock states,
i.e., by a triggering field with no priviledged phase. In a
practical device the field emission will be most con-
veniently initiated by a classical coherent field in a
Glauber state filling the cavity at time ¢ =0. Such a field
presents coherences between Fock states with different
N’s and the w(N) probabilities are not enough to fully
characterize the field. During the system evolution, all
the matrix elements of the field density operator will be
coupled together. The above analysis thus corresponds to
an approximation in which the effect of the coupling be-
tween the diagonal and off-diagonal elements are neglect-
ed. Such an approximation needs not be made. One can
write exact quantum-mechanical rate equations for the
density operator p of the combined atom + field system.
This operator has matrix elements such as p.y en's Pen, fn's
prw, sv describing atom-field coherences. Numerical solu-
tion of these equations followed by tracing over atom

variables makes it possible to compute at the end of each
cycle the field density operator knowing it at the begin-
ning of the cycle. When this complete approach is taken,
there is no need to separate the atom-field interaction
from field damping. The only assumption which is kept

" is that there is one atom at a time in the cavity so that—

during each cycle—the atomic medium is a simple two-
level system. Solving these more general equations is still
feasible if the number of photons is not too large (i.e.,
around maser threshold). The preliminary results ob-
tained are very close to the above simple calculations for
the maser intensity and the photon-number variance.

The main interest of this complete calculation is to
yield in addition other interesting quantities such as the
maser phase diffusion and the squeezing factor of its
field.®° Results of these calculations will be presented
elsewhere. '

V. CONCLUSION

Two features of the Rydberg two-photon micromaser
described above are very promising in order to eliminate
other competing processes which could prevent the oscil-
lator from working as expected: (i) The oscillation is sus-
tained by a closed cavity in its fundamental mode, (ii) the
triggering field and the steady-state field in the cavity are
exceedingly small.

These properties make it very unlikely that another
nonlinear process could build up and deplete the initial
population inversion. The most likely candidate would be
the one-photon amplification on the nS-—(n —1)P;,,
transition towards the intermediate level |i). This tran-
sition is detuned by A/27 from the triggering field fre-
quency . This detuning is 40000 times larger than the
cavity width w/Q ~ 1 kHz for the 405 — 39S transition in
Rb. On the other hand, the broadening of the one-photon
line due to saturation is in frequency units
(1/2#)(Qei\/—ﬁ ), i.e., 10° Hz, about 50 times smaller than
the detuning A/27. No significant amplification can
occur at frequency o+ A under these conditions.

Note, however, that the competition with one-photon
emission is much more damaging if one chooses the
smaller detuning corresponding to the 39S5-—->38P—38S
cascade. A/2m is only ~0.5 MHz in this case, of the or-
der of Q,;/2m. This transition does not seem for this
reason to be a good candidate for the two-photon maser.

In conclusion, the feasibility of a two-photon maser os-
cillator operating on the 40S—39S transition in Rb (or
44S—43S transition in cesium) is established. Experi-
mental investigations in Rb are in progress in our labora-
tory using Nb superconducting cavities at 2 K.
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