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One- and two-photon ionization of model atoms: The spherical 5-shell potential
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One- and two-photon ionization cross sections for the negative hydrogen ion H are evaluated by

using a one-electron model where the effective intra-atomic potential energy is assumed to be of a

very-short-range character and approximated by a "spherical 5 shell. " The adjustment of the two

parameters involved in the model potential so as to reproduce either the photodetachment energy or
the behavior of the one-photon ionization cross section over a substantial range of frequencies

beyond the ionization threshold leads to conjecture of a reasonable estimate of the two-photon ioni-

zation cross section over the proper range of frequencies of the ionizing field.

I. INTRODUCTION

The advent in the last two decades of intense laser
sources has determined the development of a broad
variety of processes involving absorption and/or emission
of several photons in atoms and molecules and stimulated
the consequent demand of an adequate, interpretative,
theoretical framework. On the latter side, we are nowa-
days in a position to assert that there is noticeable evi-
dence in favor of the use of quantum-mechanical per-
turbative techniques even in the case of systems subjected
to rather strong electromagnetic fields so, for example,
we are convinced that perturbation theory at Nth order is
adequate for dealing with problems which involve the ab-
sorption of N & 1 light quanta, provided that we are far
away from intermediate resonance conditions correspond-
ing to the absorption of a number n &N of photons.
Even though simplified conditions like these are met,
however, the task of correctly evaluating the quantum-
mechanical transition amplitude Tf l; for a K pho-ton

process is a formidable one for any realistic situation,
which cannot but require approximations at various
stages; since the approximations introduced are seldom of
a completely assessable nature, the final result may reflect
the concurrence of interferential pseudoeffects, with hard-
ly predictable exits.

A partial overcoming of the difficulties posed by the
complex nature of the multiphoton phenomena is through
the development of (usually schematic) models. To
remain as adherent as possible to the contents of this pa-
per, we stress the case of atomic and molecular anions, a
class of fairly interesting systems which have attracted
noticeable attention either at the level of ab initio calcula-
tions (usually requiring a considerable burden of compu-
tational effort) or through an approach founded on the

study of appropriate models able to mimic relevant
characteristics of such a class of systems. We take sides
with the second attitude, our aim being addressed to in-

vestigate the reliability of some one-electron models in
predicting the multiphoton ionization cross section of
atomic anions, as complicating effects related to the target
excitation are absent. The interaction between optical
electron and neutral inner shell, which is assumed to be of
very-short-range character, is modeled by an appropriate
effective potential energy. While in some previous publi-
cations the representation of such interaction has been
mimicked in terms of a Fermi pseudopotential, in the
present paper we propose to study a second schematic
model potential, which in the literature is frequently re-
ferred to as the "spherical 5-shell potential. " Such a
model is interesting for several reasons: Firstly, it pro-
vides us with a simple picture of a short-range potential,
endowed with two independent, adjustable parameters (see
Secs. II and III); secondly, an explicit (and simple) expres-
sion for the quantum-mechanical propagator (in the ener-

gy domain) is within our reach; and, thirdly, multiphoton
ionization cross sections can be derived in an entirely
analytical form, as a consequence of the simplicity of the
spectral properties of the Hamiltonian model, which is
gratifying in view of drawing conclusions or stressing re-
marks of behavior.

The plan of the present paper is as follows: The next
section is devoted to a short survey of the theoretical
problems posed by the study of one- and two-photon ioni-
zation processes, along the lines of a procedure recently
suggested by two of the present authors (GPA, CG),
which avails itself of a reformulation of the relevant
cross-section expressions in terms of Fourier transforms
of proper time-dependent correlation functions; in Sec. III
we move to specifically examine the "spherical 5-shell"
model and discuss the results which descend from its use.
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II. THEORETICAL APPROACH TO THE EVALUATION OF PHOTOIONIZATION CROSS SECTIONS

In the so-called "length" form, ' ionization cross sections corresponding to the absorption of one and two photons
from a linearly polarized radiation field of frequency co are respectively expressed as follows (atomic units with
e =m, =Pi= 1 are used throughout this paper):

cr ' (co)=(4n co/c) f dEf5(Ef Eb——co)
I (Ef 10 Iz IEb00) I

o (co)=(8n co Ic ) g f dEf5(EI Eb ——2n)
I (Ef LO

I

zG+(Eb+co)z
I
Eb00&

I

L =0,2

(2)

An entirely analogous expression is obtained for o.~

cr( )(co)=(8~ co /c )

X (@(co)
I
z5[H —(Eb+2co)]z

I

4 (co)),

where we have defined the state ket

(4)

The operator 5(H E) figuring in-Eqs. (3) and (5) may be
expressed in several useful ways. From the standard in-
tegral representation

2n.5(H E)= f dt e-xp[i (H E)t]-
it is quite simple to cast the expressions for o '~ and o.

into the following forms:

o ' (to) =(2nco/c) f dt e' '(,Eb00
I
z(t)z(0)

I
Eb00),

(6)

o ' (~) =(2~~/c) f d«" '(EbOOI g, (t)g, (0) IEb00),

I Ef L 0) denotes the (energy-normalized) final state,
with incoming-wave boundary conditions, appropriate to
the channel of angular momentum (L,ML ——0), while

I
Eb00) represents the spherically symmetric ground state

of the atom. G+(E)=[H —(E+iO+)] ', with
E =Eh+co, is the propagator in the energy domain, i.e.,
the Careen's operator of the (unperturbed) atom.

It is rather straightforward to cast o('l into an
equivalent, alternative form, which exhibits it as the ex-
pectation Ualue of an appropriate operator. From the
completeness of the set of states supported by the model,
we find

o '
(Q) ) = (477 co/c) (Eboo

I
z5[H (Eb +co)—]z

I
Eb00) .

(3)

equivalent expressions stem easily from Eqs. (6) and (7).
So, for example, o. ' can be rewritten as

o. ' (co) =(2m.co/c) f dt e

X (Eb00 Ize ' 'z
I
Eb00) . (6')

From this point of view o.~'~ is then essentially the Fourier
transform (at the energy Eh+co) of the overlap between
the initial "doorway" state z

I
Eb00) and its temporal

evolution e ' 'z
I
Eb00) at t time as dynamically induced

by the unperturbed Hamiltonian operator of the atom.
cr is clearly susceptible to an analogous interpretation,
even though in terms of a different (more complicated)
doorway state. The results expressed by Eqs. (6), (6'), and
(7) are formally similar to analogous expressions recently
put forward for photodissociation cross sections of molec-
ular systems.

If viable procedures for calculating time-dependent
correlation functions can be set up, the approach just sug-
gested is likely to acquire some computational perspective
in photoionization problems; by it, for instance, we could
hope to bypass the necessity of explicitly disposing of the
continuum final states of the system.

It is possible to carry out the Fourier transform re-
quired by the previous results and pass from time to ener-

gy domain. By the usual trick

+ ao . OOf dt e' '= lim f dt exp[i(fl+ig)t]+c. c.
0

we attain

o' ' (co) = (4m '/c) (Eb 00
I
z [ImG +(Eb +co) ]z

I Eb 00),
(10)

o( )(co)= , (4~cole)—
X (+(~)

I

z [ImG+(Eb+ 2')]z
I
C&(co)),

(7) the forms actually used in the present paper.

respectively. In Eqs. (6) and (7) we have set

z(t)=e' 'z(0)e ' '
g (t)=e' 'g (0)e (8)

III. APPLICATION TO THE SPHERICAL
5-SHELL MODEL

where

z(0)—:z, g, (0)—=zG+(Eh+co)z . (9)

Equations (6) and (7) display the photoionization cross
sections o. ' and cr~ as Fourier transforms of appropriate
time-dependent autocorrelation functions. Other

For a single (nonrelativistic) electron, the Hamiltonian
operator H of the model system is

H = —,
' 7 —V5(r —R),

where V,R are the two (positive) parameters which
characterize the (intra-atomic) interaction potential energy
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of the spherical shell. The Schrodinger equation associat-
ed with the Hamiltonian operator H,

a ~EIM&=E ~ELM),

is easily solved for the L =0 bound states supported by
the model. One finds that, provided VR & —,, there exists
one (and only one) spherically symmetric bound state (the
ground state),

with

gL+(r, r', E)=gL+(r, r';E)

VR gl+(«, R;E)gL+(R, r', E)
+

1 —VR gL+(R, R;E)

gL+(x,y;E) =2(2E)' 'jl.

X((2E)'"x, )h,'+'((2E)'"x )

(15)

y/V l e
—2/R (13)

The propagator G+(E):—[H —(E+i0+)) ' in the ener-

gy representation is also obtainable in an easy way for the
model on issue. One finds (for E )0)

G+(r, r';E) —= (r
~

G+(E)
~

r')

= g gI+(r, r', E)YL~(r) Yl*~(r '),
L,M

(14)

ub(r) = &r—
I
Eb00&

=N Yoo(r )[6(R r)(e—«' e—r")

+6(r —R)(e2 ~ —1)e "]/r,
(12)

N =[y/(e «2}R 1)]

6(x) being the Heaviside step function. The associated
eigenvalue, of energy Eb ———y /2, is determined by the
(real) solution of the transcendental equation

Xg& (r, r;Eh+co), (16)

which is directly evaluable making use of the explicit ex-
pressions for ub(r) and g, (r, r', E), Eqs. (12) and (15),
respectively.

The computation of o.( l according to Eq. (10) suggests
that we preliminarily get the state

~
N(co}), Eq. (5). In the

coordinate representation,

where gL+(E) is the contribution of the partial wave with
angular momentum L to the Green's function of a free
particle of energy E, and jL (x) and hL+'(x) are spherical
Bessel functions and spherical Hankel functions of the
first kind, respectively.

From Eqs. (10) and (14) one then obtains in a straight-
forward way the following expression for o-t'~:

o(')(co) =(16m co/3c)

)&Im dr dr'r r' ub r ub r'

e(r;co)—:(r
~

e(co) ) = J dr'G+(r, r', Eb+co)z'ub(r')

=(4n/3)' Y~o(r) dr'(r'} g &+(r, r', Eb+co)ub(r') —= Y~o(r)qr(r;co) .
0

(17)

If we limit ourselves to consider two-photon absorption
processes which do not invade the so-called "above-
threshold ionization" region, so that Eb +co & 0,
g& (r, r;Eh+co), which is obtained by analytic continua-
tion from Eq. (15), is a real quantity along with y(r;co),
Eq. (17), and one is led to the result

o( (co)= 6(4m'/c) Im f I dr dr'r (r') y(r;co)y(r';co)

X [go+ (r, r', Eb+co)

+ ~
g~+(r «', Eb+~)l .

(18)

It is rather simple, although very annoying, to get p(r;co)
from Eqs. (15) and (17) and then evaluate o, Eq. (18), in
a completely analytical form. In view of the lengthy for-
mulas which yield o.('l and o( l (especially the latter one),
however, we shall forbear giving them in explicit form
and limit ourselves to presenting the results graphically.

To be as concrete as possible, we have considered the
case of the negative hydrogen ion H . As far as the
theoretical determination of o. ' is concerned, one may

document for such a system a fairly abundant literature in
terms of variously accurate wave functions for both
ground and final ionized state (for a recent paper, with

appropriate references, see Ref. 11); even the two-photon
ionization cross section a~ ~ of H has been the object of
more or less sophisticated calculations, ' but it is likely
that a comparison curve which is reliable over the full
range of frequencies beyond the ionization threshold, is
not yet available.

According to the approach pursued in this paper, the
parameter y=( —2Eb)' has been fixed on the basis of
the known photodetachment energy of the ion, which
leads to @=0.235588 a.u. From Eq. (13) one then gets a
simple relation between radius R of the spherical shell
and strength V of the intra-atomic potential energy,
V=y[1 —exp( —2yR)] '. In Fig. 1 we have drawn vari-
ous curves for the photoionization cross section o.~'~ as a
function of the momentum kf = [2(Eb+co)]' of the
ejected electron, each curve being associated with a given
R value. In any case the drawings have been interrupted
at kf ——y, corresponding to a frequency co=y =2

~
Eb

~

.
The agreement of the results from the model investigated
in this paper with Stewart's' (to be considered very reli-
able) is considerably good, in view of the noticeable sim-
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plicity of our model. As R varies in the range 0.3—0.95,
the curves drawn for o. ' sandwich the reference points,
hinting at optimal R values around 0.6—0.7 a.u. if one in-
tends to sample the whole range of kf values starting
from the threshold. Figure 1 also shows the behavior of
o. ' as derived from a like model, where the interaction
potential energy between optical electron and atomic neu-
tral core is assumed in the form of the so-called Fermi
pseudopotential, i.e.,

'V=2vra5(r)(t)/dr)r . (19)

It is possible to show that such a potential is able to sup-
port a single bound state of 5 symmetry, with energy
Eb ————,

' /a, whose eigenstate has the simple form

'ub(r) =(2ma) '~ exp( r/—a)/r, (20)

2a exp[ikf(r +r'))
&L, O

( 1+ikf a )rr'
(21)

The only parameter (a) contained in this model can be
fixed by forcing the photodetachment energy —Eb to be
equal to the experimental datum for such quantity, which

while the corresponding Green's function ' 'G+(r, r', E) is
expressed in the same way as Eq. (14), with

'gi (r, r', E) =gL+(r, r';E)

leads to the choice a =( —2Eb)' —=y '. Although the
qualitative behavior of o. as a function of kf is the
correct one, the Fermi pseudopotential model does not ap-
pear sufficiently accurate at the quantitative level, its
curve being a bit too depressed with respect to the refer-
ence points over a substantial range of kf values. Such a
curve is actually coincident with the limit curve obtained
for the spherical 6-shell model as the radius R drops to
zero. Under such conditions, in fact, the ground state
ub(r) of the spherical shell, Eq. (12), tends to the eigen-
function ' 'u (r), Eq. (20), while the difference
g ~+(r, r', E)—g ~+(r, r';E) =O(R ); from Eqs. (16) and (21)
one is thus easily led to rationalize the behavior above
stressed.

The evaluation of the two-photon ionization cross sec-
tion o l has been carried out according to Eqs. (17) and
(18) just using the same values of the parameters adopted
for cr('). Even in this case all of the curves (see Fig. 2)
have been interrupted at kf = (4' —y )' =y, in
correspondence to the threshold where ionization induced
by a single photon becomes possible ("above-threshold
ionization" region)' and still refer to the case of the ion
H, with y=0.235588 a.u. As R decreases, the curves
change their shape appreciably in the region encompass-
ing the maximum and simultaneously shift downward in a
uniform way, tending as R~0 to a limit curve, which is

C)

U 20—
tA

E
V

C)

10—

0
0 0.5 kf(a.U )

FICs. 1. Behavior of the one-photon ionization cross section
for H as a function of the momentum kf of the ejected elec-
tron. The various curves refer to different values of the radius
R of the spherical 5-shell potential: (-~ ~

) R =0.3 a.u. ,
(-0-0-) R =0.6 a.u. , ( R H ) R =0.775 a.u. , ( ) R =0.95
a.u. The curve ( ~ ~-) corresponds to the results arising from
the Fermi pseudopotential model (or, equivalently, R ~0), while
the unconnected points indicated by + represent Stewart's ac-
curate estimates.

0
1Q 1Q

2 1Q " j'

FICx. 2. Behavior of the two-photon ionization cross section
for H as a function of the momentum kf of the ejected elec-
tron. For the proper identification of the various curves, see the
preceding figure. The additional curve ( ) corresponds to
values obtained by Crance et al. [Ref. 12(c)], that we have ex-
tracted from a figure reported in that reference.
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10 10-13

g0-14

qg 45

)6.46
q

0-16

0.013S74 0.027749 m (a. u. )

FIG. 5. Test of validity of Wigner threshold laws for the
spherical 6-shell model. The two vertical lines at co=0.013 874
a.u. and co=0.027749 a.u. mark the threshold for two-photon
and one-photon ionization, respectively, and refer to the case
R =0.775 a.u. The threshold behavior of the relevant cross sec-
tions, expressed in terms of scaled quantities (see text), conforms
to the following conventions: (a) o.P /k/, (b) oft,„„/k~, (c)
og /kf, (d) crP& /kf (=og$„„/k/), (e) cr ' /kf (f) 0[ /kf
(=~'"/I ').

essentially isotropic, while at the threshold where ioniza-
tion induced by a single photon is open, the model
predicts that the angular distribution will tend to become
strongly anisotropic (peaked along the polarization vector
of the ionizing field). '

It is appropriate to add at this point some remarks con-
cerning the gauge invariance of the results obtainable for
o. ' and cr ~. As a matter of fact, the expressions de-
duced for the photoionization cross sections, Eqs. (6) and
(7), refer to a definite choice of the gauge (so-called
"length" form). Entirely equivalent formulas could, in
principle, be written down by using different gauge
choices —for example, those leading to the "velocity" or

"acceleration" forms' for o ' and cr . However, one
verifies these formally distinct expressions arising from
different gauges in a simple way to yield the same observ-
able quantities, provided that exact calculations are car-
ried out, which in general involve either using correct
eigenstates to the Hamiltonian operator H or employing
truly complete sets of states whenever they are requested
(equivalently, the correct propagator). Approximations of
any sort, in principle, cannot but result in an invariance
breakdown of the evaluated observables, with possibly
very erroneous predictions depending on "unappropriate-
ly" chosen gauges. Although we have not explicitly veri-
fied this point for the spherical 6-shell model, we wish to
further stress its general significance, either on the basis
of already available elements of knowledge in literature
(especially concerning one-photon processes)' or thanks
to more recent investigations on the behavior of o ( l for a
model of atomic anions founded on the use of the Fermi
pseudopotential.

As a final topic of the present paper, we would like to
examine how the calculated o. ' and o. behave at their
respective thresholds, so as to put in explicit evidence the
validity of Wigner threshold laws' for the spherical 6-
shell model. In Fig. 5 we report the behavior of the scaled
photoionization cross sections o- ' /kf, o.z /kf, and
crD /kf, the momentum kf of the ejected electron being
raised to the proper exponent (21+1) expected on the
basis of the theory. The two vertical lines at
co= —,

~
Eb

~

=0.013 874 a.u. and co=
~

Eb
~

=0.027749
a.u. mark the threshold for two-photon and one-photon
ionization, respectively, and correspond to the choice
R =0.775 a.u. In Fig. 5 we have also represented the
behavior of o['„„/kf, o ' /kf, oD)„„/kf,. erg /kf, and
o~ B, /kf so as to allow possible comparisons between ex-
act results and approximations by the Born method for
the model. As expected, the main discrepancy at the
threshold appears in o.z /kf, the S contribution to the
two-photon ionization cross section, which is appreciably
different from its Born approximation crs ~, /kf. It
should be stressed that intense-field effects can cause no-
ticeable deviations from the low-field behavior predicted
by perturbative results, ' particularly as a consequence of
the change of the ionization thresholds induced by ac
Stark shifts. The implementation of nonperturbative
techniques for taking into account nonlinear effects pro-
duced by high-intensity sources is a stimulating field of
research, which has not yet been sufficiently explored.
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