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The nucleus as a source in Kerr-Newman geometry
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The nucleus is treated as a source in Kerr-Newman geometry, under the assumption that the an-
gular momentum of the source is equal to the intrinsic spin angular momentum of the nucleus. The
spin radius a of the nucleus, which figures in the Kerr-Newman metric, is of the order of the Comp-
ton wavelength of the nucleus. The radial functions in Chandrasekhar's separated Dirac equation in
Kerr geometry, are transformed so as to yield a pair of simultaneous first-order differential equa-
tions with real coefficients, as in fiat space. The magnetic quantum number m appears explicitly in
the differential equations, thus lifting the hyperfine splitting degeneracy of Dirac s equation in flat
space.

I. INTRODUCTION

The effect of space-time curvature on atomic spectra is
generally considered to be negligibly small, because of the
smallness of the gravitational mass radius (the
Schwarzschild radius) r, given by

26m~
rm=

c2

where m~ denotes the mass of the nucleus. In the case of
the proton, for example, r =2.48X10 ' cm. %'ere it
for the mass alone, space would be essentially flat outside
a radius of order 10 cm from the center of the proton.

The curvature due to the charge eZ of the nucleus,
gives a much larger charge radius r„with

~GeZre=
C2

but which is still very small in comparison with nuclear
dimensions. In the case of the proton, r, is equal to
1.38 ~ 10 cm.

The situation is radically different when we come to
consider the effect of the space-time curvature stemming
from the nuclear spin I&. The spin radius, denoted by a
in the following, is of the order of the Compton wave-
length of the nucleus.

The solution of Einstein s field equations for an un-
charged mass point possessing an angular momentum was
first derived by Kerr. ' It was extended to the case of a ro-
tating charged mass point by Newman et al. In the
Kerr-Newman metric there appears a constant a which
has the dimension of a length. a is equal to (I/c) times
the angular momentum per unit mass of the source.

We make the assumption that the intrinsic spin angular
momentum of the nucleus, of magnitude I&A, is to be
identified with the angular momentum of a Kerr-
Newman source. According to this assumption,

II. SEPARATION OF DIRAC'S EQUATION
IN KERR-NEWMAN GEOMETRY

We recall that in flat space the wave functions of the
Dirac solution depend on two radial functions, f (r) and
g (r), which, on writing

F(r) = rf (r), G (r) =rg (r),
obey the differential equations3

dF ko 1 Ze2F+ E+
dr r Ac r

d6 kp ]. Ze+ 6 —„E+ +E, F=O.
dr r A'c 'r

Here, Ep ——m, c, and kp is given by

(j+—,
'

), j=&+ —,',

In spaces whose line element is given by

ds2=e'c dt edr r(d8 +—sin8 dtp—), (10)

where I, and v are functions of r only, Brill and Wheeler
derived Dirac's equation in the for'm

to —, the Compton wavelength of the proton, the factor —,

stemming from the value of —,
' of the spin of the proton.

The above assumption is in line with the fact that a
Kerr-Newman source has, asymptotically, a magnetic di-
pole moment pz given by

pa ——eZa .

It follows from Eqs. (3) and (4) that the gyromagnetic ra-
tio is equal to 2, as in Dirac's theory of the electron.

Cm~
(3)

2

e ——+ e +((g2)g dF k F ~&&2~~ 1 & Ze
dr r Rc r

—p, 6=0,

For the proton, a =1.05&10 ' cm. Indeed, a is equal
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6 k
e —(1/2)A, + 6+ —(1/2)v+ + +dr r Ac r

Adding and subtracting Eqs. (18) and (19) gives, respec-
tively,

—Pe F=O.
(12)

p, is the reciprocal of the Compton wavelength of the
electron

dI' k E Per
dr vZ a vZ

dG k E I er
dr

=-
mb,

G+
b,

+—
mb,

Here, we have put

(20)

(21)

Ale C
Pe=

fi
(13) vzz=k, vzp=p, .

Note that the differential operators in Eqs. (6) and (7) and
in (14) and (15) are real. Equations (11) and (12) apply to
the Schwarzschild metric (uncharged mass point) and to
the Reissner-Nordstrom metric (charged mass point), with
e"=e =(6/r ), where the respective functions h(r) are
given in Eqs. (29) and (30) below.

The metric tensor g;k of the Kerr-Newman space is not
diagonal, as in Eq. (10), but contains also off-diagonal ele-
ments. Dirac's equation in Kerr geometry was separated
by Chandrasekhar. Chandrasekhar denotes the two radi-
al functions by R, /2(r) and R+1/2(r), which he shows
obey the simultaneous differential equations

d ill+ g
R —1/2 (A+ipr)R+1/2 (14)

d
dr

iK (r —M) R + 1/2 =2( A, —1pr)R 1/p

(15)
where E and 6 are real functions of r to be given below,
and M = ( mG/1vc ). Chandrasekhar eliminates R+1/q
from Eqs. (14) and (15) and arrives at a second-order ordi-
nary differential equation for R 1/2, with complex coeffi-
cients.

We wish to retain the simultaneous first-order form of
Eqs. (14) and (15), but to put them in a form which will
manifestly resemble the pair of equations (6) and (7), and
the pair (11) and (12). A clue to the transformation re-
quired is to be found in Chandrasekhar's observation that
"v hR+, /2 and V2R, /2 are proportional to complex
conjugate functions. "Accordingly, we put, formally,

The differential operators in Eqs. (20) and (21) are now
real.

III. REDUCTION OF THE EQUATIONS
FOR THE CASE OF A NUCLEAR SOURCE

Equations (14) and (15) apply to an uncharged rotating
source in Kerr geometry. The extension to the case of a
rotating charged source was made by Page, following the
method of separation of Chandrasekhar. We shall refer to
this work as (3). In (/I), relativistic units are used, in
which 6 =c =%=1. The relation between the relativistic
quantities l., T, M, and Q (charge), and l, t, m, and eZ,
expressed in cgs units, is

6m~I.=l, T=ct, M=, Q=c2
V Gez

c2 (23)

Page used a factor exp(imp+i o T), compared to the stan-
dard factor of exp[imp —(iEt/fi)]. Hence

m, ce
0 = — =—,6'=

Ac
(24)

mec

By (3) and (13), the terms ap, and acr appearing in (2)
are given by

I+F71e —=CO ~ (25)
m~

ape =

b.=(r 2Mr+a +.Q ), — (27)

The basic function h(r), which in the case of a black
hole determines the event horizon, namely,

R —1/2 = [F(r) +iG (r) ] becomes, in view of (23), (1), and (2),
(16)

R+«2 v'(2/6)[F(r) —iG (r)], —
without, however, assuming that the functions F(r) and
G(r) are real, an aspect which will prove to be of impor-
tance when we come to solve the equations. Substitutirig
in Eqs. (14) and (15), and using the relation

dA =2(r —M), (17)
dr

2

2 rm reA=r 1 — + —+r r

T

a
(28)

r~
As ——r 1—

r
(29)

we obtain

For the Schwarzschild metric, and for the Reissner-
Nordstrom metric, we have, respectively,

(18)
d iK
dr + (F+iG) =v'(2/b )(1,+ipr)(F iG), — rm re

~RN r 1 +r r
(30)

i' (F—iG) =v'(2/A)(A, —ipr)(F+iG) .
In contrast to the Schwarzschild metric, h&R is every-

(19)
'

where positive for the nuclear source, and so is b, in Eq.
(28) for the Kerr-Newman metric. The phenomenon of
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=2.36&& 10 3, —= 1.31 && 10
a a

(31)

black holes does not appear, therefore, in the case of a nu-
clear source.

Since for the proton, for example,

Substituting (34) and (36) in Eqs. (20) and (21), we ar-
rive at the following form of Dirac s equation in Kerr-
Newman geometry:

(1+x ) =k(1+x )'/E+[ —co@(1+x ) —aZx
gx

we have, on putting in (28)

r =ax,
b, =a (1+x —2.36X10 x+1.73&&10 ) . (33)

+m+cox(1+x )'/ ]G,
(37)

(1+x ) = —k(1+x )' G+[coe'(1+x )+aZx2 ~G 2 1/2
Qx

The function K(r), given in (A) as

K ( r) = ( r +a )o eZr +am—, (35)

reduces to

Except for the immediate vicinity of the origin, i.e., when
x =O(10 cm), we have, to a high approximation,

6=a (1+x ) . (34)

—m+cox(1+x )'/ ]I' .
(38)

Following Chandrasekhar, Page showed that the wave
functions of Dirac's equation in Kerr-Newman geometry
can be represented, in Boyer-Lindquist coordinates, in the
form

/=exp(io T+ imp) [(r+ia cos0) ']R (r)S(0), (39)

K—:aX., X=[—co@(1+x )+m —aZx] . (36) where

Here a denotes the fine-structure constant, m is the mag-
netic quantum number, —e the charge of the electron,
and eZ the charge of the nucleus.

R (r) =R )/2(r) =F(r)+iG(r) . (40)

The differential equation (real) obeyed by the angular
function S(0) given in (A) is

2
1 d . dS co sinO dS 1

sin0 d0 d0 (k+cocos0) d0

2
m —(1/2)cos0 3 2 2——+2coem —m 6

sinO

+ —cosO+messn O —m —co cos 0+k S =0
(k +co cos0) 2

(41)

The second-order differential equation (complex) for R (r) given in ( A), and which is equivalent to the pair (37) and (38),
1s

( 1 +x 2
)
1/2

( 1 +x 2
)
1/2 dR + 2

Zicoex —iaZ+— . —co x —k R =0 . (42)
waco(1+x ) dR X ixX —. . coX

(k + icox) dx (1+x2) (k + icox)

Equations (41) and (42) are a pair of simultaneous equa-
tions for the determination of the coupled eigenvalues k
and e, a phenomenon encountered previously by Teukol-
ski in a related astrophysical problem. k is no longer an
integer, 1ike ko given in Eqs. (8) and (9), but is a function
of e.

Another version of Dirac's equation in Kerr-Newman
geometry, which facilitates comparison with Eq. (42), is as
follows. Write

R =I'+iG, T =F—iG,

whereby Eqs. (37) and (38) become

(1+.x ) =i [coe(1+x )+aZx —m]R
dA 2

+(k+1+ +xicox+1+x )T, ': (44)

(1+x ) = i [co@(1+x )+—aZx —m]T8T 2

Qx

x = i cosr, R =Hsing'—Q(r), (46)

so that the segment of the imaginary axis of x extending
from x = —i to x = +i corresponds to the range
0&r &a., we obtain an equation for Q which resembles
the equation (41) for S(0), except for the terms i aZ:

+(k't/1+ x icox+1—+x )R . (45)

Elimination of T from these equation leads to Eq. (42).
A significant feature of Dirac s equation in Kerr-

Newman geometry, as given in Eqs. (37), (38), and (41), or
in Eqs. (41) and (42), is that the magnetic quantum num-
ber m is built in these equations, in contrast to the degen-
eracy of the hyperfine-splitting levels in Dirac s equation
in flat space. The hyperfine splitting need not, therefore,
be treated as an external perturbation.

Finally, we wish to point out a curious result. If we
write in Eq. (42)
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d . dg co sinr dgsin~
sinr dr dr (k+cocosr) dr

1—+coE cosw
2

2 r

m +EaZ cosr —( 1/2) cosr
sin~

2

+2coE(m +'EaZ cosT) —co e'
3 2 2

4

+ —cosr+coesin r —m EaZ—cosr ro —cos r+k +iaZ g =0. (47)
k +co cos7 2

For values of r »a (x » l), Eqs. (37) and (38) reduce
to the fiat-space equations (6) and (7). Not only is the
asymptotic behavior of the two solutions similar, but also
throughout the region where the amplitude of Dirac's
wave function is appreciable, the deviation is small. How-

ever, a close inspection of the behavior of the solution of
Eqs. (37) and (38) near the origin shows that we are faced
here with a novel type of eigenvalue problem in quantum
mechanics. A solution of Dirac s equation in Kerr-
Newman geometry will be given in a forthcoming paper. '
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