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Observation of the "Brownian motion" of the electric field in a laser
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Critical dynamics of the laser field near the threshold of oscillation is investigated and observa-
tion of the Brownian motion of the electric field amplitude driven by quantum noise is reported.
Experimental results agree well with the nonlinear oscillator model of the laser.

The scaled, slowly varying, complex field amplitude
E (t ) of the single-mode laser obeys the nonlinear Lan-
gevin equation '

E(t) = —2 (I E I,a)+q(t),

where the potential U(I E I,a) which determines the sys-
tematic force is given by

U(IE I a) = —
2 a IE I

'+
4 IE I' (2)

20

10.

The dimensionless parameter a, the so-called pump pa-
rameter, is negative below, zero at, and positive above the
threshold of laser oscillation. q(t) represents the quantum
noise due to spontaneous emission and is taken to be a b-
correlated Gaussian stochastic process with zero mean and
(q(t)q (t')) 4b(t —t'). Predictions of Eq. (1) have
been tested in the transient as well as the steady-state
operation of the laser in photoelectric counting and corre-
lation measurements. These experiments provide clear
evidence for the smooth phase transition that the laser
fluctuations undergo in passing the threshold of laser oscil-
lation. Like all phase transitions, the width of the region
in which this transition occurs is extremely small and is
given by I a I S4. From the shape of the potential
U(I E I,a) in the threshold region (Fig. 1) it is clear that

the systematic forces remain small in the entire critical re-
gion and the dynamics of the laser field is dominated by
the quantum noise. In this regime of operation, if the laser
is suddenly turned on the time evolution of the electric
field may be described as a continuous two-dimensional
random walk' (in the photon-number representation this
random walk is a discrete one ) of a Brownian particle.
Indeed Eq. (I) represents the overdamped motion of a
Brownian particle in a potential well. This Brownian
motion may be detected by observing the time it takes the
laser field to reach a certain reference value starting at the
origin initially. This time will be found to fluctuate re-
flecting the underlying Brownian motion. This, of course,
is the classic first-passage-time (FPT) problem. 'p Thus
the FPT measurements provide a convenient means of ob-
serving the Brownian motion of the electric field in the
threshold region. It should be mentioned that the concept
of the decay of an unstable state" ' does not provide a
meaningful framework for describing laser dynamics near
threshold. This is because the so-called states of the laser
(characterized by the laser intensity I- IE I

=0 and
I-a) are not well defined and may not even exist. The
concept of the FPT, however, can still be fruitfully em-
ployed. We wish to describe a simple experiment which
provides direct evidence for the random walk performed by
the electric field of the laser in a regime dominated by
quantum noise.

The probability density of the FPT for the laser field to
reach a certain reference value starting with zero field ini-
tially obeys the backward Fokker-Planck equation which is
easily derived from Eq. (1).' Since in our measurements
the phase of the electric field is not observed we confine
our attention to the laser amplitude I E I . In terms of the
laser intensity I =

I E I, the equation satisfied by the FPT
probability density P(T;Ip,II)—=P(T) is

P 2 tl(T) =2Ip a —Ip+ P(T)+4Ip
&
P(T)|12

T Ip 6I BIp

(3)
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0

FIG. 1. Shape of the potential U( I E I,a) near threshold.

where Io is the initial intensity and If is the final intensity
of the laser, and P(T) satisfies the boundary condition
P(T;Ip, II Ip) =b(T). This equation has no known ana-
lytic solution, but some approximate solutions have been
constructed. " The expressions for the moments are rela-
tively easy to derive. ' Thus we have for the mean and
variance of the FPT probability density the following ex-
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FIG. 2. Outline of the experimental apparatus.

pressions (Io O,If I ),
U(I2)

(T) = —' dIz dIi e

U(Ig)

(T ) = —' dI4 dI3e8 I4
U(I2)

dI2 dIi e4 I3 I2 &0
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to the small but important change that the potential un-
dergoes for small i F i near threshold. Below threshold
the small systematic forces always act toward the origin,
whereas above threshold they act away from the origin.
As a result the particle takes longer to reach a given refer-
ence point below threshold than it does to reach the same
reference point above threshold. The convergence of vari-
ous curves for higher operating points is an indication of
the onset of the so-called scaling regime. ' ' In that re-
gime the growth of laser field amplitude may be describ-
able in terms of the decay of an unstable state.

We have also compared the measured and the predicted
FPT probability densities. Figure 5 shows an example of
such a comparison. The full curve was obtained by solving
Eq. (3) numerically and the dashed curve represents the
predictions for the Ornstein-Uhlenbeck process. "' Simi-
lar agreements are obtained throughout the threshold re-
gion. The details of these and other investigations will be
presented elsewhere. Comparison of the data involves two
scale constants, one for the light intensity (I) and one that
converts measured values of T to the dimensionless values
used in the theory. Both scale factors were determined by
plotting (T) vs (I) on a double logarithmic graph. The
scale factor for (I) was found to be consistent with an in-
dependent determination based on the steady-state fluc-
tuation measurements. Thus our comparison procedure
involves only the time scale factor which was determined
to be 800 ~ 20 ps.

The laser threshold transition is often described as an
analog of the second-order phase transition in a ferromag-
net. Therefore the laser dynamics, near threshold, consti-
tute an example of critical dynamics. The growth of the
field amplitude during the turn on is analogous to the
growth of magnetization in a ferromagnet when it is sud-
denly quenched below the Curie point. Our measurements
were carried out close to the threshold where the gain and
loss differ by no more than a few parts in 10 . This type of
measurement carried out in the vicinity of threshold will
be of great interest in the study of critical dynamics of the
order parameter in the theory of phase transitions.

These measurements also provide direct evidence for the
random walk of the electric field of the laser in a regime
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FIG. 5. Comparison of the experimentally measured FPT
probability density with theoretical predictions. The full curve is
obtained by solving Eq. (3) numerically. The broken curve is the
prediction for the Ornstein-Uhlenbeck process (Ref. 12).

This work was supported by the National Science Foun-
dation under Grant No. PHYS-8501359 and by a Joseph
H. DeFrees grant from Research Corporation.

where its dynamics is dominated by quantum noise. The
agreement between the experimental results and theoreti-
cal predictions based on the nonlinear oscillator model of
the laser also provides a very sensitive test of the laser
theory. In fact the eigenvalue method' for computing the
solution of Eq. (3), which works so well for the steady-
state measurements, fails because in the transient opera-
tion, such as that encountered in the experiments de-
scribed here, the entire spectrum of eigenvalues and eigen-
functions is important. On the other hand, for the steady-
state measurements only the first few eigenvalues and
eigenfunctions need to be calculated with any accuracy.
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