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Nonlinear modulation of ion acoustic waves in a magnetized plasma
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The quasistatic plasma slow response to coherent ion acoustic waves in a magnetized plasma is
considered. A multidimensional cubic nonlinear Schrddinger equation is derived. It is found that
the ion acoustic waves remain modulationally stable against oblique perturbations.

Ion acoustic waves are one of the important low-
frequency eigenmodes in plasmas. Such modes have been
frequently observed in laboratory as well as in space plas-
mas. Since the existence of normal modes critically de-
pends on their stability, it is of great interest to investigate
the linear as well as the nonlinear instabilities that may
hinder stable wave propagation.

A decade ago, Hasegawa'! pointed out that the ion
acoustic wave at a frequency smaller than the ion gyrofre-
quency Q; (=eBgy/m;c) can decay due to finite perpendic-
ular wavelength effects. The dominant coupling comes
from the interaction of the EXB, flow with the ion-
density fluctuations along the external magnetic field ByZ.
On the other hand, Murtaza and Salahuddin® studied the
modulation of ion-acoustic waves in a magnetized plasma
by using the Krylov-Bogoliubov-Mitsopolsky (KBM)
method.> They found that the inclusion of the harmonic-
generation* nonlinearities produces wave instability in cer-
tain regions of parameter space.

In this paper we investigate the quasistatic’ plasma
slow response to coherent ion-acoustic waves in a magnet-
ized plasma. Our present investigation extends a recent
work® by including the effects of an external magnetic
field. When the latter is incorporated, the problem be-
comes a multidimensional one in which the ion wave-
group dispersions are anisotropic. Accounting for this
fact, a two-dimensional nonlinear Schrodinger equation
governing the dynamics of modulated wave packets is de-
rived. It is found that the ion acoustic waves are modula-
tionally stable against quasistatic oblique perturbations.

We consider the nonlinear propagation of electrostatic
(E=—V¢), finite amplitude ion-acoustic waves in a
homogeneous plasma embedded in an external magnetic
field ByZ. All motion is restricted to the x-z plane. Thus
V=%9, +20, with 3,=0. For 9, <<,, the perpendicu-
lar (to Bg) component of the electron fluid velocity is
given by

Vo ~R(c/BoQ,)d% ¢ , (1)

where c is the speed of light, Q, =eBy/m,c is the electron
gyrofrequency, and ¢ is the electrostatic potential. The
above drift speed arises from the electron polarization
drift, as in the chosen geometry the contribution of the
E X B drift is zero. Since the parallel (to By) phase veloci-
ty of the ion-acoustic waves is generally much smaller
than the electron thermal velocity v, =(T,/m,)!’?, the
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inertialess electrons rapidly thermalize along the external
magnetic field. The electron number-density perturbation
associated with the ion-acoustic waves in the presence of
the plasma slow motion is given by

dn,/ng=(1+8n!/ny)ed/T,), )

where nq is the average plasma density, and the super-
script / denotes the corresponding quantities associated
with the plasma slow motion. The leading order parallel
(to By) electron flow velocity obtained from the electron-
continuity equation is given by

—3;'3,(8n,/ny) . 3)

Vey =~

Note that for the static modulations, v,_fz =0.

In the low-frequency limit (3, <<();, where ; is the
ion gyrofrequency) the perpendicular component of the
ion-fluid velocity is determined by the ion polarization
drift, viz.,

vii~—X(c/ByQ;)3% ¢ . 4)

Noting that the total plasma dens1ty consists of three
parts, namely, ng, &n,, and 8ne, we obtain from the ion-
continuity equation and (4) an equation for the ion-
acoustic waves including the plasma slow response,

[(1—p232 — A V332 —c23% ]
+[(1—p232)8? —c2321(8n. /ny)®=0, (5

where ®=e¢/T,. In deriving (5), we have made use of
(2) and (4), the parallel component of the ion-momentum
equation

0,0, = —(e/m;)3,¢ , (6)
and Poisson’s equation. The ions are assumed to be much
colder than the electrons. In the absence of the nonlinear
interaction, linearization of (5) yields the dispersion rela-
tion’

o=k,cs /(1+klp2+k2A5) 2=k,c, /b2, (N

where b =1+kZp? + k?A}, ¢;=(T,/m;)'/? is the ion
sound speed, Ap =c, /w); is the electron Debye length, w,;
is the ion plasma frequency, p; =c; /Q; is the i ion Larmor
radius at the electron temperature, kz—k +k2, and k,
(k,) is the wave number parallel (perpendicular) to Boz
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The dispersive terms k2 ps2 and k2A% come from the per-
pendicular ion inertia and charge-separation effects,
respectively.

Assuming that the nonlinear interaction causes a slowly
varying wave envelope, we let the ion-acoustic wave am-
plitude vary on slow time and space scales. Thus, within
the WKB approximation,® we can write

O =D(x,z,7)exp( —iwt +ik-x)+c.c. ,
0;—0,—iw—vy-0x, (8)
0, —>0, +ik,,0,—9, +ik, ,

where Vg =Ry, + 20, with Ugx = — 0K, p*/b,
Vg = ¢;(14+k7p?)/b/? and p*=p5 +A}.

Inserting (8) into (5), using (7), one obtains a multidi-
mensional nonlinear Schrodinger equation

i3, + %(v;xai 405,02 4+2T32%,)®

_zibk%mn;/no@:o , (9

where
Vge = O0gy /K, =0p?(2k p? —1—k]AD) /b2,
Vgz = OV, /3k, = —3wAp(1+k; p?) /b7,

and
T =k, wp*(2k}AD —1—klp?) /k,b? .

In deriving (9), the following ordering schemes have been
introduced:

0™ '9,~0(€%), ApV~p,d,~0(e7?),

(10)
(kAp)i~O(e), ®~O0(e), dnl/nyg~0(€?) .

Next, we present the plasma slow response to the ion-
acoustic waves. For quasistatic modulations, the linear
inertia of the low-frequency motion can be neglected.
Thus, from the z component of the momentum balance,
one obtains

MoV, Vg ) =ed,¢'—T,3,(8n! /ny) , (11
m{v;- Vv, )= —ed,¢'—T;0,(8n} /n,) , (12)

where the angular brackets denote averaging over the ion-
acoustic wave period, and the left-hand sides of (11) and
(12) represent the electron and the ion ponderomotive
force associated with the ion-acoustic waves.

Adding (11) and (12), using (1), (3), (4), (6), and the
quasineutrality Snel =8n,-1, one gets after some algebra

dnl/ng~—(1+k™3) | ®|2/2(14+0), (13)

where 0=T;/T, is the ratio of the ion to electron tem-
peratures, and we have noted that just as in the unmagne-
tized case,® the ponderomotive force acting on the ions is
found to be much larger (by a factor of m;/m,) than that
on the electrons. Clearly, the ion ponderomotive force
gives rise to the field-aligned slow density variations.

Substituting (13) into (9), we have a multidimensional
cubic Schrodinger equation

i3, 0+ LP+Q | P |2P=0, (14)
where

2L =0}, 82 40,02 +2T02, ,
and

Q =wkA5(1+k?A%)/4b(1+0) .

Let us now enquire whether a constant amplitude pump
wave would remain stable (or become unstable) against
quasistatic self-modulation. For this purpose, we let

O =(Py+6P)exp( —iAT), (15)

where @ is the pump amplitude, §P( << P) is the pertur-
bation, and A is a nonlinear frequency shift. Inserting
(15) into (14), one finds A= —Q | ®y| 2, and an evolution
equation for the perturbation

13,4 Vg-3,)8P+ L8P+ Q | b | (5P +8P*)=0,
(16)

where we have included the group velocity of the wave
packet and the asterisk denotes the complex conjugate.
Assuming that the complex amplitude 8® depends on
K. x+K,z—Qr(|K| << | k|, <<w), we can analyze
(16) following the standard technique’ to obtain the
dispersion relation for the electrostatic modulations. The
result is

(Q—K-v,?=Pj/4—QP, | dy|?, (17)
where
Po=vy K2+, K +2TK, K, .

Letting Q=K-v, + iy, we obtain from (18) the growth
rate
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FIG. 1. Plot of the product Py,Q against the propagation an-
gle. The parameter labeling the curvesis |k |.
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y=(QPy | @y |2—P}/4)'% . (18)

The term P3/4 is small for long wavelengths (| K | V).
Hence an instability may arise provided PoQ > 0. In Fig.
1 we have plotted the product PyQ against K, /K. We see
that P,Q is always negative. Thus we conclude that the
ion-acoustic waves in a magnetized plasma are modula-
tionally stable with respect to oblique (to Bj) modulations.
We should like to contrast our work with that of Za-
kharov and Kuznetsov’ who derived a multidimensional
Korteweg—de Vries (KdV) equation and pointed out the
possibility of a spherically symmetric stable nonenvelope
ion-acoustic soliton. We note that the derivation of the
KdV equation”'® includes the harmonic generation non-
linearities and does not account for the plasma slow
response.’ The inclusion of the latter in the analysis leads
to the consideration of the two time and space scales.>®
The present analysis, which accounts for the self-
consistent density modulation of the ion-acoustic wave

packet, differs from that of Murtaza and Salahuddin?
who used the KBM method to consider the generation of
second-order harmonics due to the nonlinear interaction.

In summary, we have investigated the quasistatic plas-
ma slow response to the ion-acoustic waves in a magne-
tized plasma. It is found that a finite amplitude wave is
not subjected to the modulational instability involving
oblique perturbations. If this is the case, stable waves can
propagate in a magnetized plasma. Such a phenomenon
seems to be experimentally observed in the upstream re-
gion of the earth’s bow shock.!!1?
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