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Global scaling properties of the spectrum for the Fibonacci chains
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By means of the approximate renormalization approach of Niu and Nori [Phys. Rev. Lett. 57,
2057 (1986)] the widths of subband segments in the spectrum and the occupation probabilities on
subbands are obtained to the lowest order for the two-value Fibonacci chains. The global scaling
properties of the spectrum are then analytically calculated.

Quasiperiodic or incommensurate crystals represent a
natural intermediate case between periodicity and ran-
domness. Since Shechtman, Blech, Gratias, and Cahn ob-
served surprising crystallographic properties' much atten-
tion has been focused on studies of such quasicrystals.
Amongst the models studied three types of the tight-
binding Fibonacci chains are rather commonly discussed.
They are described by the equation

t„+i'tIf„+ i+ t„y„—) =E„y„,
where y„ is the probability amplitude at site n. When the
site energies are constant and the hopping integrals or
bonds take two values, T, (strong) and T„(weak), ar-
ranged in a Fibonacci sequence, we have the Fibonacci
chains of types S and W with the majority in the sequence
being T, and T„, respectively. The third kind of Fibonacci
chain is type E in which the bonds are constant, but the
site energies, hence E„, take two values, arranged in a Fi-
bonacci sequence.

The self-similarity in the spectra and the wave functions
for the Fibonacci chains have been studied by several
groups. Recently, Niu and Nori have developed a new
approximate renormalization approach to the study of
electron spectral clustering and wave function scaling in
the Fibonacci chains. Their decimation technique gen-
erates a clear and simple physical picture of the electronic
spectral behavior and the nature of the wave functions.
The knowledge drawn from this renormalization pro-

cedure allows us to calculate analytically the global scaling
properties of the spectrum fractal by means of the algo-
rithm proposed by Halsey et al. in Ref. 8.

The renormalization-group approach of Niu and Nori is
based on the weak bond approximation. At first we briefly
explain the main ideas in a somewhat different way which
is more appropriate to our purpose here. From the proper-
ty of the Fibonacci sequence a Fibonacci chain of type W
can be viewed as a chain of type E consisting of dimers and
monomers (step W E, see Fig. 1). The dimer consists of
two atoms bonded or antibonded with a strong bond. Di-
mers and monomers are then connected with weak bonds.
Similarly, a chain of type S can be viewed as a chain of
type E consisting of trimers and dimers. On the other
hand, a chain of type E can be viewed as a chain of type W
consisting of all "white" or all "black" sites (step E W,
see Fig. 2). By combining these two steps an original
chain of type W can be renormalized into a new W chain
with new sites and new weak and strong bonds. The chain
of type E is convenient for calculation of the density of
states. If we neglect the weak bonds in Fig. 2(0), then the
spectrum consists of two degenerate levels: E =E„and
E =Eb. To the lowest order, the occupation probabilities
on these two levels are equal to co = —,

' (J5 —1) and c02, re-
spectively. On the other hand, the chain of type W is con-
venient for calculation of the "energy band" widths. If we
neglect weak bonds in Fig. 1(0), then the spectrum of a W'

chain consists of three degenerate levels: E =0 and
E = ~ T, . The width of the "coarse-grained energy band"
is equal to 2T, .
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FIG. 1. A chain of type W (0) can be viewed as a chain of
type E consisting of binding (1) or antibinding (2) dimers.

FIG. 2. A chain of type E (0) can be viewed as a chain of type
W consisting of (1) all "white" or (2) all "black" sites.
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In our case each l; is the width of a subband and p; the oc-
cupation probability on that subband. From the above dis-
cussion we have

I- (n) co~ 2'~' mq 2a) q
+ +

(2rT„)' T„' r" (-,' r)'

The calculation from this point on is parallel to that for the
two-scale Cantor set in Ref. 8. For large n, at a given q,
the partition function is of the order unity only when i is
chosen at a definite value. When n is very large the par-
tition function I «~ can be estimated with just a sin le
term, the maximal term in the binomial expension for I
Suppose that this term is the one proportional to (" ). The
condition determining the maximal term in the expansion
of I " then gives

ln[ —,
' (n/m —I )]+q into

In(2r )

The condition I " = I leads to an equation for n/m:

q Into(lnt+ 31n2) —21nt ln[ —,
' (n/m —1)]

(4)

+In(n/m) In(2t) =0 . (5)

Let us describe a W chain with the word W(P,B„B„),
where the three numbers P, B„and B are the occupation
probability and the absolute values of the strength of
strong bonds and weak bonds, respectively. In the above
we have mentioned that two successive steps 8' E 8'
renormalize a 8' chain to a new 8' chain. The bonds in
the new W chain have been given in Ref. 7 based on per-
turbation theory. The results can be represented as

~W(ro, 2 T, 2 T t),
~E

W(I, T„T ) Wo(ro', tT, r2T ),
~W(ro —,

' T, 2 T t),
where t:—T /T, «1, and the bar indicates antibinding.
Here in the derivation of occupation probabilities for three
daughter 8' chains we have viewed the spectrum of the
mother 8'chain as two overlapping spectra of daughter E
chains. The widths of subbands are given by 2B,. From
any member W; (P,s,ts) of a given generation of a Wchain
the next generation can be created in the following way:

~W(Pro, —,
' ts, —,

' t s),
W;(P,s, ts) Wo(Pro, r zs, t s),

W(Pro, 2 ts, 2 t s) .

This procedure gives us the information about the splitting
of subbands, their widths, and their occupation probabili-
ties.

We now analyze the global scaling properties of the
spectrum for a W chain from the partition function defined
in Ref. 8,
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FIG. 3. The plot of f vs a for the spectrum of a 8'chain with
0.2.

which gives

(2n/m+ I ) Intro (9)
(n/m+ I ) Int —(nlm —1) ln2

The relation r qa f can be verified fro—m Eqs. (4), (5),
(7), and (9). The functional relations between f(a) and a
are given by Eqs. (7) and (9) in a parametric form
through the parameter g—:n/m. In Fig. 3 we display the
curve f(a) for t 0.2.

The "kneading sequences" can be assigned to subband
segments. Only the infinite "tail" of the sequence deter-
mines the asymptotic scaling behavior. Because of this the
same results can be deduced for an 5 chain or E chain.
We have derived the global scaling properties of the spec-
trum for the Fibonacci chains from the approximate renor-
malization procedure. It would be interesting to compare
the analytical results with numerical calculations in the fu-
ture.

The author would like to thank Dr. F. Nori for com-
municating results prior to publication.

The density exponent f of a set of 2" (" ) segments with
the same size 0=2 "+'p" +~+' T„ is determined by

2n —m(n ) f
which gives

(n/m —I) ln[ z (n/m —I)]—(nlm) In(n/m)
(7)

(n/m + I ) Int —(n/m —I ) In2

The exponent determining the singularity in the measure a
is determined by

3m 2(n —m) a
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