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A semiclassical analog to the Abraham-Moses-Cxel'fand-Levitan method for generating radial po-
tentials with analytic sets of energy levels is presented. The algorithm begins with the selection of a
model potential whose energy levels can be expressed as analytic functions of the corresponding

quantum numbers. Then, a finite number of states is deleted from its spectrum, leaving all the oth-

ers unchanged. Subsequently, the incomplete spectrum is analytically inverted using a generalized

version of the Rydberg-Klein-Rees equations. The result is a family of potential functions that,
when quantized, give rise to the incomplete spectra. Emphasis is placed on the application of this

method to a Coulomb model potential. The simple l-dependent analytic functions obtained allow

the straightforward calculation and systematic study of a number of members of this modified

Coulomb-potential family. The connection between these modifications and atomic pseudopoten-

tials is also discussed.

I. INTRODUCTION

The rather limited number of potentials that can be
solved exactly has been greatly enlarged with the recent
introduction of a potential-function-generating algorithm
by Abraham and Moses (AM). ' Basically, the algorithm
begins with the selection of a potential function with
known analytical solutions. Then, the Gel'fand-Levitan
formalism is used to add or remove any particular eigen-
state, leaving all the others unchanged. The result is a
new potential function of the form

V(r) = Vo(r)+ V'(r),

where Vo(r) is the original potential and V (r) is the AM
modification. When quantized, the potential given above
yields a spectrum which coincides with that of Vo, except
for the added or deleted eigenstate. In another version of
the algorithm, the modified potential is obtained by
changing the normalization of a finite number of eigen-
functions.

The purpose of the present paper is to investigate an al-
ternate method, based on semiclassical physics, for gen-
erating exactly solvable radial potentials. The method is
analogous to the one proposed by Abraham and Moses' in
that a finite number of states is deleted or added to the
spectrum of a model potential. The basic ideas of this
semiclassical approach have been briefly discussed in a
study of the unfolding of experimental energy levels to
determine pseudopotentials. This paper, however,
presents these ideas in a more general context, reviews and

clarifies the fundamental concepts involved, and addresses
some natural questions that might be raised concerning
the semiclassical nature of the method. From the outset,
attention is focused on modifications to the Coulomb po-
tential and the connection between these modifications
and pseudopotentials. A radial harmonic-oscillator poten-
tial is briefly discussed in the Appendix.

II. BASIC EQUATIONS

N(r) = V(r)+ AI2r, (2)

assumed to give rise to bound-state eigenvalues (atomic
units will be used throughout this paper). Here
A. = l ( l + 1), and l is the angular momentum quantum
number. A quantity of interest is the shaded area en-
closed by a horizontal line representing some energy level
E and the N(r) curve,

The semiclassical method proposed here for generating
radial potential functions with analytic spectra is based on
a generalized version of the well-known Rydberg-Klein-
Rees (RKR) inversion technique. Consequently, it would
be instructive to begin with a brief review of the main
steps involved in the derivation of the RKR equations,
originally developed for application to diatomic mole-
cules. Details of this derivation will facilitate the
straightforward introduction of the generalizations. Con-
sider Fig. 1(a) which shows an effective radial potential
energy function
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FIG. 1. Schematic representation of the semiclassical method for generating modified potentials with analytic energy spectra. The
algorithm begins with a model effective potential (a) whose energy levels are given by analytic functions of the radial and angular
momentum quantum numbers. The ground-state energy of this model potential is denoted by Eo. Then, a finite number of states is
deleted from the lower end of the spectrum. After deleting enough levels to make E„ the new ground state, the incomplete spectrum

is semiclassically inverted, with the result that the potential in (a) becomes modified as shown in (b). The energy levels lying above
E„are not perturbed and are given by the same analytic formula for both potentials.

M= f [E —N(r)]dr . (3) E' —4 r ' dr dE',

3Jl
BE

=r+ —r (4)

The limits of integration are the classical turning points,
defined by the roots of C&(r+ ) = E. This area is an impor-
tant quantity since we can obtain the width of the effec-
tive potential at E by differentiating it with respect to en-

ergy; that is,
r

(n + —,
' )rr=2' f [E—4(r)] dr, (9)

from which we obtain the semiclassical density of states,

(8)

where Vo is the value of the minimum of the effective po-
tential. At this point we invoke the semiclassical JWKB
quantization condition

for some given value of angular momentum. Similarly,
differentiating with respect to A, , BE

=2 '
vr

' f [E—4(r)] '/ dr . (10)

BM
+

E

Here n is the radial quantum number. Using this result in
Eq. (8) yields

yields the difference between the reciprocals of th««n-
ing points.

Next, area M is transformed into a double integral by
means of a Euler integral of the second kind

E a23/2 (E E')1/2
~o BE'

or equivalently,

23/2 E I E I I 1/2d (12)
E

[E—+(r)]=—f I (E E') j[E'—N(—r)]j' dE' .

We obtain the result

f f I (E E') l[E —@(r)]I
' d/E' —dr .

Reversing the order of integration we write

where the quantum-number dependencies have been expli-
citly displayed. Differentiating this last equation with
respect to E(n, l) gives the first RKR integral

r+ —rf= =2 '/2 f— [E(n, l) E(n', 1)] ' dn' . —
—1/2

(13)

Similarly, by differentiating with respect to A, , it can be
shown that the second RKR integral is given by
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—1 —1—7" +

=2' ' [E(n l) E—(n', l)] ' dn'—1/2

(14)

as functions of E(n, i)
It is important to recognize that within the semiclassical

formalism, the potential inverted according to this method
is unique for a given analytic parametrization of the
energy quan—tum numbe-r relation. The f integral fixes
the potential function widths that correspond to various
values of E, while the g integral provides information
concerning how these widths are to be placed with respect
to each other. It is somewhat misleading that diatomic
RKR curves are usually published as tables of numerical
values for a few isolated turning points —those corre-
sponding to the quantum eigenstates. At first glance it
seems that a number of continuous functions could be
constructed to fit the points. However, one can obtain an
RKR curve on as fine an energy or quantum-number
mesh as one chooses, and naturally, also as an analytic
curve. Because of the semiclassical nature of the RKR
method, energies and quantum numbers are regarded as
continuous variables. The integrals of Eqs. (13) and (14)
would be meaningless otherwise. It is this continuous
property of the semiclassical energy that allows an analyt-
ic inversion as described here and elsewhere. '

Let us now examine in more detail the RKR derivation
presented above. First, we started out with the assump-
tion of a radial potential. In this case, the quantization
condition of Eq. (9) needs to be modified in order to ac-
count for the fact that a radial potential is defined on the
(0, oo ) semi-infinite interval, while JWKB quantization
expects a potential defined on the whole line ( —oo, oo).
This modification is accomplished through the addition
of the Langer correction,

6 V(r) = 1/8r2

to the effective potential, i.e.,

(16)

Q(r)~V(r)+A/2r +D, V(r),

is used when evaluating Eq. (9). Although a I.anger-type
correction depends on the particular choice of transforma-
tion employed to map the (0, oo ) interval into ( —oo, oo ),
Eq. (16) is indeed the appropriate correction for the
Coulomb-like and radial harmonic-oscillator potentials '

discussed in later sections of this paper. If we adopt Eq.
(17) when quantizing the potential, then, for consistency,
we need to redefine the area of Eq. (3) by also incorporat-
ing the Langer correction into it. Since this amounts to
letting k~(1+ —,

' ), the meaning of the relationships of
Eqs. (4) and (5) remains the same. The only effect of
these changes is that the turning points evaluated accord-
ing to Eq. (15) no longer correspond to the original effec-

Thus, after evaluating the f and g integrals the turning
points may be obtained from

(15)

and (ii) it must semiclassically reproduce the spectrum for
n &no. In other words, it must satisfy the modified
quantization condition

r
(n —no+ —, )n. =2' f [E—4&(r)]'~ dr . (19)

The potential that satisfies these conditions may be ob-
tained by evaluating the following modified version of the
RKR equations:

f=2 ' f, [E(n i) —E(n' l)] '~ dn', (20)

tive potential, but rather are the roots of
E = V(r+ ) + A, /r+ +XV(r+ ). Therefore, after obtaining
a radial potential curve through the RKR method, we
must subtract b, V(r) in order to obtain the actual effective
potential of the system being inverted. This type of
correction has been missing from RKR treatments for di-
atomic molecules. As pointed out previously, when the
mass dependence of b, V(r) =Pi /8pr is displayed explicit-
ly (here p is the reduced mass), it is clear that for the large
typical values of p associated with diatomic molecules
this correction is expected to be small and likely to be
negligible in most cases. However, b V(r) should be in-
cluded in problems dealing with low reduced mass sys-
tems, e.g., systems with electrons, or the RKR method
will result in serious error.

Next, let us elaborate on the origin of the ——,
' lower

limit in both the f and g integrals. The first appearance
of this integral limit is in Eq. (12), where it resulted from
a change in integration variable. The right-hand side of
Eq. (11) is integrated from Vo, the minimum of the poten-
tial well, up to E, as illustrated in Fig. 1(a). If we wish to
use n as the integration variable, the upper limit is easily
found as that value of n' which results in an energy E.
To find the lower limit we note that at Vo the turning
points coalesce. It follows that the JWKB integral of Eq.
(9) vanishes for this situation and leads to n'+ —, =0,
which in turn gives n = ——, for this limit.

Now we can introduce a semiclassical analog to the
Abraham-Moses' method. Suppose we wish to delete
some of the lower levels, starting from the ground state.
The energy eigenvalues, assumed to be analytic functions
of n', are then restricted to values of n') no, where no is
a finite and yet to be chosen quantum number. The ener-
gy levels with n') no are not disturbed. Since we have
deleted those energy levels associated with
n'=0, 1, . . . , no —1, the right-hand side of Eq. (12) must
now be integrated from a lower limit of no ——,. Proceed-
ing backwards through the RKR derivation, we see that
Eq. (11) still applies, except that Vo is now replaced with
a new minimum value V„. Naturally, this leads to a new

0
value for area M. This new area, shown as a shaded re-
gion in Fig. 1(b), is bounded by some new distorted effec-
tive potential N(r) and the N(r) =E line. The new poten-
tial is now forced to satisfy two conditions: (i) It must be
such that the modified area of Eqs. (3) and (12) are the
same, i.e.,

r

f + [E—C(r)]dr=2'" f", [E(n, l) —E(n'i)]' dn',
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and

[E(n, l) —E(n', I)] ' «'.
focuses on the more interesting Coulomb model system.

For the cases of an unmodified Coulomb potential
(UCP),

(21)
ZVp(r)= ——,0&r & oo
r (22)

If we begin with an energy-level spectrum that is analytic
in n and l, Eqs. (20) and (21) will yield a potential that,
when semiclassically quantized according to Eq. (19), will
reproduce that spectrum, except for the deleted states.
Notice that Eq. (19) defines the radial quantum number
n p as the new ground state. This number will, in general,
be larger than zero; nevertheless, the wave function associ-
ated with that state will always be nodeless. As an exam-
ple, let us consider the n =6 state of the unmodified
model potential. The wave function that characterizes
this state will have six nodes, while the unmodified
ground state will be nodeless. After deleting the first six
levels and forcing the n =n p

——6 level to become the new
ground state, we find that its wave function has qualita-
tively collapsed back to the unmodified ground state by
losing five nodes. The n =6 level, of course, has the same
energy in both cases.

If we choose to begin with a semiclassically modified
potential, we may add levels to the spectrum by lowering
the value of np and thus obtain the other version of the
Abraham-Moses algorithm. The addition of extra levels
can be carried out only for an already incomplete spec-
trum, i.e., we cannot add levels when np=O. Also, the
added levels are not arbitrary, they must conform to the
analytic expression for E(n, l) Thu.s, this represents a rel-
atively uninteresting version of the semiclassical algo-
rithm.

A final point that should be stressed here is that the po-
tentials inverted according to this method may be l depen-
dent. There is a pair off and g integrals for each value of
l, and for each pair a corresponding potential function.
For the radial-harmonic oscillator treated in the Appen-
dix, we obtain the same modification for all angular
momentum values, but for the modified Coulomb poten-
tials examined in Sec. III l dependency is exhibited.

III. MODIFIED COULOMB POTENTIALS

The semiclassical method described in Sec. II requires,
as the starting point, a radial model potential with energy
levels given by an analytic function of the radial and an-
gular momentum quantum numbers. Two radial model
systems that meet these requirements are the radial har-
monic oscillator and the Coulomb potential. Other radial
potentials that also yield analytic energy levels are actual-
ly special cases or simple variations of the two kinds of
interaction just mentioned. These variations include the
isotonic oscillator or harmonic oscillator with centripetal
barrier (HOCB) potential, and the Kratzer' or Simons-
Finlan" oscillator. Thus, it will suffice to present results
for only the two generic versions of these radial potentials
and the extension to the others will be straightforward.
The treatment for the harmonic oscillator resulted in only
a trivial upward shift of the potential. Details for this
derivation are therefore relegated to the Appendix for
completeness. This section, and the rest of the paper,

whose energy levels are given by

E(n,l)=, n, l =0, 1,2, . . . , (23)
—Z2

2(n +1 +1)
we can readily perform the first modified RKR integral
analytically. Here Z is the atomic number. %'e obtain
the result

r+ r=——[2@(r+)+Z (np+l+ —,
'

) ]'~

X (np+ I + —, )/+(r+ )

Next, we differentiate Eq. (23) with respect to k,

=Z'/(1+ —, )(n +&+1)',
aA.

and find, from the second modified RKR integral, that
1 1

(24)

(25)

=2[2& (» )+Z'(n, +I+ ,
'

) ']'"/(1+—,'
) . —

(26)

Then, instead of using Eq. (15) to find expressions for the
turning point as functions of np, 1, and @(r+), we will
solve for 4(r+ ) directly. Using Eqs. (24) and (26) to elim-
inate either one of the turning points we obtain
N (r+ )+[y(l + —, —2y)/r ]4&(r )

y(2y —1 ——,
'

)
4(r+ ) =

2r+
sZ y (y —1 ——,')

I+
r+ Z r+

(28)

where s =+1 depending on whether we choose the posi-
tive or negative values of the radical. Subsequently, we
suppress the subscripts and make us of Eq. (17) to find
that

1/2
B+
r

V(r) = ——1+Z
r Z2r2

(29)

The other root to Eq. (27), given by Eq. (28) with s =+ 1,
is discarded as unphysical. The two constants in the
modified Coulomb potential (MCP) of Eq. (29) are given
by

and

A =np(np+l+ —, )

B =n + —,'pnp(I+ —,
'

) .

(30)

(31)

Here we can clearly see that if we let n p correspond to the
ground state of a Coulomb-type system, the constants 3
and 8 vanish and the UCP of Eq. (22) is recovered. As
we choose other nonzero np values the potential begins to
deviate from Coulombic form although the energy levels
with n & n p remain unchanged for a particular value of I.

+y (I+ —, ) /4r+ —Z /r+ ——0, (27)

where y=np+l+ —,'. From this quadratic equation we
easily obtain

1/2
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Once the value of I has been specified the variable of in-
tegration can be changed to the principal quantum num-
ber N, given by

N =n +I +1 . (32)

Again, the f and g integrals are done analytically with the
results

A =(No —I —1)(ND ——, ) (33)

and

B= (No —I —1 )(No + 1 /2 —
4 ), (34)

where Np is the lowest value of X chosen and I (Np. In
this alternate derivation, use of the quantization condition

r
(N No+ ——,

' )~=2'i J [E @(r)]—'i dr, (35)

was needed for consistency.
Simply by choosing different np or Np values along

with the appropriate value of I, we can generate a whole
family of MCP functions which yield analytic spectra.
Table I lists the values of A and B for some of these po-
tentials up to Np ——6. The first row of this table, included
for completeness, corresponds to the unmodified set of
Coulomb eigenvalues. In the next two rows we find the
values of A and B obtained when we delete the 1s state.
For this situation Np ——2, and consequently I can have
values I =0 and I =1. Here we notice that for an UCP
with I = 1, the 2p state is already the lowest possible level
since the repulsive centrifugal term has displaced the ef-
fective potential upwards and eliminated the 1s state.
Then, it is not surprising that A and B turn out to be
zero, i.e., the UCP does not need to be perturbed to delete
the 1s state. Ho~ever, the 2s state, whose energy coin-

cides with that of the 2p state, can also be chosen as our
new lowest level. In this I =0 case, there is no centrifugal
term to shift the potential upwards and delete the 1s state.
Consequently, the A and B constants assume nonzero
values in order to make the potential less attractive in just
the right way so that the Is state is eliminated and all the
other s states remain unchanged. A similar behavior is
found as we scan the A and B columns of Table I for in-
creasing values of Np.

Let us now consider Fig. 2, where we show a family of
modified potentials for I =0 and Z = 1. The labels
represent the state chosen as the new ground state. We
can see in this figure that when no assistance from the
centrifugal term is available, the potential must become
shallower, i.e., more repulsive as Np increases, in order to
eliminate more and more levels. Again, we emphasize
that none of the highly exited states are modified, we only
remove levels from the bottom and proceed upwards.

We can also examine the systematics of these MCP
functions from another point of view. Let us choose a
value for the lowest principal quantum number allowed,
e.g., Np =6. This restricts I to a value less than 6; so, we
select the 6s, . . . , 6h states as our new ground states. All
of these, of course, have the same energy, Ep ———Z /72,
but result from the different curves associated with each I
value. The resulting potentials are plotted in Fig. 3 for
Z =1. %'hen we use an I =0, 6s ground-state MCP, we
obtain a very shallow (relative to —llr at intermediate
and large radial reparations) potential which when quan-
tized gives Ep as its lowest eigenvalue. If we let I = 1, ihe
MCP obtained is deeper. The corresponding effective po-
tential, when quantized, also results in Ep as its lowest
eigenvalue. As the angular momentum quantum number

TABLE I. Parameters, in atomic units, for the construction of semiclassically modified Coulomb po-
tentials.

No Lowest level

1s

2$
2p

3$
3p
3d

4s
4p
4d

Ss
Sp
5d
Sf
Sg

6s
6p
6d
6f
6g
6h

3.375
0

31.250
15.625
0

128.625
85.750
42.875
0

364.500
273.375
182.250
91.125
0

831.875
665.500
499.125
332.750
166.37S

0

1.750
0

5.500
3.250
0

11.250
8.500
4.750
0

19.000
15.750
11.500
6.250
0

28.750
25.000
20.250
14.500
7.750
0

—0.0871
0

—0.0902
—0.7028

0

—0.0913
—0.7601
—1.7979

0

—0.0919
—0.7841
—2.0000
—3.2959

0

—0.0922
—0.7973
—2.0911
—3.7414
—5.1486

0
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TABLE II. Parameters, in atomic units, for the construction of semiclassically modified effective
Coulomb potentials.

Lowest level

Is

2s
2p

3s
3p
3d

4s
4p
4d
4f
5s
5p
5d
Sf
5g

6s
6p
6d
6f
6g
6h

B

1.750
1.000

5.500
4.250
3.000

11.250
9.500
7.750
6.000

19.000
16.750
14.500
12.250
10.000

28.750
26.000
23.250
20.500
17.750
15.000

—0.0871
1.0000

—0.0902
0.1726
3.0000

—0.0913
0.2399
1.2021
6.0000

—0.0919
0.2159
1.0000
2.7041

10.0000

—0.0922
0.2027
0.9098
2.2586
4.8514

15.0000

Zl'o

1.0000

1.5612
3.0000

2.1213
4.1458
6.0000

2.6810
5.2915
7.6771

10.0000

3.2404
6.4372
9.3541

12.1937
15.0000

Zrm

2.0000

4.2597
6.0000

7.0217
9.9315

12.0000

10.2073
14.4725
17.4918
20.0000

13.7659
19.5501
23.6330
27.0232
30.0000

minimum in the potential. The location r of this
minimum is found from

de(r) =0.
dr r

(44)

From Eq. (39) we immediately find that

r 21/2[(JP& /li )+pi(g2 g )I/2]1/2/Z

=2'/ (r +B,r /Z)'/ (4&)

V,', (r)=[1—(1+3.375/r )'/ ]/r +1 75/r 2. .

The quantal result of Abraham and Moses' is given by

(46)

Vz(r)=8r(r +1)/(2r +2r+1) (47)

The sc and q subscripts denote the semiclassical or quan-
tal nature of the result. These two modifications are com-

Values of the parameters CI, ro, and r are also cited in
Table II for Z =1. The C~ values indicate that except for
those functions with s states as ground states, a11 MCP
functions possess an infinite repulsive wall at short range.

Finally, before concluding this section, we compare the
present semiclassical result with that reported by Abra-
harn and Moses' for the hydrogen atom. Expressing our
potential in the form of Eq. (1) for Z=1, No ——2, and
l =0, we can write

pared in Fig. 4(a). Qualitatively, both methods agree in
that in order to delete the 1s state we must set up a bar-
rier. However, the details of the shape of the barrier
differ considerably. The quantal barrier approaches zero
in the limit of vanishing r, while the semiclassical barrier
changes sign at some small value of r and behaves as
—0.087/r asymptotically in the same limit. In the other
extreme, i.e., large-r values, Eqs. (46) and (47) both decay
as P/r, but with different P coefficients, 1.75 and 2,
respectively.

It is probably more instructive to compare the actual
potentials themselves and not just the modifications. Fig-
ure 4(b) shows plots of the MCP functions obtained
through both methods. An interesting situation becomes
apparent: the two potentials of Fig. 4(b) differ consider-
ably and yet both of them give rise to the same energy
spectrum. As a check, the semiclassical MCP functions
were numerically quantized, resulting in energy levels that
reproduced the exact spectrum with an accuracy better
than 5 & 10 a.u. Typical results are shown in Table III.
Since the deviations are partly due to the numerical
scheme (Numerov integration) itself, this kind of agree-
rnent suggests that it may be possible to quantize the po-
tential of Eq. (39) analytically from a quantal point of
view. Such a quantization is clearly exact when done
semiclassically. The reason for the MCP "degeneracy"
mentioned above is not entirely clear. It may be simply
attributed to the different quantal or semiclassical nature
or we might postulate the existence of a number, perhaps
infinite, of different families of potentials that share the
same (incomplete) energy spectra. One such family has
been presented here. It would be of interest, although out-
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FIG. 4. Comparison between quantal and semiclassical (a) modifications and (b) potential functions resulting from the removal of
the 1s state of the hydrogen atom.

side the scope of the present work, to explore the MCP
family resulting from the quantal version of the method.
Unfortunately, the modifications, derived one at a time,
contain integrals that become progressively more difficult;
this hinders a systematic study.

IV. SUMMARY AND CONCLUDING REMARKS

A simple semiclassical method for generating radial po-
tential functions with eigenvalues given by exact analytic
expressions has been presented. Application of this
method to the Coulomb potential has been discussed in
detail. The resulting MCP functions are given by simple
l-dependent formulas. A property of these modified po-
tentials is that when levels are removed from the spec-
trum, nodes are also removed from the wave functions of
the states whose energy levels are not perturbed. Thus, it
turns out that every "new" ground state (n =n 0 or
N =No) is nodeless, i.e., it qualitatively resembles the
"original" ground state (n =0 or N = 1).

Another property of the MCP functions is that in order
to eliminate some of the states, the modification to the
Coulomb potential takes the shape of a potential barrier.
This MCP feature is very reminiscent of the pseudopoten-
tial method' for modeling valence electron-atomic core
interactions. A pseudopotential is basically a Coulomb-
type potential into which a barrier has been incorporated
for the purpose of simulating the Pauli exclusion principle
and other outer-electron —atomic-core interactions. This
barrier prevents the valence electrons from entering the
core. In the case of a system with a single valence elec-
tron, e.g., an alkali-metal atom, the Pauli principle modi-
fies the hydrogenlike set of levels as follows: for a given
I, some of the allowed (N) l+1) values of the principal
quantum number are effectively eliminated. For example,
in the Cs atom the lowest I =0 state allowed is the 6s
state. Any other s states with a lower N are Pauli forbid-
den. If there were no other perturbations to the energy
levels, it appears that either the quantal or the semiclassi-

TABLE III. Numerically quantized binding energies, in atomic units, for the first ten states of the Z =1 family of modified
Coulomb potentials resulting from the removal of all levels with principal quantum number N &6. Exact values are given by
E= —1/2N2.

6
7
8
9

10
11
12
13
14
15

I=O

0.013 916
0.010208
0.007 813
0.006 171
0.005 000
0.004 132
0.003 472
0.002 958
0.002 551
0.002 222

0.013927
0.010230
0.007 826
0.006 181
0.005 006
0.004 136
0.003 475
0.002 960
0.002 553
0.002 224

0.013 935
0.010226
0.007 825
0.006 181
0.005 005
0.004 136
0.003 475
0.002 961
0.002 553
0.002 224

1=3
0.013 921
0.010221
0.007 823
0.006 179
0.005 005
0.004 136
0.003 475
0.002 960
0.002 552
0.002 223

I=4
0.013901
0.010214
0.007 819
0.006 177
0.005 003
0.004 134
0.003 474
0.002 960
0.002 552
0.002 223

I=s
0.013 889
0.010204
0.007 813
0.006 173
0.005 000
0.004 132
0.003 472
0.002 959
0.002 551
0.002 222
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cal MCP functions would be the logical candidates for the
analytic modeling of the exclusion principle in systems
with one valence electron. Naturally, matters are compli-
cated by other effects that further perturb this truncated
set of hydrogenic energy levels. The largest of these is the
core-induced phase shift, relative to the Coulomb shift, of
the valence wave function in the core region. The corre-
sponding modification of the energy levels is a systematic
correction or quantum defect' that shifts the value of the
principal quantum number in the hydrogenic level formu-
la. The combination of these two types of perturbation
leads to an energy-level formula given by

=(2' /cp)[4{r+ ) —rp(2np+I+ —,
' )]'~2 . (A3)

The g integral of Eq. (21) is similarly evaluated. We ob-

tain

1 1 =[2' 'l(I+ —,
' )][@(r+) —ro(2np+l+ —,

' )]'~',

where we have used the result

(A4)

ward to evaluate the f integral of Eq. (20). We find a
width given by

Z2 X)Xo
2(N —5)

BE(n, l)
ak. 21+ 1

(A5)
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APPENDIX: MODIFIED RADIAL-HARMONIC
OSCILLATORS

We begin with a radial model potential of the form

Vp(r)= r, 0&r & co
2

(Al)

where m is the angular frequency. The corresponding en-

ergy spectrum is given by

E (n, I) =rp{2n +1 + —, ), n, 1 =0, 1,2, . . . . (A2)

With this expression for the energy levels, it is straightfor-

where 6 is the quantum defect and Ão is the lowest value
of X allowed by the exclusion principle. As far as the en-

ergy levels are concerned, the quantum defect attempts to
counteract the restriction of the exclusion principle by
lowering N to some smaller effective quantum number.
Although it is not entirely clear how closely coupled these
two types of modification are, it is reasonable to suggest
that the MCP functions may be useful as first-order ap-
proximations in the analytic characterization of the Pauli
principle. If that were the case, the MCP could be em-
ployed as the starting point of more detailed modeling of
hydrogenlike atomic systems.

From Eqs. (A3) and (A4), it follows that

(1+—,
'

)
4(r~ ) = r+ + 2 +2nprp .

2r+
(A6)

Therefore, the Langer-corrected family of modified poten-
tials has the form

2

V(r)= r +2npcp, np ——0, 1,2, . . . (A7)
2

which is simply the original model potential shifted by an
integral multiple of the level spacing 2'. This shift adds
nothing new since we can always add a constant to a po-
tential function with the result that the energy levels are
also shifted by the amount. However, this example shows
that the semiclassically derived modified potentials are
not always l dependent. Finally, it may be pointed out
that for this particular model potential we can apply the
other version of the algorithm, the addition of extra levels,
with no restrictions. To add levels we simply shift the po-
tential downward by an integral multiple of the level spac-
ing, increasing the allowed values of no to 0, + 1, +2, etc.
The fact that n & no may be negative does not mean that
the effective quantum numbers are allowed to become
negative. The modified radial quantum number, and
therefore the number of nodes in the corresponding wave
function, is actually n np, as s—hown in Eq. (19). In oth-
er words, the modification amounts to a mapping of n

into n —no, a quantity that always has zero as its lowest
integer value.
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