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In view of the recent successful confinement of decelerated sodium atoms in a magnetostatic trap,
it is of interest to evaluate possible trap-field configurations. Neutral atoms in a Zeeman sublevel

whose energy increases with field can be confined by a field whose magnitude
~

B
~

increases with
distance from the center. Because this same basic requirement applies also to traps for neutrons and
for plasmas (in the guiding-center approximation), trap configurations developed previously for
these purposes are of interest for neutral atoms. However, the desired properties differ considerably
because of very different objectives and different behavior of very cold atoms as compared with hot
plasmas. We characterize basic trap configurations using both the exact expressions for the field,
and a multipole polynomial expansion that facilitates studies of symmetry properties and classical or
quantum orbits. Polynomial terms for the field components are derived and coefficients obtained by
comparison with Taylor-series expansions and by global fit. Contours of

~

B
~

for various trap con-
figurations are also presented. Under certain restrictive conditions,

~

B I, and hence the effective
potential, can be made isotropic to second order.

I. INTRODUCTION

The availability of cold atoms confined in a magnetos-
tatic trap' offers a new experimental tool that is potential-
ly useful for high-resolution spectroscopy, for studying
decays of long-lived species, for studies of neutral-atom
collective effects such as Bose-Einstein condensation, and
for collision studies that might benefit from low relative
velocities. Until recently, the primary difficulty in realiz-
ing a trap for neutral atoms has been the very shallow
confining potential that can be attained with convenient
magnetic fields. The typical trap depth is only about 1 K,
from the relation T =p, hBlk, where p is the atom's mag-
netic moment, LB is the field difference between the
lowest threshold and the trap minimum, and k is
Boltzmann's constant. Magnetic trapping therefore de-
pends on substantial cooling of a thermal atomic sample,
and is inextricably connected with laser cooling tech-
niques that have been developed recently. In actually
making use of a magnetostatic trap for neutral atoms,
spectral shifts associated with the inhomogeneous magnet-
ic field present another major difficulty. It may be feasi-
ble to deal with this problem by further cooling within the
trap so that atoms of interest occupy a small region near
the field minimum. Achieving this goal so as to realize
the inherent possibilities is a formidable technical chal-
lenge at present. As a step in this direction, this report
surveys the basic trap configurations and also presents
convenient methods for representing the field and hence
the potential seen by the trapped atom.

Antecedents for the present study of magnetostatic
trapping fields are to be found in discussions of neutron

traps, developed primarily by Paul and collaborators
and discussed also by several other authors, ' and from
the extensive literature on magnetic confinement of plas-
mas. ' ' For both of these techniques, as for neutral-
atom traps, ' the confining force originates from the in-
teraction between a magnetic moment and a nonuniform
static field. As compared with the much deeper ion traps,
this interaction is inherently weaker and furthermore de-
pends on the maintenance of a given orientation of the
moment with the local field. For neutrons and for neutral
atoms, this implies that the particle remains adiabatically
in a given Zeeman sublevel. For plasma ions, the magnet-
ic moment is generated by cyclotron motion about the lo-
cal field in the "guiding center" approximation. In either
case, when the precession frequency (Larmor or cyclotron)
is not large compared with the frequency of orbital
motion, the desired orientation is lost and the particle is
likely to escape. Because of this similarity, magnetic trap
configurations devised for neutrons or for plasmas are of
interest for neutral atoms. However, there are consider-
able differences in the physical situation and in the prob-
able uses. Neutron traps are intended for storage and for
decay measurements; neutron spectroscopy or collective
effects are not at issue. In plasma confinement, primarily
directed toward achieving conditions for nuclear fusion,
the goal is normally to achieve maximum temperature
(and density) rather than minimum temperature as is typi-
cally the case for neutral atom traps. This extreme con-
trast presents some quite different design considerations.
For example, instead of large external coils, one can place
the trapping coils for neutral atoms entirely within the
vacuum system. This means also that the entire trap po-
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tential is relevant for confinement, and the container walls
need not be a factor. With cold atoms, furthermore, very
low collision rates, generally negligible many-body effects,
and slow orbital motion may lead to acceptable leakage
rates over regions of low field, despite violation of the adi-
abaticity condition. For example, the quadrupole trap
configuration (known as cusped geometry in plasma
work' '

) has been demonstrated' to yield confinement
times of a second or more for neutral atoms, but was re-
jected in the early stages of plasma studies because of
losses at the center where the field is zero. In view of
these very different circumstances, it is worth re-
evaluating magnetostatic trap configurations previously
considered for neutrons and for plasmas.

The configurations discussed here are all static traps
with one central minimum in

~

8
~

so as to obtain max-
imurn localization of the atoms. These are the configura-
tions of interest for experiments that involve cooling
atoms within the trap so that they tend toward the
minimum. This excludes toroidal geometries which are in
fact the predominant form for both neutron and plasma
traps. It may be that a toroidal configuration with a reso-
nance region could be used for neutral atom spectroscopy,
for example, by producing multiple "Ramsey fringes. "
However, this leads to serious questions, such as velocity
collimation, that have not been addressed as yet. Oscillat-
ing field traps, as proposed recently for hydrogen, ' are
also not included in the present discussion. Also outside
the present discussion are optical traps produced by the
laser field itself' ' which present very interesting possi-
bilities because of the continual flux of photons from the
trapped atoms. It may be argued that magnetostatic
traps, with all their inherent difficulties, do present cer-
tain advantages. First, there is a we11-defined potential, so
that quantized translation modes are not obscured by light
field fluctuations. Second, there is no optical heating
from spontaneous decay of excited atoms.

One useful way of classifying magnetostatic trap con-
figurations is according to whether the minimum value of

~

8
~

is zero or not. Configurations with 8 ~;„&0
avoid the problem of Majorana (spin-flip) transitions near
the field zero, but are somewhat more complex. In Sec.
III we discuss in some detail two configurations with

~

8 ~;„=0 and two with 8 ~,„&0. The quadrupole
(two-coil or cusped field' '

) configuration was proposed
for neutral particle trapping by Paul, ' and employed by
Migdal et al. ' to trap sodium atoms. This design, shown
in Fig. 1(a), has a simple, open structure with 8=0 at the
center due to opposed currents in the two coils. In the
spherical hexapole (three-coil) trap, [Fig. 1(b)], also pro-
posed by Paul and co-workers, the current in the equa-
torial coil is equal but opposite to that in the two coils at
+45' and —45' latitude. ~8~ varies quadratically (but
not isotropically) with distance away from the zero at the
center, in contrast to the linear variation that results from
the two-coil trap. We also discuss two

~

8 ~;„&0config-
urations that happen to correspond to plasma confine-
ment schemes developed in the 1960's most notably by
Ioffe and collaborators and by Damrn et al. The Ioffe
trap [Fig. 1(c)], consisting of two coils plus a quadruple
focusing field for lateral confinement, has recently been

(a) (b)

(c)

//

t
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FIG. 1. Three magnetostatic trap configurations discussed in
this work. (a) The magnetic quadrupole trap, consisting of two
coils with opposing currents. (b) The "spherical hexapole" trap,
with three wires on the surface of a sphere. With equal currents
and the outer coils at 45, B=0 at the origin. (c) The Ioffe trap,
which has a bias field and axial confinement from a two-coil
"bottle field" and transverse confinement from a four-wire
quadrupole focusing field. Both side and end views are shown
for the Ioffe trap.

proposed by Pritchard for neutral atom trapping and
cooling. The second

~

8 ~;„&0configuration, discussed
in Sec. III D, has coils wound on a sphere following very
nearly the seams of a baseball.

If the atomic motion is adiabatic (without Majorana
transitions to other Zeeman sublevels), it can be described
by a local potential given by the atomic moment times

~

8
~

. Particularly for motion near the center, a series ex-
pansion for

~

8
~

is useful for visualizing and calculating
the orbits. In Sec. II, the respective orders of this expan-
sion are identified with multipole terms. Coefficients are
calculated with help of standard expressions for the field
due to a current loop or straight wire. (The baseball trap
requires numerical integration of the Biot-Savart law. )

Very general considerations of these terms lead to insights
about the limitations on magnetostatic fields imposed by
Maxwell's equations. For example, these methods illus-
trate Wing's recent proof that quasistatic magnetic (or
electric) field magnitudes can have local minima but not
local maxima. Because of this, static traps can only con-
fine "weak field seeking" atoms. Furthermore, methods
developed here show under what conditions an isotropic
harmonic trap potential can be obtained (Appendix A and
Secs. IIIC and IIID). If the interest is in confinement
properties over the entire trap volume, in addition to the
multipole expansion parameters, contours of

~

8
~

are par-
ticularly useful and are therefore presented for each of the
four configurations discussed below (Sec. III).
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II. FORMULAS FOR THE TRAP-FIELD
COMPONENTS

X K(k')+ E(k')
(R —p) +(z —A)

pI z —A
Bp ——

2~p [(R+p)'+(z —A)']' '
z —A 2

X —K(k )+ E(k2)
(R —p) +(z —A)

where the argument of the complete elliptic integrals E
and Eis

4Rp
(R+p) +(z —A)

(3)

For a vacuum, in SI units (amps, meters, tesla),
p=p0=4~X10 . (In "mixed" units amps, cm, gauss,
po ——4n/10. ) The field from a long straight wire will be
needed for the Ioffe trap configuration [Fig. 1(c)]. For a
wire parallel to the z axis at cylindrical coordinates
p=S, /=a, one has B,=O, and the other field com-
ponents are

pI S sin(P —a)
2' [S +p —2Spcos(P —a)]
pI S cos(P —a) —pBp ——
2n [S +p —2Sp cos(P —a)]

(4)

Equations (1)—(5) are needed to compute the trap depth
and the field distribution far from the origin. However,
approximate expressions in the form of low-order polyno-
mial expansions are often useful in considering the sym-
metries of a given trap configuration. They are also use-
ful in calculating classical trajectories, for which it is
necessary to evaluate derivatives of the field at many
points.

B. Multipole polynomial expansions

Maxwell's equations for a magnetostatic field in free
space admit the existence of a scalar potential 4 such that
(in cylindrical coordinates)

and

B=V+=p +$— +z„8% -1 8% „8%
Bp p BP Bz

(6)

18% 1 3'%
2+ — + 2 2+Bp2 p &p pi BP' Bz'

(For a single coil, 4 is proportional to the solid angle sub-

(7)

A. Exact expressions

The magnetic field from a coil is obtained by integrat-
ing the vector potential A over elements of each loop, and
then applying VXA=B. For a single coil of radius R
perpendicular to the z axis and centered at z=A, B&——0,
and the transverse and axial field components are

pI 1

2~ [(R+p) +(z —A) )'i
BIM'r=r =aLM Lr YLM

Br
(9)

The multipole expansion provides a useful means for clas-
sifying magnetostatic trap configurations. Note, however,
that the multipole components of the field given in Eq. (9)
are not simply related to fields arising from corresponding
terms in the well-known multipole expansion of source
currents. For example, L =2 components of B from (9),
even when multiplied by r, are not equivalent to the
usual dipole field from an infinitesimal loop.

It is shown in Appendix B that for fields arising from
just one L,M multipole component, those with L )0,
M =0 are confining for an atom with a positive Zeeman
coefficient, while for M&0 there is at least one line
through the origin along which there is no confinement.
The M =L, L =1, 2, and 3 fields are known as dipole,
quadrupole, and hexapole deflection or focusing fields in
atomic beam work. The last two are useful in neutral
atom traps for confinement in the transverse direction.
However, fields from coaxial coils along the z axis, having
no P dependence, produce only M =0 multipole com-
ponents and are of greatest interest here.

In view of the foregoing, we now restrict the discussion
to M =0 and

~

M
~

=L multipoles. Our immediate goal
is to obtain convenient forms for the expansion of the
field components. Because integrals over a sphere are not
needed, the normalization of spherical harmonics is incon-
venient. For the M =0 multipole terms, Legendre poly-
nomials themselves are more suitable, particularly when
written as polynomials in p and z:

L
L%10= r Pi o(cos8) =pl. (p,z) = g sr kp zk L —k

k=0
(10)

The coefficients slk may be obtained from standard ex-
pressions for Legendre polynomials. For high orders, it is
simpler to apply (8) directly, noting that (a) first-order
terms in p, and hence all odd k are excluded in order that
V' 4 not diverge as p~O, and (b) the coefficient sI 0 of z
in pL is unity. For convenient reference, expressions for
pl (p, z) are given in Table I. Also for the

i
M

~

=L mul-
tipoles, we use (associated) Legendre polynomials:

+11.=r PII. (cos~)e' =(L —I)!!p e' ~ .

Field components are obtained by applying (6) to the
above expressions. Because the order of each term de-
creases in going from %' to B, and to ensure the con-
venient expansion form

B,(z,p=O)= gb„z"
n=0

we define new coefficients b„, c„,and d„such that

(12)

tended by the coil at the point of observation. ) Solutions
of (7) may be represented by a sum over spherical har-
monics

g +LMr ~LM (8)
L,M

Each term in (8) corresponds to a magnetic multipole
component analogous to those defined for radiative
fields:
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TABLE I. Polynomial terms in the expansion of 4, pL, =r Pi p(cos8) =g„psLkp"z; sLp= l.

0
1

2
3
4
5

6
7
8
9

10

PL

z
z —p
z —3p z/2
z 4 3p2z 2 +3p4 /g
z —5z p +15zp /8
z —15z p /2+45z p /8 —Sp /16
z —21z p /2+105z p /8 —35zp /16
z —14z p + 105z p /4 —35z2p6/4+ 35ps/128
z —lgz p +189z p /4 —105z3p /4+315zp /128
z —45z p /2+315z p /4 —525z p +1675z p /128 —67p' /256

4= g [ b„@„(p,z) +c„gr"cos(nP)

+d„,p "sin( n P ) ]/n,

n=0 n=0

+d„sin[(n + 1)P]),
(14)

and note that for configurations consisting only of coils
centered on the z axis, all c„'s and d„'s are zero. Terms in

b„, c„, or d„correspond to I. =n+1 multipoles. The
field components now may be written

B,= gb„B,„,
n=0

B&——g b„B&„+g p"{c„cos[(n+1)P]

nth term will equal b. times the coefficient of p in Bp
(Table II). When the function B&(z =O,p) from Eq. (2) is
considered in the complex p plane, it will be noted that
each term, including the parameter k, has poles at
p=R+iA or —R+iA. Thus the radius of convergence of
the series for Bz(z =O,p) is also (R +A )'i . Close to
this limit, of course, the rate of convergence will be slow.

The absolute value of the field,
~

B ~, is of particular in-
terest because it determines the potential for adiabatic
motion (in which atoms remain in the same Zeeman sub-
level). For the lowest nonzero order, one has

~

B
~

=b„(B +Bp„)+(c„+d„)p"

+2b„B~„p"{c„cos[(n + 1)P)

B~= g p"{—c„i s[(nn + 1)(b]+d„sc[o(n + 1)(b] I . +d„sin[(n +1)P]I . (15)

n=0

Expressions for B,„and Bz„, computed from Eq. (4) and
the polynomials in Table I, are given in Table II.

For a set of coaxial coils, b„values may be obtained by
considering the field along the z axis. Equation (14) (with
c„=d„=O) then give an expansion valid off the axis.
Section II 0 below describes this procedure.

The radius of convergence of the series (12) for a coil of
radius R centered at z=A is (R +A )'i because there
are poles of (1) (for p=O) in the complex z plane at
z =A+iR. It is also possible to consider a series expan-
sion in p for Bz(z=O,p). This series is quite tedious to
compute by expanding Eq. (2), but from the expansions
(14) one sees that the coefficients for B~(z =O,p) of the

If only coaxial coils are present, the lowest-order polyno-
mials for

~

B
i

are

Bo ——1,
B,=z +p /4=r (cos 8+sin28/4),

B2 ——z +p /4=r (cos 8+sin 8/4),
B =z —3z p /4+3z p /2+9p /64

(16)

etc. , where 8=tan '(p/z) is the azimuthal angle in spher-
ical coordinates and r=(z +p )'i is the radial coordi-
nate For ea.ch n, we have B„=r"f„(8). Beyond lowest
order, or when c„or d„are also nonzero,

~

B
~

is compli-
cated by cross terms.

TABLE II. Polynomial terms in the expansion of B, and Bz, B,= g„pb„B,„and Bz ——g„pb„B&„.

B,„

z
z —p /2
z 3 —3zp2/2
z4 —3z p +3p /8
z —Sz p +15p z/8
z —15z p +45z p /56 —Sp /16

Bp„

0
—p/2
—PZ

3pz /2+ 3p /g
—2pz +3p z/2
—5pz /2+15p z /4 —5p /16
—33z +15p z /2 —15p z/8
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C. General constraints on trap fields

The above form of the field expansions leads to certain
useful conclusions. (a) Consistent with Wing's theorem,
the expansions (13) allow no maximum in

~

B
~

in an inte-
rior region. (b) There can be no nonzero minimum in

~

B
~

from current loops (b„ terms) alone. As illustrated
by the Ioffe trap, if a uniform bias field is present
( bo+0) then a multipole term with M+0 is needed to
provide a potential barrier in all directions. (c) It is shown
in Appendix A that for

~

B ~;„=0one cannot construct a
magnetostatic trap with an isotropic harmonic variation
of

~

B
~

. Therefore, in any
~

B ~;„=0trap, the force vec-
tor PV

~

B
~

will not be radial except in certain preferred
directions, and the atomic motion will not be harmonic in
three dimensions. On the other hand, in a

~

B ~;„&0
trap, under special conditions defined in Sec. IIID, the
quadratic term can be isotropic. However, because of the
constant term, the trap is then necessarily shallow and the
higher-order terms make the region of isotropy very limit-
ed in extent. (d) In view of the foregoing, the total angu-
lar momentum of the atom in a trap is generally not con-
served. However, in a trap consisting solely of coaxial
coils, or in a pure M =L multipole field (all b„=0, one
c„&0},the angular momentum along the z axis is con-
served.

D. Methods for determining
the expansion coefficients

The coefficients to be used in the multipole polynomial
expansions may be determined either by matching coeffi-
cients with series expansions of Eqs. (1)—(5) near the ori-
gin, or by a fit to the global behavior of the field com-
ponents over a volume of interest.

If the region near the origin is of interest, a Taylor
series expansion is most natural. The simplest scheme to
determine the coefficients is by reference to an expansion
of the field component B, along the z axis. For a circular
coil of radius R, centered at z =A, carrying current I, the
field along the axis is

B,(z,p=0) = pIR
2[R '+ (A —z)']'~'

n
IR

g„(A,R)2(R+A )i R+A
(17)

The homogenous polynomials g„(A,R) are given in Table
III for n up to 9 for later reference. For a set of coils, ex-
pansions of the form (17) are summed with appropriate
values of I, R, and A for each coil.

In view of the radius of convergence discussed in Sec.
IIB, such a series converges very slowly near the trans-
verse threshold for a set of coaxial coils. Therefore, if
trap fields near the thresholds are needed, as for comput-
ing classical orbits in this region, optimum values of b„
are better determined by fitting exact expressions (1}to (5)
over the region of interest. This procedure will be illus-
trated below for the two-coil trap.

III. CALCULATION OF B
FOR SOME SIMPLE TRAP CONFIGURATIONS

As the simplest application of the expansion method,
we consider a single coil at the origin. For A =0, we ob-
tain from Eq. (17)

B,(z,p=O)= 1—pI 3z2 15z4

2R 2R2 8R4
(18)

Values of b„are determined by reference to Table II:
6~ 0 for n odd& ho pI /2R& b2/bo 3/2R & etc.

As a second introductory example, we consider two
coils placed at z = +A, carrying the same current I, for
which the field along the axis is

pIR
2 2 3/2(R+A )

3z (4A —R )X 1+
2(A +R )

15z'(R '—12A 'R '+ 8A ")
+ ~ ~ ~

8(A +R )

(19)

The Helmholtz configuration A =R /2 makes the quadra-
tic term zero to achieve maximum field uniformity for
two coils. It is straightforward by this method to arrange
2N coils to null out all terms z " (except z ) for n (N.
For N ~ 1, 2N —1 coils suffice if one coil is at z =0.

TABLE III. Polynomial terms in the expansion of (R +A2)3~2/[R +(A —Z)i]3~ =g„~„z"(R~
+Az) —n

0
1

2
3
4
5
6
7
8
9

gn

1

3A
3(4A 2 R ~)/2
5A(4A 2 3R2)/2
].5(R —12A R +8A )/8
21A (5R —20A R +8A )/8

7(5R 6 120R 4A 2+240R ~A 4 64A 6)/16
—7A (35R'—28PR'A'+336R A —64A )/16
45(7R —280A R +1120A R —896A R +4132A )/128
5A (693R —9240R A +22176A R —126672R A +1408A )/128
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A. The two-coil (quadrupole) trap

LIAR
(R+A)
5(4A —3R )

z2 b]-
6(A 2+ 2)2

0.821 27pI
R
—0.504 10@I

R4

(20)

Higher-order terms are easily obtained from Tables II and
III. Near the origin, the equipotentials are ellipsoids of
revolution about the minor axis. Because the ellipsoids
are not confocal, the equations for classical or quantum

Of more interest for trapping atoms is the two-coil con-
figuration with opposed, equal currents. This configura-
tion has a zero-field point at the center, a trapping poten-
tial that rises linearly from this point [the Bi term in
(16)], and saddle-point thresholds along the axis and in the
plane midway between the coils. Here we will consider
the ideal case of just two single loops. One possible cri-
terion for the configuration of choice is that the threshold
values of

l
8

l
along the z axis and in the z =0 plane be

equal. This may not be optimum in practice because the
atomic flux through these two regions will not be compar-
able. However, for our present purposes, this suffices to
define a unique configuration. From Eqs. (1) and (2), we
find that the threshold values of l8 l

are equal if the
coils of radius R are centered at z = +2 with
A /R =0.626 73. The thresholds then occur at p =0,
z/R =+0.7293, and at z=O, p/R=0. 9530. Contours
computed for this configuration are shown in Fig. 2. In
this and all subsequent figures, results are given for a
specific current (100 A) and geometric size (coil radii of 1

cm), rather than in terms of dimensionless parameters,
which are sometimes more cumbersome and less easily
visualized. If all dimensions are scaled uniformly, fields
will vary as I/R, derivatives as I/R, etc.

The low-order coefficients for the two-coil configura-
tion are obtained by matching Eq. (14) with the sum of
two series (19) with opposite signs of I and A. Values for
the lowest-order parameters b„, with numerical values for
A /R =0.62673, are

motion do not separate in any of the standard ellipsoidal
coordinate systems. As noted above for most magnetos-
tatic trap configurations, the force pV l 81 is not radial.
However, for the lowest-order term the force in the radial
direction is constant along any radial line because the po-
tential is linear in r.

In computing classical orbits, the origin is a singular
point because the force abruptly changes direction there.
At this point the adiabatic assumption breaks down be-
cause atoms that pass very near the origin will experience
a change in the orientation of the atomic moment relative
to the local field direction (Majorana spin-flip transitions).

The limit of usefulness of polynomial expansions about
the origin is indicated by the radii of convergence r, of
the series for B,(z,p=O) and B~(z =OIr). As mentioned
above, in both cases r, = (R +A )'~ . For A /R
=0.62673, r, /R = 1.180. The thresholds at p=0,

~

z
l
/R =0.7293 lie sufficiently within the circle of con-

vergence that just five terms (up to z ) reproduce exact
values [from Eq. (1)] for B,(z,p=O) up through the
threshold point quite well, as shown in Fig. 3(a). Howev-
er, the threshold at z=0, p/R =0.953 is relatively closer
to the radius of convergence, hence for B~(z =O,p), five
terms are inadequate to reproduce the correct behavior at
the threshold, as shown in Fig. 3(b).

By employing the polynomial expansion as a global ap-
proximation rather than a Taylor series expansion, it is

60—
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I
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i

'
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FIG. 2. Contours of
~

B
~

for the two coil "magnetic quadru-
pole" trap computed from Eqs. (1) and (2). Here I=100 A,
R = 1 cm, and A =0.626 73 cm, chosen so that the thresholds
along the z axis and between the coils (z =0) are of equal rnag-
nitude. The contours are drawn at 10 G intervals up to 80 G.

40—
Bp

(gauss)
20—

0 IIII) IIII) II}I)IIII) IIII) IIII)
0.0 0.5 I.O 1.5

p (crn)
FIG. 3. Results of the series expansion of (a) B,(z,p=0) and

(b) B~(z =O,p) for the two coil trap with R = 1 crn,
A =0.62673 cm. Coefficients are determined by comparison
with the expansion of B,(z,p=0) about z =0. Solid curves are
labeled by the rnaximurn power of z or p, and dashed lines show
the exact values calculated from Eqs. (1)—(3).
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possible +o reproduce the exact field values to good accu-
racy even beyond the threshold in p. For this purpose, we
have used a least-squares procedure to fit b„values to the
exact functions B,(z,p=O) and Bq(z =O,p). Figures 4(a)
and 4(b) show that four terms (up to p or z ) serve to
reproduce B,(z,p=O) and B&(p,z =0) quite accurately up
to the thresholds in each case. To show how polynomial
expansions behave off the axes, we show in Fig. 5 con-
tours for the fitted four-term expansion (solid lines) super-
imposed on contours for the exact fields, as in Fig. 2
(shown as dashed lines in Fig. 5). In the well region, and
even up the potential rise near the wires, the agreement is
quite good. However, beyond the thresholds, the polyno-
mial expansion has zeros which lead to sharp minima in

I
B

I
and produce the concentric circles on the contour

plot. Classical orbit calculations performed with the ana-
lytic expansions therefore generally must terminate once
the atom passes a threshold.

B. Three-coil (spherical hexapole) trap

With a three-coil configuration in which the field from
the central coil opposes and cancels the field from the

40—
Bz

(gauss)

20—

I I
'

I
'

I
'

I

0.0 0,4 0.8 I.2
z (cm)

(b)

Bp

(gauss)

20—

I I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I

0.0 0.5 I.O l.5
p (ClT))

FICx. 4. Results from a polynomial expansion of (a)
B,(z,p=O) and (b) B~(z =O,p) for the two-coil trap in which
coefficients b„have been determined by least-squares fit to the
exact expression for B,(z,p=O) up to z =0.75 cm simultaneous-
ly with the expression for B~(z =O,p) for p up to 1.0 cm. As for
Fig. 3, R =1 cm, 3 =0.62673 cm. Solid curves are labeled by
the maximum power of z or p, and dashed lines give the exact
values. These plots show that a polynomial expansion of rela-
tively low order can be useful up to and beyond the threshold re-
gions when the coefficients are determined by the global
behavior of the fields.
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Li

IO- ~i/// o ~ g, si:/( g(
I ~( il1-( /

0.5—

o.o: ( I

(cm)
-05—

iIl( &,-I.O —
iraqi~&

e
g~ y 8 /)gg~

r

-I..5 I I I I

I

I I I I
I

I I I I

I

I I I I
I

I I I I
I

I I I I

-I.5 —I.O -0.5 0.0 0.5 I.O I.5
z (cm)

FICJ. 5. Contours of
~

B
~

(solid lines) for the two-coil trap as
a function of p and z calculated from the fitted four-term poly-
nomial expansion as in Fig. 4 as compared with exact contours
as in Fig. 1 (shown here in dashed lines). The concentric circles
occur near zeros of 8, while the nearly circular dashed contours
reflect rising

~

B
~

values near the wires. Contours are drawn
every 10 G up to 80 G.

I
B

I
=bzr (cos 8+sin 8/4)' + . (22)

where b2 ——15@I/SS . Contours of
I

B
I

for the balanced
spherical hexapole are shown in Fig. 6. Near the origin
the shape is more angular than ellipsoidal, and the r
dependence makes the contour spacing unequal.

It is of interest to consider how the locus of points hav-
ing B=O behaves when the central coil does not precisely
balance the outer two. For example, if p=vr/4+o, we
find that

outer two coils at the origin, it is possible to produce a po-
tential that varies as r f(8) near the origin. This may be
advantageous in certain schemes for cooling the atoms
within the trap. The best known three-coil configura-
tion is the "spherical hexapole" in which the three coils lie
on a sphere and carry current of equal magnitude [Fig.
l(b)]. The name derives from the idea that in a plane con-
taining the axis, three coils can be thought of as six wires
(or six pole pieces) of a hexapole focusing magnet. Actu-
ally, according to the representation of Eq. (8) or (9), the
field near the origin is a pole of order I. =3, M =0, hence
an octupole.

Field components near the origin can be computed by
combining Eq. (19) for two coils with parallel current and
Eq. (18) for a single coil centered at the origin. For a
sphere of radius S, the two outer coils placed at
2 = +S cosP will have radius R =S sinP, while the cen-
tral coil at A =0 will have radius S. Thus along the axis,
the field for equal currents I is

pI(2sin P—1)
2S

B, z,p=O =

3plz+ [2sin P(4cos P—sin P)+1]+
4S (21)

from which the b„'s are easily found by comparison with
Eq. (12). The angle p=m. /4 provides exact cancellation of
the field at the origin so that the lowest term present is
the b2 term, and thus
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I.O and therefore

0.5—

X

O.O—
(cm)

-05—

—I.O -0.5 0.0 0.5 1.0
z (cm)

FIG. 6. Contours of
~

B
~

for the spherical hexapole trap on
a sphere of radius 1 cm with currents of 100 A. Contours are
shown in 10 G increments up to 120 G.

pI5 3@I(5—45)zB, ,p=O —=
8S3 )

pI6

3@I�(

5 —45 )p
16S'

(23)

[B&(z,p=O) and also Bz(z =O,p) are zero. ] The field
geometry depends on the sign of 6. For 6(0, B=O at
two points on the z axis and nowhere else. For
5)0, B=O on a ring in the z=0 plane. The potential
surface near the origin is important when considering the
motion of very cold atoms and in particular the quantized
translation modes. The two-coil configuration always ex-
hibits the same form near the origin if the coils are coaxi-
al. If the current magnitudes or coil radii are not precise-
ly equal, the origin shifts slightly from the midpoint. The
form of potential surfaces for the three-coil configuration,
however, depends sensitively on the balance between the
coils.

Another three-coil configuration that may actually be
more efficient places the three coils symmetrically on a
cylinder. If the ratio of the current I& in the end coils at
z = +A to the current Ip in the central coil is
II /Io ———(1+3 /R )

i the field will be zero at the ori-
gjn.

C. The Ioffe trap

~

B
i

=bo+2z bob2+b2(z +p /4)

+p [c I b—ob2 2c—Ib2z cos(2$)]+ (25)

In the z =0 plane, the field will be confining if c i )bobp.
In view of the cos(2$) term, slightly higher values of c&

are needed to confine for z&O. If higher multipole fields
are used for lateral confinement, so that c& ——0 but, for ex-
ample, the c2 term is nonzero, then the coefficient of the

p in
i

B
~

is —bob2, which is necessarily opposite in
sign to the z term. Therefore for such fields there will be
an annular region of minimum

~

B
~

.
For the configuration of Fig. 1(c), the field from the

coils alone near the origin is given by Eq. (19), from
which bo and b2 can be evaluated. Using Eqs. (4) and (5)
for four infinite straight wires at p=S, tt; =+~/4, +3vr/4
carrying current I, t nap;, one finds cI ——2lttII /rrS . For a
numerical example, easily scaled, we take S =1 cm and
R =1.5 cm to allow for clearance, and place coils at
z =+A =+2.25 cm. If trap dimensions are proportional
to these figures, then when coil currents equal the currents
in the straight conductors, the transverse field barrier in
the plane midway between the straight wires is very nearly
equal to the field barrier along z. Figures 7 and 8 show
contours of B

~

in the plane of two wires and midway
between for 100-A current in the coils and in the straight
wires. Under these conditions, the minimum field at the
origin is 14.3 G, the axial threshold is 43.2 G, and the
transverse threshold is about 44 G. There is a slight
asymmetry for +z in Fig. 8 ~ For a plane perpendicular to
the one chosen, the field contours will be reflected in the
z =0 line. The long narrow central minimum approxi-
mates the "one-dimensional" harmonic well employed by
Pritchard in an optical-rf cooling scheme. It obviously
can be made more one-dimensional by spreading the coils
further apart. In a real trap, end effects of the straight
wire components, effects of multiple turn coils, and finite
wire size will modify the fields shown somewhat.

For certain purposes, it is desirable that the trap poten-
tial be harmonic and isotropic, so that the frequency of

B =bp+b2(z —p /2)+

B~= —bzzp+ c Ip cos(2$) +
B~———c i p sin(2$)+

(24)

A trap consisting of two coils with parallel current and
four straight conductors ("Ioffe bars") with current in al-
ternating directions [Fig. 1(c)], has been used for plasma
confinement and has been proposed for neutral trapping
by Pritchard. Because of the nonzero minimum in

~

B ~, the Larmor frequency for even the coldest atoms
can be made greater than the orbital frequency, so that the
probability of spin-flip transitions is drastically reduced.

The field in this trap near the origin contains three
multipole components: M =0, L =1 and 3, and M =2,
L =2, with coefficients as defined above bo, b2, and c&.
Thus the field components near the origin are

I
—

x+y

(cm)

-2 I I I I

I
I I I I

I
I I I I

I
I I I I

I
I I I I

I
I I I I

-2 —
I 0 I 2

z (crn)

FICx. 7. Contours of
t
B

~

for the Ioffe trap of Fig. 1(c) in the
plane of the straight wires. The four straight wires lie on a cir-
cle of radius 1 cm, the coils of radius 1.5 cm are spaced by 4.5
cm, and all currents are 100 A. The minimum field at the ori-
gin is 14.3 G. Contours are shown at 10 G intervals up to 100
G.
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I 1 I I
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1111
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FICx. 8. Contours of
~

8
~

at 10 Ci'r intervals to 100 CJ in a
plane midway between the straight wires for the Ioffe trap with
parameters as given in Fig. 7. For a plane perpendicular to the
one chosen, the contours will be as shown, but reflected in the
z =0 line.

atomic motion is independent of direction. For example,
this facilitates laser cooling procedures and also simpli-
fies the level structure of the quantized translational
motion. It is shown in Appendix A that an isotropic po-
tential with

~

B
~

=0 at the center is not possible. Howev-
er, it may be seen from (25) that with bc&0, the expan-
sion of

~

B
~

near the origin will have an isotropic
second-order term if c

& 3bobz, ——so that the coefficient of
z equals that for p . Generally, this isotropy is attained
at the cost of much reduced trap depth. Without chang-
ing the geometry used for Figs. 7 and 8, it is possible to
achieve this by increasing the current in the coils from
100 to 455 A, in which case there is a small region near
the center, of radius about 3 mm, in which the equipoten-
tials are nearly spherical. However, because the field vari-
ation over this small region is only about 1 G, only atoms
of very low kinetic energy will experience this isotropic
potential. Furthermore, the minimum field is now 65.1 G
and the transverse threshold is just 72 G. If the two coils
are placed within the bars, then the coil current required
for isotropy is much reduced, but the volume of effective
isotropy is also smaller. It therefore appears that at least
with the Ioffe trap geometry, an isotropic trap potential is
feasible in the limit of low temperatures rather than as a
means to facilitate cooling to attain this limit.

single thin wire conductor on the surface of a sphere.
In the present discussion, a "baseball seam" is defined

mathematically as composed of four contiguous planar
arcs on a sphere, oriented as shown in Fig. 9. The z axis
is an axis of two-fold symmetry (or, more precisely, a
four-fold rotation-reflection axis). Such a form has just
one degree of freedom, which may be taken to be a, where
the arc centers lie on vectors at angles +a, —a, +a and
—e with respect to the x, y, —x, and —y axes, respec-
tively. For Fig. 9, a is chosen to be 20'. It may be shown
by simple geometric construction that each arc has a ra-
dius R ( 1 —cos a )/2', where R is the radius of the
spherical surface, and subtends an angle 7 =m+2g, where
sing =sina/(2 —cos a)'~ . The points of closest approach
to the z axis will occur at a lattitude of
m. /2 —P=a+cos '[(cosa)/v 2], which attains the max-
imum of n. /2 at a=cos '( —,

' )'~ =35.26', hence rl &30.
An actual baseball corresponds approximately to a=16',
while the seams on a tennis ball correspond more nearly to
a=6.

For this trap, the expansion method discussed in Sec.
IID is not applicable because the arcs are not complete
circles. However, it is not difficult to compute the field
by numerical integration of the Biot-Savart equation
around the loop. (The computation is simplified by rotat-
ing axes so that each planar arc in turn lies in the x-y
plane, rotating back, and adding. ) A representation of the
field is shown in Ref. 32. Here we emphasize the con-
tours of

~

B
~

rather than the B vector field itself. Con-
tour lines for 40 G, for a baseball radius of 1 cm, current
of 100 A, and a=20', are shown at the center of Fig. 9.

D. The baseball trap

A magnetic trap configuration in which coils follow the
pattern of seams on a baseball has been used for plasma
confinement since at least 1966. An earlier design
developed by Taylor and Sweetman in England was
dubbed a "tennis ball" trap. ' ' The "baseball II" trap,
depicted in a standard plasma physics text, was approxi-
mately 2 m in diameter and required special strength
steels. A variant of the baseball geometry that is said to
be more efficient is the so-called "yin-yang" configura-
tion, ' with two coils folded along orthogonal axes. As
for the baseball trap, the B field distribution resembles
two fish tails butted together with a 90 twist in be-
tween. ' ' The practical considerations in constructing a
baseball trap for neutral atoms have yet to be confronted.
The present discussion concerns strictly the ideal case of a

FIG. 9. The baseball coil (heavy line) with an equipotential
surface shown schematically at the center. The coil consists of
four contiguous planar circular segments, each subtending an
angle p, on axes at angle a( —a) with respect to the +x (+y)
directions. At closest approach, the coil comes within angle P of
the z axis. For this figure, a=20' (hence @=21.6 ), and the
contour lines represent a 40-G surface for a baseball of radius
R~ ——1 cm, current I~ ——100 A.
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They represent an asymmetric ellipsoidlike surface that
has a circular cross section for z =0 and approximately el-
liptical cross sections for z&0 with major axis along y for
z &0 and along x for z &0. More extensive contours are
shown in Fig. 10 for the same trap geometry and current.
For a & ao ——22. 88', the B field along the z axis is every-
where in the same direction, but for a & ao the "jaws" of
the coil lie sufficiently close to the z axis (e.g. , in Fig. 9, P
is sufficiently small) that the field is reversed at the poles
relative to the center. There are therefore two points of
null field along the z axis for a & ao, and a single zero at
the origin for a=uo. Thus Fig. 11 shows that trap depth,
defined as the value of

~

B
~

at the lower threshold (either
along the z axis or in a perpendicular direction), less the
value of

~

B
~

at the origin, increases up to a=aq. There-
fore in practice the optimum a value is as close to ao as is
consistent with adiabatic motion at the origin. The a=0
configuration, with four semicircular coils joined orthogo-
nally, is easiest to construct but as seen from Fig. 11 is too
shallow to be of interest.

The baseball trap can be construed as a Ioffe trap with
the loops broken open and joined to the bars; the symme-
try properties are similar. Just as for the Ioffe trap, the
multipole expansion for the baseball trap at the origin is
dominated by the M =0, L = 1 and 3, M =2, L =2
terms. Multipole coefficients bo, b2, and c& are plotted
versus a in Fig. 12. For b2 & 0, bo &0, the center is a sad-
dle point rather than a minimum.

Because of the constraints on the multipole coefficients
as indicated in Fig. 12, the balance condition for isotropy
at the origin (c i ——3bob2) can be obtained only by adding
additional coils. By using two additional coaxial circular
coils, for example, with a radius 1.25 times the baseball
radius R~, carrying the same current Iz as the baseball,

l.5

120—

IBI

80
(gauss)

60- hold

20

0
lO

the equipotentials can be made spherical to 5% out to a
radius of 0.2R& over a field variation of 6 G for the case
of Iz ——100 A, Rz ——1 cm. Although the minimum is
then raised to 61 G, the trap depth is 23 G under these
circumstances. These figures are somewhat better than
can be obtained with the Ioffe trap, but nevertheless,
higher-order terms and the effect of the constant field

1.6 i

1.4-

0 20 30
a {degrees}

FIG. 11.
~

B ~;„and threshold field values for a baseball
trap of radius R~ ——1 cm and a current of 100 A as a function of
the angle a (defined in Fig. 9}. For a&23.88', the field at the
center is directed oppositely to that at the poles.
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FIG. 10. Contours of
~

B
~

in the x-z plane of Fig. 9, with
a =20' R~ ——1 cm, and I~ ——100 A. Contours are drawn at 10-G
intervals. At the center,

j
B ~;„=9.1 G, while the transverse

and axial saddle-point thresholds are 72 and 106 Cx, respectively.

O.O

—0.2'
0 lO 20 R)

u(degrees)
FIG. 12. Multipole expansion coefficients bo, b2, and cl for

the baseball trap as a function of the angle a, for R~ ——1 cm,
and I=100 A.
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considerably restrict the domain of isotropy.
The advantage of the baseball trap is the relatively open

geometry (if the conductors need not be too bulky) and ef-
ficiency. On the other hand, the Ioffe trap has more flexi-
bility because one can easily vary the spacing of the coils
and the relative current in the bars and the coils.

IV. CONCLUSION

Magnetostatic traps for neutral atoms are potentially
useful for previously unattainable precision spectroscopy
and for the study of collective effects (possible "Bose-
Einstein condensation") if means can be devised for fur-
ther cooling of atoms in the trap. An understanding of
classical and quantum atomic motion in an inhomogene-
ous magnetic field is clearly essential. As a first step, we
have presented a method for analytic expansion of the
trap field using polynomials derived from multipole
terms, and we have applied this expansion method to
several magnetostatic trap configurations that have been
used for neutral atoms, neutrons, or plasmas. By knowing
the relationship between multipole terms and the source
currents, it is possible to design a trap to desired specifica-
tions, within the constraints of Maxwell s equations. An
example is the design of a trap with an isotropic harmonic
potential near the center, accomplished only with a sub-
stantial background field and at some sacrifice of trap
depth. Computed contours of

~

B ~, such as we have
presented for selected configurations, provide a useful rep-
resentation of trap properties. Calculations of classical
and quantum motion in trap fields are under way and will
be presented in the future.
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APPENDIX A

For the class of trap fields with
~

B ~;„=0,we demon-
strate that an isotropic, harmonic (r ) trap potential is not
possible.

In the multipole expansion of
~

B ~, the b2 term from
the P3O component, which produces a potential propor-
tional to r, is clearly not isotropic [see Eq. (16)]. The
question arises whether by some admixture of the other
P3~ multipoles, an isotropic r potential can be con-
structed. To examine this question, we take + in the form

and therefore

I
Bl'r '=9 Q~~P3Me'

M

'2

+ ga~e™[(3+M)(4M)P—3 ~
M

P3,M+1]

2

gaMMe™P,M
M

2

sin g. (A4)

Consider (A4) as a Fourier series in P. For
~

B
~

to be iso-
tropic, each independent term in exp(iNQ), 0 & N & 6,
must be zero. Considering terms with N = +6,
N=+4, . . . , successively, it is easily seen that the ex-
pressions multiplying a 3,a 3,a 2,a 2, . . . in each of
these coefficient terms are not zero in general. For exam-
ple, the coefficient of exp(6ig) is

a3(P33+9P3z —9P33/sin 8) = —1800(sin 8)a3 . (A5)

Hence one must have a 3 ——0, and similarly
0 3 —0 02

——0, . . . in order that there be no P depen-
dence. Finally, only the ao term is left, which is known
to be anisotropic from (16).

On the other hand, if one does not demand that
~

B
~
m;„=0, then as discussed in Secs. III C and III D, the

M =0, L =1 and 3, and M =2, I. =2 multipole corn-
ponents (bo, b2, and ci terms) can be combined in such a
way as to give an isotropic variation of

~

B
~

to second or-
der about the minimum.

APPENDIX 8

We prove that magnetic fields from a single multipole
component with L & 1, M =0 are confining and that all
other fields from a single L,M multipole are not confin-
ing.

For a single L,M multipole we have (for real 4)

4 =ar Pi ~ (cos8)cos(M 8),
and from (8), the magnetic field is

B/a =rLr 'Pi~(cos8)cos(M8)

(B1)

With help of the standard recursion relation, we have

8PL~ (cos8)
ag

=[(L +M)(L M—+1)PI ~ i PL—~+i]/2,

(A3)

+=r ga~Pq~e'
M

(A 1)
BPL~(cos8)—gr 'scng cos(M8)

8 cosgwhere the a~ are such that 4 is real. In spherical coordi-
nates 8r 'MPI M(cos8)sin(MQ—)/sin8 . (B2)-1 ae - 1 ae

Br r Bg r sing Bg
(A2)

Hence
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=L PLMcos (Mp)+[(L +M)(L —M + 1)PL, M

2 cos (MP)
L,M+1

Mz sin (MP)+ LM
sin 0

(B3)

We first note that L =1 fields are uniform everywhere,
hence nonconfining. If L ~ 1, M&0, then for
Mg=ir(n+1)/2 we have cos(MQ)=0, so that the first

two terms in (B3) equal zero for i)(i=/. At 8 such that
PLM(cos8)=0, the third term is also zero. Hence along
the radial direction defined by 8,/=8, $, the field is
everywhere zero, hence nonconfining. On the other hand,
for L & 1, M=O, the third term in (B3) is zero and the
first two terms are independent of P. The first term is the
sum of two squares, both of which cannot be zero. Hence
there is no direction 8,$ for which

~

B
~

=0. For
L & 1, M =0,

~

B
~

=0 at the origin and nowhere else, and
therefore the field is confining for atomic dipoles with a
positive slope of energy versus field.
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