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The surface phases of a nematic liquid in the presence of a smooth substrate are studied using
Landau —de Gennes theory. The alignment of the nematic director is restricted to be either parallel
or perpendicular to the substrate, although methods of treating more general structures are indicat-
ed. We describe extensions and a synthesis of earlier studies which obtained analytic solutions of the
theory in certain limits, including surface-induced biaxiality, to determine the domains of wetting by
planar and homeotropic nematic films as well as by the isotropic phase, as a function of surface-
interaction parameters. The relation of wetting to orientational transitions in the surface-induced
bulk alignment is discussed. The "parabolic approximation" recently introduced in related contexts
is used to obtain solutions of the theory in more general circumstances where exact analytic solu-
tions are precluded. It is found that, for realistic values of the ratio of model elastic constants, com-
plete wetting by planar nematic films exhibits "reentrant" behavior and does not occur for arbitrari-
ly strong substrate potentials. We argue that this outcome is not an artifact of the parabolic approx-
imation, despite several deficiencies of the method. The relevance to experimental studies of
nematic-liquid —substrate interfaces is described.

I. INTRODUCTION

Liquid crystals are prime examples of systems which
exhibit what may be called "surface-induced ordering. "'
There have been several observations of enhanced stability
of nematic and smectic phases near interfaces, as evi-
denced by their relative adsorption or wetting behavior. '

Nonetheless, even in the simpler, prototypical case of a
nematic liquid crystal, fundamental questions concerning
the interfacial-ordering process remain to be answered.
The main difficulties facing theoretical analyses stem
from the fact that the interfacial structure of nematic
liquid crystals generally must be characterized by multiple
spatially varying order parameters, even when a single-
order-parameter description suffices in bulk.

As stressed in some recent works, ' orientational order-
ing of uniaxial molecules at an interface along a "direc-
tor" axis n which does not coincide with the interface
normal is always associated with broken biaxial symme-
try. The director itself may also vary through the inter-
face. Biaxiality plays an essential, if not often recog-
nized, role in distinguishing between various types of in-
terfacial structure, for example, between "random planar"
and "homogeneous" (planar aligned) states of a nematic
film adsorbed from the bulk isotopic phase onto a sub-
strate which favors parallel molecular orientation. Recent
observations ' of homogeneous nematic films on sub-
strates which have not been treated (e.g. , by "rubbing" or
by preadsorption of a suitable material) so as to favor a
specific direction of alignment in the surface plane sug-
gest the importance of spontaneous symmetry breaking as
opposed to "topographical" mechanisms for the develop-
ment of surface order.

There have been several previous studies of nematic-
liquid —substrate interfaces using the well-known
Landau —de Gennes theory. ' ' With the exception of

the most recent work by Sluckin and Poniewierski, ' all of
these ignored biaxiality and hence, in effect, were limited
to describing orientational ordering along the interface
normal, i.e., in "homeotropic" alignment. The solutions
of the theory in that case yield adsorption and wetting
behavior typical of systems with Ising-like symmetry. '

The work in Ref. 13 goes a significant step further by ac-
counting for biaxiality and spontaneous ordering in planar
nematic films. This was achieved by analytic solution of
the Landau —de Gennes theory in the singular limit that
the elastic constant L& of that theory vanishes.

The present article describes generalizations of the
above work in several directions. An outline of the main
topics treated is as follows. Section II begins by summar-
izing the Landau —de Gennes' ' formalism for a nematic
fluid near a smooth substrate, accounting for biaxiality
and arbitrary director alignment. An accompanying ap-
pendix provides details on the origin of substrate-
dependent terms entering the theory. Some preliminary
aspects concerning the spatial variation of the director
and how it is influenced by both the elastic constants and
parameters of the model fluid-substrate interaction are
discussed. We also point out the relevance of the identity
of the bulk Landau —de Gennes free energy with that ob-
tained for the three-state Potts model. '

The remainder of the paper examines the solutions of
the theory when the alignment is restricted to be either
planar or homeotropic. (In several situations involving
wetting-layer growth, such solutions are probably unstable
relative to ones exhibiting director distortion, but detailed
treatment of the latter is deferred to future work. ) Section
III discusses some further consequences of the one-order-
parameter limits where analytic solutions can be achieved.
We point out the occurrence in the Sluckin-Poniewierski
limit' L

&
——0 of additional types of behavior beyond

those explicitly described in Ref. 13, viz. , partial wetting
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by a biaxial nematic film at bulk nematic-isotropic coex-
istence, and continuous wetting transitions. ' The former
state probably characterizes the homogeneous films ob-
served ' on tangentially isotropic substrates. We also dis-
cuss the solutions of the model in the regime of wetting
by the isotropic phase, and a closely connected orienta-
tional transition between planar and homeotropic align-
ment.

Section IV describes the application of an approximate
method recently developed in related contexts' ' to ob-
tain analytic solutions of the theory in cases of planar
alignment when L

& & 0. A striking result found is that,
for what are believed to be experimentally relevant ranges
of the elastic constants, there are wide domains in the
space of surface parameters where complete wetting by
planar nematic films does not occur, no matter how great
is the strength of the nematic-liquid —substrate aligning
potential. While we cannot rule out that such an outcome
is due to the approximate method of solution, or to the
neglect of fluctuations inherent in a mean-field approach,
an argument supporting the qualitative validity of the re-
sults is given in the concluding Sec. V. The absence of
any observed cases of complete —as opposed to partial—
wetting by biaxial nematic layers on isotropic substrates
(noted in Ref. 5), and the analogy to the restricted domain
of complete wetting by solid films, ' ' are also consistent
with this finding.

II. LANDAU —de GENNES THEORY

A. Suxnxnary

erally specified by five independent variables, namely g,
p, and the direction cosines of its axes relative to the labo-
ratory frame.

We assume that the nematic fluid occupies the semi-
infinite region z&0 and is in contact with a flat wall
representing the substrate at z=0. Neglecting fluctua-
tions, g can be assumed to vary only in the z direction.
The Landau —de Gennes theory is then based on minimiz-
ing the surface free-energy functional (per unit

)
5, 10—13

C7 = dz G Z + L z —L b

fi (Q) =2 Trg~ —BTrg3+C(Trg~) (2.4)

Trg + k.g .k, (2.5)

where Tr denotes the trace operation and k is a unit vec-
tor along z. The phenomenological parameters B, C, L&,
and L2 are taken to be constants, while 3 is linearly relat-
ed to temperature. What we can call the "bare" surface
energy fs will be modeled by an expression, first intro-
duced in Ref. 5, which is the nematic analog of that wide-
ly encountered in Landau theory of an Ising-model sur-
face 25, 26

+fs(g(0)) (2.3)

where Qb
—=Q(z~ oo ) is the bulk order-parameter tensor

and Q(z)—:dg(z)/dz. The conventional symmetry-
allowed expressions for the local bulk free-energy density
fL, and elastic energy density fG are

We shall begin by summarizing the main constituents
of Landau —de Gennes theory for a nematic fluid in the
presence of a substrate. (A recent comprehensive review
is given in Ref. 5.) Picturing the nematic fluid as com-
posed of uniaxial rodlike molecules with inversion sym-
metry, we follow custom in taking the basic order param-
eter to be the tensor

(2.1)

where e is a unit vector along the symmetry axis of a mol-
ecule at position r, I is the second-rank unit tensor, and
the angular brackets denote a thermal average. Due to its
traceless, symmetric character, g can always be represent-
ed as

V3
Q(r) =~(3n n —I)+ p(1 1 —m m),

2 2
(2.2)

where the unit vectors l, m, n form a local orthonormal
triad. (The arbitrary factor of v 3 multiplying the second
term has been inserted for later convenience. ) The direc-
tion of maximum orientational ordering will by conven-
tion be associated with the director axis n. The presence
of any spatial nonuniformity in a direction which does not
coincide with n breaks the cylindrical symmetry of the
average molecular environment, hence we must generally
allow Q(r) to be biaxial, i.e., @&0,despite the assumption
of uniaxial molecular symmetry. Biaxiality arises in
bulk smectic-C (Ref. 23) and cholesteric liquid crystals
for entirely the same reason. The tensor g is thus gen-

fs(g)=c1k Q.k+c2Trg2+c3(k Q k) +c4k Q2.k,
(2.6)

where c1—c4 are constants. This model for fs assumes
that the ordering axis due to the wall has no preferred
tangential component (e.g. , the substrate does not contain
"grooves"), and is the most general expansion of the sur-
face energy to quadratic order in Q consistent with that
tangentially isotropic symmetry.

In the Appendix, we discuss how one can approximate-
ly derive (2.6) from a molecular mean-field theory. ' In
that model, as is similar to the case of an Ising-model sur-
face in mean-field approximation, ' the coefficients c2,
C3 and c4 of the quadratic terms in fs arise from modifi-
cations of the mean potential between two molecules near
the substrate. The coefficient c& has contributions both
from that effect and from the direct wall-molecule in-
teraction, and is analogous to the "surface magnetic field"
in an Ising model. Despite limitations on the validity of
(2.6) within a molecular context, as spelled out in the Ap-
pendix, one point deserves emphasis. Consistent with the
representation of fG in (2.5) containing at most squared
gradients of Q, we can rule out the occurrence of any
terms in fs depending on normal gradients of Q(0), such
as have been proposed in some formulations.

In the neglect of fluctuations, especially "twist" excita-
tions, we can assume n to be always in a single plane, say
the xz plane. The orientation of the triad n, l, m then de-

pends on only a single angle g=cos '(n k), depicted in
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(2.7)

for all z & 0, where P;:—dP;/dz, and an "initial condition"
at the wall

dfG

aj, (0)

dfs
ay, (0)

(2.8)

The variables g and P are taken to approach constant
values gs, gb in the uniform bulk phase as z~oo,'when
that phase is isotropic, gb

——0 and fb is irrelevant. The
order parameter p vanishes as z~oo, reflecting the ab-
sence of bulk biaxiality.

Fig. 1, which may be interpreted as a local tilt angle. Let-
ting P;, i = 1,2, 3, denote any one of the independent vari-
ables g, p, , and g, minimization of o in (2.3) by standard
methods leads to the Euler-Lagrange equations,

d ~fG
(fG+fI. »

dz

fs =wp +w2cos P+ w icos

where, in particular,

(2.10a)

and typical experimental' as well as theoretical values
of the latter, however, suggest that L2 normally should be
positive, with ratio L2/I.

&
in the range 2—4. For nonzero

L2, a constant value of g is consistent with (2.9) only
when P is either 0 or ~/2, which correspond, respectively,
to preferred perpendicular (homeotropic) or planar orien-
tation. Previous work ' indicates that these are the most
stable solutions of the Landau —de Gennes theory for a
free nematic-isotropic interface when I.2 is negative or
positive, respectively.

The alignment favored by the bare wall energy fs
(which is all that matters when L2 ——0) has been discussed
previously ' on assuming neglect of biaxiality, but essen-
tially similar results are obtained when the latter is includ-
ed. On finds that fs becomes

B. Remarks on the tilt angle

We draw attention to a few aspects governing the tilt
angle g. By rotational invariance, the bulk free-energy
density fl defined in (2.4) is independent of g. The gra-
dient energy fG in (2.5) can be found explicitly in terms of
I p;, p; I using (2.2) and the geometry illustrated in Fig. l.
We shall not give the somewhat complicated expression
that results [an equivalent but formally simpler expression
is in (2.17) below], but rather state the equation which
then follows from (2.7) for P; =g,

2v 3(2Li+L2) (v 3q —p)
d 2dp
dz dz

d2
=L3[sin(2$)](v'3g —p) (i)+v'3p) .

dz
(2.9)

In the special circumstance that L, 2 ——0, this equation in-
tegrates to P(z)=const, on taking account of the "final
conditions" in bulk. In that case, g is determined by the
solution of de/c)/=0, cf. (2.8), which minimizes fs. Re-
lations between the L; and the Frank elastic constants

V3
wq —— (v 3q —p)[c~+c3(v 3p —q)

2

+ c4(V 3p+ri)/2],

wg ——3C3(V3g —p) /4.

(2.10b)

(2.10c)

ci — i (c3+c4)(71+v 3p, ) (2.11)

In general, the most stable alignment must be found by
minimizing the tota/ free energy o.. Nonetheless, we shall
see later that (2.11) closely preserves the relation between
the coefficients c at a planar-homeotropic transition,
provided (g+V 3p) is replaced by a suitable "effective"
surface order parameter.

In the remainder of this paper we shall limit considera-
tion to the constant-g solutions, either /=0 or g=vr/2,
of the Landau —de Gennes theory. We shall point out a
number of situations, however, where those solutions are
likely to be less stable than ones which admit a spatially
varying g(z).

The order parameters and tilt angle lij in these expressions
are those pertaining to the fluid layer at z =0 in contact
with the wall. The extrema of (2.10a) are at /=0, vr/2,
and at an oblique angle satisfying cos le= —wz/2w4,
where the latter is the stable solution when
0 & —w2 & 2wq. If we ignore this possibility (e.g. , by de-
creeing the coefficient c3 to be negative), then fs favors
either planar or perpendicular alignment according to
whether the sum wz+m4 is positive or negative, respec-
tively. A transition between these states occurs when
( wz+ w4) vanishes, which is equivalent to the relation

C. Transformations of the free energy

Before proceeding, it is convenient to scale out material
constants by defining

g=6Cq/B, p =6Cp/B, t =24AC/B (2.12a)

FIG. l. Orientation of the principal axes of the g tensor con-

sidered in this paper. Both axes n and I are in the xz plane.
Appropriate reduced distance and energy densities are,
respectively, z =z/g and
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24
, 2

2
24 C3f
g2 G

(2.12b)

2

C3o./g,

where g=[24C(Li+2L2/3)/B ]' . The coefficients in
the wall energy (2.6) will be scaled as c =(24C/B g)c
for m =2, 3,4, and c i ——(96C /B g)c i. Henceforth, it
will be understood that such scaling has been carried out,
and we shall omit the overbars.

Using the representation of Q given in (2.2), we find
that the bulk free-energy density fI becomes

f =t(ri +p ) —2il(rI —3p )+(21 +p ) (2.13)

g, = —,(1+3/1 —8t/9) . (2.14)

These minima or "fixed points" become metastable rela-
tive to the isotropic-phase minimum at (21,p)=(0,0) for
1 & t & —,, and disappear for t g —,, the superheating limit.
The isotropic fixed point is metastable for 0& t & 1, and
disappears for t &0, the supercooling limit. The degen-
eracy associated with the nematic fixed points reflects the
freedom in choosing any one of the axes n, I, or m in (2.2)
to be "the" director axis, i.e., that axis associated with the
maximum component of Q, and does not indicate the
presence of distinct phases. The conventional choice of n

This expression has the same form as the Landau free en-

ergy of the three-state Potts model, ' and is well known to
exhibit threefold symmetry in the (2),p) plane, see Fig. 2.
Below the first-order transition occurring when the di-
mensionless temperature t = 1, fL has three symmetrically
located global minima at (il,p) =(2)„0) and

(21, /2, +3/321, /2), where

where the new variables are related to rI, p, , and g by

(v 3' —p)sin f= ( —,(3e, —1)),V3 2 & 2

p, =p+ —,
' (V 3g —p)sin'g= (e„'—e'), (2.16)

v, = —,
' (v 32) —p)sin(2$) =&3(e„e,) .

The second entries on the right-hand side give the molecu-
lar interpretation of these variables following from (2.1).
The main advantage of this representation is that both the
elastic energy fG and wall energy fs acquire diagonal
forms in terms of g„p„and v, . Recalling the scaling
described above, evaluation of (2.5) and (2.6) with Q given

by (2.15) yields

M. 2fG= 22)s+ Ps+ s2 2
2 2 2fS C i gs +C2si 9s +C2IsPs +C2~Vs

where the reduced elastic constants are

L) I. i +I.2/2I. = M=
Li+2L2/3 ' Li+2L2/3

while the renamed surface coefficients are

(2.17)

(2.18)

(2.19)

as the director puts the physically relevant minimum at
(il,p)=(g„O). When p vanishes, (2.13) reduces to the
familiar Landau —de Gennes free energy of a bulk uniaxial
nematic liquid crystal. Physically equivalent descriptions
of the bulk nematic phase are provided along either of the
lines p=+v 3g in Fig. 2. It follows that although p~O
along those lines, they do not represent intrinsically biax-
ial states.

Now, it turns out to be practicable to reexpress Q in
terms of its components in a lab-fixed frame. Letting
i,j,k denote unit vectors along the laboratory x,y, z axes,
respectively, one finds (see Fig. 1 and note that j coincides
with m)

g~ Q3 ww ww g3
Q = (3k k I )+ —p, (i i —j j)+ v, (i 4+k i),

2 2 2

(2.15)

C2si =C2+ 2(C3 +C4)/3

C2p =C2

c2~ ——c2+c4/2 .

(2.20)

/
/

/
I
t
I

'9- Qc

FICz. 2. Fixed points (circles) of the Landau —de Gennes or
three-state Potts-model free energy fL. The dashed curved
shows the trajectory p (g) of (3.1).

When f is restricted to be either 0 or n./2, (2.16) shows
that the order parameter v, vanishes identically. ln this
case, one can verify that the free-energy density fl is
given in terms of the variables g, and p, by the same ex-
pression as in (2.13). One notes from (2.16) that rj, and p,
are identical to 21 and p when /=0, hence the associated
bulk nematic fixed point is at (rj„p, )=(2)„0), In con-
trast, when g =n. /2, that fixed point corresponds to
(i)„ps ) = ( —il, /2, W3g, /2). One could alternatively
describe the case of p=n/2 using the original variables 2)

and p, but the elastic energy would then be given by a
slightly less-simple expression than that in (2.17), and we
shall see that there is some advantage in using different
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fixed points to represent perpendicular and planar nemat-
ics.

For later reference we note from (2.16) that the condi-
tion p, =0 signifies the absence of ordering along any
specific axis parallel to the surface. In this circumstance
the alignment is random planar or homeotropic according
to whether g, is negative or positive, respectively.

The Euler-Lagrange equations in (2.7) and (2.8) still
hold when I P I stand for the variables (g„p„v, ). We
shall not refer to the original order parameters g and p, so
for notational convenience we shall henceforth drop the
subscripts on q„p„and v, . Neglecting the last of these,
we have

~ ~ L

3'g
(2.21a)

(2.21b)

for arbitrary z, where P;—:d P; /dz, and at z =0,

7)(0)=c&+2cz„g(0),

Lp, (0)=2cq„p(0) .

A first integral of (2.21) is

fo(e i ) =fi(n i ) fi(nb i b—) =~f~(n i »

(2.22a)

(2.22b)

where gb, p~ are the bulk values of the order parameters,
corresponding to the appropriate fixed point in Fig. 2.
The solution of these equations is discussed in the
remainder of this paper.

III. ANALYTIC MODELS

A possible solution of (2.21) and (2.22) when the bulk
phase is isotropic (t & 1) is p=0 for all z. The ability to
realize such a solution is connected to the absence of a
constant term in the initial condition (2.22b) analogous to
the c& term in (2.22a), which in turn reflects the absence
of a preferred tangential ordering axis imposed by the
substrate. If, at the same time, g is negative, then that
solution describes a uniaxial random planar state; howev-
er, as will be seen shortly, that state may become less
stable than one allowing for biaxiality.

When the bulk phase is nematic ( t ( 1), p, =0 is compa-
tible with the final conditions at infinite z only when the
alignment in that phase is homeotropic. As remarked ear-
lier, a planar-aligned (p&0) state would be uniaxial if the
order parameters satisfied p= —v 3g for all z. One can
easily verify, however, that such a relation is not compati-
ble with both Euler-Lagrange equations in (2.21) except
when L =1, i.e., L2 ——0. Even in the latter case, one
could not (except by accident) achieve consistency with
both initial conditions in (2.22). This proves the neces-
sarily of biaxiality for planar-aligned interfaces.

The one-component model that results when p is
decreed to be zero has been discussed in earlier work. '

The physically relevant solutions of that model are also
contained in the Sluckin-Poniewierski' model, to which
we now turn. The latter is obtained by setting I. ~L] ——0,
in which case (2.21b) simplifies to the algebraic relation
Oft /By=0. If the solution of this equation which mini-

mizes ft is denoted p'(q), we find from (2.13) that

p (71)=[(g+—g)(g —g )]'~ for g
(3.1)=0 otherwise

where

7)+ ————,(1+&1—2t/9) . (3 2)

The "trajectory" p'(g) at a temperature in the range
0& t & —, is indicated in Fig. 2. When this is used in
(2.21a), the latter reduces to an effective one-component
equation for the variable g. There is a subtle point, how-
ever. When L =0, the initial condition (2.22b) forces p(0)
to be zero unless the param. eter c2„——c2 also vanishes.
One might argue on the basis of the model in the Appen-
dix [compare (A8c) and (Age)] that it is consistent for L

&

and c2 to vanish simultaneously, but that is not necessari-
ly true in a more general phenomenological model. In the
following discussion we shall disregard the initial condi-
tion (2.22b); the legitimacy of doing so will be discussed at
the end of the section.

The solution of the model is easily obtained using the
relation (2.23), which becomes

g =sgn(gb g)+26 f—t (ri), (3.3)

where Aft (g) =hft (g,p*(g)). In the temperature inter-
val 0&t & —, the latter function exhibits local minima at
the bulk fixed points g= —g, /2, 0, and g„where the
first and last have equal free energy Afl and are absolute-
ly stable for t &1, while the minimum at g=0 is most
stable for t & 1. Taking account of the initial condition
(2.22a), this features leads to various possible wetting
characteristics on approaching bulk isotropic-nematic
coexistence, quite analogous to the behavior of other one-
component Landau models and easily discerned by the
same type of graphical analysis as applied to those
models. ' ' One difference arises in the present context.
When the bulk phase is nematic, and in the explicit ab-
sence here of any bulk ordering field or another wall
which fixes the alignment of that phase, the latter is not
arbitrary but rather must be chosen to minimize the inter-
facial free energy cr. This leads to the occurrence of an
orientational transition in the surface-induced bulk align-
ment when o.~ ~ ——o ~ z, where the subscripts denote
the interface between the wall and either bulk planar (N~~ )

or homeotropic (N~ ) nematic phase.
The resulting surface phase behavior at coexistence

( t = 1) as a function of the coefficients c
&

and cq„ is
shown in Fig. 3. The dashed line running through the ori-
gin is the locus of (first-order) orientational transitions;
the stable bulk alignment is homeotropic below that line
and planar above. The upper and lower solid lines in the
figure separate domains of complete wetting (CW) by the
nematic phase from regions of partial wetting. These
lines are light or bold according to whether the associated
wetting transition is first-order or second-order, respec-
tively. The second-order lines for wetting by X~~ and
Nz obey c

&

——c2„, c2„&&3/2 and c ~
—— 2c2„, —

c2„&1/U 2, respectively. The latter was described earlier
by Poniewierski and Sluckin, ' while continuous wetting
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29
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FIG. 3. Surface-phase diagram of the Sluckin-Poniewierski
model at bulk N-I coexistence. See explanation in text.

by NI~ was not discussed by those authors in their later
work, ' which was restricted to c2&

——0. A concomitant
generalization of that work is the existence of biaxial
partial-wetting N~~ films when the bulk phase is isotropic.
These are stable within the partial-wetting domain above
the upper dotted line in Fig. 3, which is a locus of con-
tinuous transitions to random planar states. This line is
eventually preempted by the first-order N~~ wetting line.

The first-order wetting lines join at a triple point in the
region of negative c2„, which is believed to ensue under
sufficiently strong "surface enhancement" of the pair in-
teractions; cf. the Appendix. For smaller values of c2„
the separate wetting lines are replaced by a line of direct
transitions between planar and homeotropic CW configu-
rations. Notice that the latter lies slightly below the line
of bulk orientational transitions. One suspects that the
features shown in this region, and indeed along the whole
Nz wetting line, will be modified when the constraint of
constant alignment is relaxed. For example, the prefer-
ence for planar alignment at the free nematic-isotropic in-
terface (Sec. II B) should induce a distortion of the direc-
tor in homeotropic wetting films. For analogous
reasons, planar wetting films in the region below the bulk
orientational transition line should distort to favor
homeotropic alignment near the wall.

The final domain exhibited in Fig. 3 is that of complete
wetting by the isotropic (I) phase. This is enveloped by a
line of second-order wetting transitions along the c&

——0
axis, a brief first-order wetting line extending to negative
values of ci, and the line of orientational transitions. The
first- and second-order wetting lines meet at a critical
endpoint. The continuation of the first-order line at posi-
tive values of c& is a locus of symmetry-breaking transi-

where

+O(L "), (3.4a)

and

& = [pQ(0) —p(0)]/[pQ(0)+p(0)] (3.4b)

tions in the wall-nematic (N~~) interface, such that the
fluid layer immediately adjacent to the wall is uniaxial
below that line and biaxial above. This transition is very
briefly first order, indicated for clarity by a solid line, and
then changes to being continuous at larger values of c&,
indicated by the lower dotted line in the figure.

Some aspects of the isotropic wetting region are sug-
gested by arguments which transcend the Sluckin-
Poniewierski model. First, one notes that complete wet-
ting by I when the bulk nematic alignment is homeotropic
should always be unstable with respect to complete wet-
ting of bulk N~~, hence unstable relative to partial isotro-
pic wetting of N~~ when the latter is favored. This is seen
by application of Antonow's rule to the free energy of
the wall-nematic interface in the presence of an isotropic
wetting layer, once again using the fact that the free ener-

gy of the isotropic-nematic interface is minimized by pla-
nar alignment. By extension, it follows that complete iso-
tropic wetting of N~~ could be favored over partial wetting
of Nj for certain parameter ranges, as borne out by the
model.

The orientational transition line in this region is
very close to being linear, for large c2& obeying
c& ——0.691c2„. This should be compared with the rela-
tion in (2.11), which under the rescaling described in Sec.
II C and with the definitions in (2.20) becomes
c~ ———(c2&/2)(g+W3p) when cz„——0. This evidently
fits the model result using an effective value of g+ v'3p
somewhat larger than its value (equal to unity) at the
nematic fixed point.

As usual, ' ' ' all of the first-order lines in Fig. 3 have
associated first-order transitions —either "prewetting" or
orientational —which extend to temperatures away from
coexistence. Orientational transitions on approaching
coexistence have been seen by tilt-angle measurements on
SiO substrates, which tend to exhibit complete or nearly
complete wetting by the isotropic phase. ' These transi-
tions appear invariably to be continuous in nature, and we
anticipate that a similar result would be given by the
theory on allowing for director distortion. We shall com-
ment some more on this at the end of Sec. IV.

We conclude this section by discussing the effects of
nonzero coefficient cq& in the initial condition (2.22b). As
remarked earlier, that formally leads to the condition
p(0) =0 when L =0, which is incompatible with use of
the trajectory p*(g) of (3.1) when g(0) falls between q+
and g . This can be resolved, however, by asymptotic
analysis of the theory in the limit L~O. If the solution
for the order parameter p(z) obtained above with L =0
and on disregarding the initial condition (2.22b) is now
denoted by pQ(z), we find that the correct p(z) differs
from that result over a region of width O(L '~

) and is
given in this domain by the expression

2+2po(0)z/L I

p(z) =pQ(z) —2KpQ(0)/(E+e '
)
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p(0) = [po(0)+c&„/2L]' c—2„/&2L (3.4c)

To the same order in L the function t}(z) is unchanged
under this analysis. When cz„——0, (3.4} reduces to
p(z)=po(z), while the finite deviation [p(z) —po(z)] re-
sulting from positive values of cz„yields a contribution of
0 (L '~

) to the interfacial free energy o and hence can be
disregarded in the limit L~O. It is apparent, however,
that the limit L~O leads to a singularity when c2& &0,
unless this coefficient simultaneously varies proportional
to L' . The interpretation of this singularity is not cer-
tain, although the relation of L ~ L

&
to the twist elastic

constant ' suggests that it signals an instability with
respect to spontaneous surface-induced twist deforma-
tions. Similar instabilities at negative values of c2& are
found when we relax the condition of vanishing L, to be
described in the Sec. IV.

IV. PARABOLIC APPROXIMATION

I f—2.0 -1.7 I—1.4 -0.8 —0.5
I-0.2

A. Method

We adopt an approach recently applied to several relat-
ed interface problems described by multicomponent Lan-
dau theories. ' ' While the method has a number of
shortcomings and limitations on its range of validity, as
will be pointed out, it provides an instructive first step to-
ward elucidating the behavior of multiple-order-parameter
nonuniform systems.

In this approach, the function fL(q, p) is approximated
at each point (7},p) by min[f1(g, p),f~(g,p)], where
fl(rj, p) and f~(g,p) are quadratic functions which fit the
exact fL near each of its fixed points. ' ' (Related ideas
have been discussed in Refs. 38 and 39.) Near the isotro-
pic and planar nematic fixed points of Fig. 2 we have
from (2.13),

I \

/

\

/
\

f,(g,p) = t (q'+ p'), (4.1) I 1 I-2.0 —1.7 —1.4 —0.2

tv(n p) =fr+ 2f„~(n+n. /2)'+f„„(p v3nc/2)'—
+fq„(ri+ rI, /2)(p —~3', /2), (4.2)

where f, =f1 ( —g, /2, W3g, /2)=fI (g„0) and fez, f»,
and f„„are the appropriate second derivatives of fL
evaluated at the point ( —g, /2, v 3g, /2). An expansion
equivalent to (4.2) also holds near the homeotropic nemat-
ic fixed point of Fig. 2. On both physical and mathemati-
cal grounds solutions which occur in this region should be
uniaxial and thus can be derived exactly, as described in
Sec. III. To compare surface free energies in some situa-
tions of competing alignment, nonetheless, for consistency
we have also applied the "parabolic approximation" to
those one-component cases.

Formally, this scheme is restricted to the range of tem-
peratures between the supercooling and superheating lim-
its, 0 & t & —, , and in practice to temperatures very near
coexistence. One can show that the contour defined by
fl(q, p) =f&(rl,p), separating domains of the (ri,p) plane
in which one or the other quadratic function is smallest, is
elliptical about the nematic fixed point for 0& t & 1, hy-
perbolic for 1& t & —', , and parabolic at t =1. The last
case is shown in Fig. 4.

FIG. 4. Selected phase-plane trajectories in parabolic approx-
imation for wetting by the planar nematic phase. The dot-dash
curve is the matching line satisfying fz(g, p)=fz(g, p). (a) A
typical reentrant trajectory (solid line), under conditions
L2/L& ——20, c2„——4, c2„——O. S, cl ——9.2. (b) Trajectories near a
continuous wetting transition, for parameters L2/L 1

——10,
c2„——3, cq„———0.2. The dashed curve corresponds to partial
wetting, with c~ ——1.2, while the solid curve describes complete
wetting, at c& ——1.36S.

For concreteness, we shall illustrate the method of solu-
tion when the bulk phase is isotropic. As would be ap-
propriate for a case of complete or near complete wetting
by the planar nematic liquid let us suppose that the initial
point (g(0),p(0)} is located within the "nematic region"
on Fig. 4 so that the phase-space trajectory subsequently
crosses into the "isotropic region" and thereafter proceeds
toward the bulk I fixed point. (More complicated "reen-
trant" trajectories, cf. Fig. 4(a), can also arise and will be
discussed later. ) Using (4.1), the solutions of the Euler-
Lagrange equations (2.21) in the final, isotropic region



1398 A. K. SEN AND D. E. SULLIVAN 35

must be decaying exponentials for z greater than some
distance l,

t)(z) =d„e- "'—'I, t &z & ~

) d —v 2,t/t (z —I) i (z
(4.3)

A, , (z —I) —A, ;(z —1)
4;(z)=d;~e ' +d;2e ', i =1,2 (4.4b)

and the four d;J are coefficients to be determined. The
decay constants k; are related to the second derivatives in
(4.2) by

27 '=f„„+f„„/L+[(f„„f„„/L)'—+4f '„„/L l '",
(4.4c)

while the parameter a is given by

a=f„„/[~L(7 2 f„~)l . — (4.4d)

Requiring continuity of t)(z), p(z), and their first
derivatives at z =l, as well as applying the initial condi-
tions (2.22) to the solutions (4.4) in the nematic region,
supplies six linear relations for the unknown parameters.
These can be used to express the coefficients dz, d„, and
d,j (i,j =1,2) as functions of the matching distance l. A
final, nonlinear equation for the latter variable is provided
by the condition that the point {t)(l),p(l)) lie on the con-
tour where the paraboloids ft and f& intersect. Alterna-
tively, one can use the above results for g(z) and p(z) to
evaluate the surface free energy o. given by (2.3), and then
minimize the latter with respect to l. ' The equivalence
of these procedures follows from the relation, valid for ar-
bitrary nonequilibrium values of 1,

do w t(l)-=f~(ri(l), p(l) ) ft(ri(l), p(1) ), — (4.5)

where the subscripts on o. designate that it is the free ener-

gy of the interface between the wall and bulk isotropic
phase. It is clear that l plays a role here similar to that of
the usual order parameter for describing wetting transi-
tions, namely the thickness of the wetting layer. '

A straightforward calculatiun gives the intermediate ex-
pression

Qc
ow t(i)=

4
d'g

dz = I dz I

C) C2~
[q(0) —q, /2] — t), q(0)

v3+ C2tz'%p(0) .
2

(4.6)

This is observed to be a linear function of the coefficients

where d& and d„are constants to be determined. Inside
the nematic region, the solutions of (2.21) are easily found
by diagonalizing the quadratic form in (4.2) (after ap-
propriate rescaling by powers of L), giving the results

g(z)+t), /2=4~(z)+a@2(z), 0(z & 1
(4.4a)

p(z) —W3t), /2=[ —a@~(z)+4q(z)]/VL, 0&z & I

where

d„, d„, and d;~; by substituting for these in terms of l, a
final expression for crw t(l) is obtained. The latter is gen-
erally rather complex and we shall display it only in some
special cases [see (4.7) and (4.8) below].

As described later, one very often finds that the abso-
lute minimum of o w t(l) occurs at 1 =0. Such a solution
is equivalent to the one obtained by having assumed at the
outset that the initial point (g(0),p(0)) was located in the
isotropic domain of Fig. 4 and that the trajectory never
entered the nematic region. The order parameters are
then given by (4.3) for all 0 &z & oo, and the relevant coef-
ficients d&, d& trivially obtained by using the initial condi-
tions (2.22). One finds that d&

——0 (except in the cir-
cumstance that 2c2„+V'2tL =0) and

2
C) C)

trw t(l =0)-= dq =—
2 " 2(2c2„+V2t )

(4.7)

B. Results

It is worthwhile first mentioning results for the free en-
ergy crt ~ of the interface between coexisting isotropic
and planar nematic phases. These are shown in Fig. 5 as
a function of the reduced elastic constant L, correspond-
ing to both positive (0&L & 1) and negative (L & 1)
ranges of the original elastic constant L2. In the figure
oi ~ is normalized by the free energy oi & of the

II 1

isotropic —homeotropic-nematic interface, calculated in
parabolic approximation. The latter has the value [in our
reduced units, cf. (2.12)] crt tv

—v 2/4, in contrast to the
1

exact model result v 2/6. The limiting value of the ratio
ot tt /crt ~ as L~0 is (3—v 3)/4=0. 317. This number

II I
is bracketed in the figure by two points calculated using
the exact result in the Sluckin-Poniewierski limit,
ot ~. (L =0)=0.10575. . . , normalized by either the ex-

II

act or parabolic value of o.r & . A similar bracketing is
1

shown using the numerically determined value o.i &

The vanishing of d&, hence of p(z), in this case indicates
that all trajectories to the bulk isotropic phase which do
not begin in (more generally, do not pass through) the re-
gion of the nematic fixed point are forced to be uniaxial.
A corollary follows from (4.5). Since f» ft whenever

p =0, it ensues that do w tldl
I t o& 0. This implies that

there is always a free-energy barrier between uniaxial
(random-planar) and biaxial states at the wall —isotropic-
phase interface, hence that any transitions between these
states must be first-order. We are uncertain whether or
not this is an artifact of the parabolic approximation.

Modification of the above procedure when the bulk
phase is the planar nematic, subject to partial or complete
wetting by the isotropic phase, is straightforward. We re-
mark only that, in contrast to the preceding case, there is
no necessity for dcrw tv /dl

I t 0 to be positive. ' One

further case, which is contained in either of the ones
above when there is complete wetting at coexistence, is
that of the free isotropic-nematic interface. The matching
distance l for the latter by itself is arbitrary and can be set
to zero, ' ' where the bulk nematic (isotropic) phase may
be chosen to be at z = —oo (+ ce ), and —ao & z & m.
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FIG. 5. Ratio of nematic-isotropic interfacial free energies vs

reduced elastic constant L, in parabolic approximation. Circles
3

give values of the ratio using exact results for a.i ~ at L =
7

ll

(Ref. 6) and L =0, corresponding to either exact (~ ) or approxi-
mate (0) values of o.i ~, .

I = oo . Analysis of (4.8) reveals, however, that
o.~ i(l = oo ) is smaller than a.~ i(l =0) only when c2 &0,
and then only for values of c

&
in a finite interval

c'& ' &c& &c'& ', where c'&
—' are given as a special case of

(4.9) below. Within this interval o~ i(l = co) yields the
global minimum of the free energy and hence complete
wetting is stable. Otherwise, the global minimum occurs
at l =0, which corresponds to partial wetting by planar,
but uniaxial, nematic layers. What is striking is the ex-
istence of an upper limit c'~ ' to the surface field c]
beyond which complete wetting is not stable. This is rem-
iniscent of the reentrant wetting behavior exhibited by
solid films.

Essentially the same picture is obtained when we allow

c2& and c2& to differ. Still keeping L =1, a somewhat
more involved analysis again shows that complete wettin~
by X~~ occurs only in the domain c2& &0, c'& & c& &c &+,
where

=0.178 at L = —, . While there are clearly quantitative
discrepancies in the parabolic approximation, of more sig-
nificance here is that the results show that the approxima-
tion is consistent with the predicted' orientational
behavior at a free interface, favoring planar (homeotropic)
alignment for positive (negative) values of Lq. The results
to be described from now on will pertain to the experi-
mentally expected range L2 & 0.

We now focus on the limits of complete wetting by pla-
nar nematic layers of the wall —isotropic-phase interface,
as a function of the interaction parameters c and elastic
constant L. This regime turns out to be quite restricted.
One can see this rather easily in the case L =1 (i.e.,

Lz ——0), the opposite extreme to the Sluckin-Poniewierski
limit L =0. At coexistence, and under the further simpli-
fication that c2 ——cq„=—c2—essentially the surface analog
of the isotropic elastic constant limit —we find explicit-

41

V2 (c) —4cq)
cr~ i(I) = +(c~—c, /2)—

4 16 ( 2c2+ 1)

(c) —4c2) ~-I v'2 (V2c2 —1)21+ —2 21

2(v 2c2+1) 4 (v'2cz+ I )

3v'2

[2(v 2cz+ 3)+(V 2c2 —3)e ]

(4.&)

This expression becomes singular as c2~( —1/v 2) from
above; see also our remark before (4.7). Similar singulari-
ties are encountered in more general cases when c2„
and/or c2& become sufficiently negative; those associated
with negative c2& are believed to signal the collapse of the
parabolic approximation in situations of strong surface
enhancement, cf. Fig. 3, while those associated with nega-
tive c2„are related to the twist instability described at the
end of Sec. III. Away from such regions, we can apply
well-known arguments" ' ' to discern the stable wet-
ting states of cr~ i(l) In partic. ular, complete wetting by

occurs when the global minimum of o ~ I(l) lies at

c'&-' —— [(V2cz„+1)(v 2c2„+3)
3

+2[v 2~ c2„((V2cq„+1)D]' I l v 2c2„+1)

(4.9)
D =6+5v 2cq&+3v 2c2&+4c2&cz& .

This result holds for arbitrarily large positive values of
c2„,. the common value of c

&

— as c2„~0 is described by
(+)

the line c~ ——2c2&+v'2. Instabilities now transpire as(+)

either c2„or c2„approaches the value —I/V2. One
notes that c'] ' &0 for sufficiently negative values of c2„.
In such a range of c~, we can expect to find (cf. Fig. 3)
competition between planar and homeotropic nematic
wetting layers. The significance of such competition is
subject to the same doubts expressed in in Sec. III, so we
have not examined it in detail.

When L &1, the algebraic complexity of the model
solutions precludes obtaining concise analytic expressions
for the free energy, and we have relied on numerical scans
of o ~ I(l). We find that the features described above are
shifted in the direction of positive c2„. This is indicated
by the phase diagram in Fig. 6, corresponding to the
(empirically large) ratio value L2/L ~

——10, which exhibits
the dome-shaped surface of wetting and, at larger values
of c ~, dewetting transitions in the three-dimensional
(c~,cq&, cqz) space. Consistent with the discussion given
above, the transitions across most of that surface are first
order. In addition, however, there now appears a section
of continuous wetting transitions at large, positive c2„,
and negative c2„. As required by the argument near the
end of Sec. IVA, each continuous wetting transition is
preceded by a first-order uniaxial to biaxial symmetry-
breaking transition ( similar to what is called, in a related
context, a "partial wetting" transition ). The surface
representing the latter transitions is not exhibited in Fig.
6, but is actually the smooth continuation of the surface
of first-order wetting transitions. All three surfaces meet
along the dashed seam in the figure, which is a line of
critical endpoints. Notice that a slice through the dia-
gram at constant c2& which intersects that seam would
generate a phase diagram similar to that in the upper
right corner of Fig. 3, if we overlook both the first-order
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We draw attention in Fig. 4(b) to the typical behavior of
phase-space trajectories in the vicinity of a continuous
wetting transition, showing a pair of trajectories appropri-
ate to states close to but on opposite sides of the transi-
tion. One observes that, in contrast to the behavior of all
one-component Landau models and of that assumed in
the multicomponent models of Refs. 38 and 39, the con-
tinuous transition does not proceed with the initial point
(il(0),p(0)) passing through the bulk fixed point. Instead,
a section of the trajectory away from the initial point ap-
proaches the fixed point. Those sections of the complete-
wetting trajectories in Fig. 4 which encompass that of the
free nematic-isotropic interface should be compared with
the trajectory in the Sluckin-Poniewierski mode1, cf. Fig.
2.

FIG. 6. Domain of complete wetting by planar nematic in

parabolic approximation, for L2/L& ——10. Solid lines show loci
of wetting and dewetting transitions, c» vs c~ at different fixed
values of c», such that complete wetting occurs in region un-

derneath those curves. The ruled section indicates domain of
continuous wetting transitions.

nature of the present symmetry-breaking transitions and
the dewetting transitions at larger values of c &.

One could question whether the occurrence of dewet-
ting is simply an artifact of the constrained trajectories we
have so far considered, and whether a reentrant trajectory
such as indicated in Fig. 4(a) might allow for stable wet-
ting states when c ~ ~ c &+ '. We have examined this point
using the fact that the wall-isotropic free energy of
a complete-wetting configuration necessarily obeys
Antonow's rule,

~W-I +W-N + JI-N
il

(4.10)

The reentrant trajectory of Fig. 4(a) for oii I may be
decomposed into individual segments associated with
o.w N and o.r &, each of which has only a single crossing

II

between nematic and isotropic domains and hence can be
computed by methods already described. The resulting
o.w I would support complete nematic wetting if its value
is smaller than o ii I(l =0) of (4.7). (This procedure can-
not reveal whether a reentrant partial wetting trajectory
could be of yet lower free energy, but we believe that to be
unlikely. ) Asymptotic analysis of o.ii & in the limit of

Ii

large c&, whose details we shall omit, shows that reentrant
trajectories do allow for stable wetting states and prevent
dewetting when L2/L& is greater than 15.77. . . . In this
regime the phase diagram of Fig. 6 is replaced by one ex-
hibiting a single-valued surface of wetting transitions,
such that complete wetting by NII always occurs if c~ is
made sufficiently large. An important consequence is
that, in this range of I 2/L ~, the solutions of the parabol-
ic approximation qualitatively reproduce most of the
features of the Sluckin-Poniewierski' model at coex-
istence. For example, when c2& is greater than a small
positive value depending on L2/L&, all complete-wetting
states are associated with reentrant trajectories. As c& in-
creases, the corresponding initial value p(0) approaches
very close to zero. This is similar to the behavior found
in the Sluckin-Poniewierski model for nonzero values of
c2&, described at the end of Sec. III.

We have performed a few studies relevant to the regions
of isotropic wetting and nearby homeotropic-planar orien-
tational transitions, cf. Fig. 3. The behavior at coex-
istence in these regions differs little from that sketched in
Sec. III, as was anticipated from arguments given there.
The major effect of the parameter c2„ is to vary the rela-
tive extent of continuous and first-order wetting transi-
tions, in favor of the former when c2& grows positive
while inhibiting them when c2& becomes negative. A sig-
nificant departure from the behavior described earlier
emerges away from coexistence, i.e., at t & 1. It is a basic
feature of the Sluckin-Poniewierski model [cf. Fig. 2 and
(3.1)] that the trajectory p*(il) of that model always
traverses the isotropic fixed point and is strictly uniaxial
at positive values of rl, for all 0 & t ~ 1. This remains true
of all complete isotropic-wetting trajectories at coexistence
in the parabolic approximation. For t &1 and L &0,
however, the trajectories to the bulk Nii fixed point which
evolve continuously from those at coexistence do not,
indeed cannot in parabolic approximation, maintain p
strictly zero at any value of g. This gives rise to unphysi-
cal solutions characterized by positive q but nonzero p
near the wall, i.e., weakly biaxial states in homeotropic
alignment. While we do not rule out that a better approx-
imation could change this, we believe it is more likely that
director distortion occurs. That indeed would be con-
sistent with the tilt-angle measurements mentioned in
Sec. III.

V. DISCUSSION

It is conceivable that our finding of limited ranges of
complete wetting by planar nematic films is due to inade-
quacy of the parabolic approximation. After all, the reen-
trant trajectories which are necessary for wetting at high
substrate energy ci sample regions of the (il,p) phase
plane far from either of the fixed points about which the
function fL (il,p) has been expanded. Nonetheless, a qual-
itative argument indicates that the result derived below
(4.10), i.e., the existence of a lower limit to the ratio
L2/L& below which reentrant trajectories are unable to
stabilize complete wetting, may be of general validity. We
suggest that the free energy o.w I associated with a reen-
trant trajectory whose initial value p(0) is close to zero,
relative to that of a uniaxial trajectory with p =0 for all z,
is largely controlled by two opposing factors. These are
the tendencies to minimize fr (g,p) at fixed r}, which
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yields the Sluckin-Poniewierski trajectory p (ri) in Fig. 2,
and to minimize the elastic term (Lp/. 2), cf. (2.17),
which clearly favors the nonwetting uniaxial trajectory. It
is plausible that for sufficiently large L, i.e., small L2/L &,

the elastic term always dominates and prevents wetting.
Let us conclude with comments on a few remaining is-

sues. The present mean-field approach neglects fluctua-
tion effects, which tend to inhibit long-range order in
continuous-symmetry systems of reduced dimensionality.
It was suggested in Ref. 13 that fluctuations would con-
vert all continuous uniaxial-biaxial transitions into
defect-unbinding transitions of the Kosterlitz- Thouless
type. By analogy to the absence of first-order surface
transitions in t~o-di rnensional Ising models and in
three-dimensional isotropic n-component models, fluc-
tuations may have the further effect of changing some or
all of the present first-order wetting transitions into con-
tinuous ones. In view of some recent results for systems
with planar-spin symmetry, however, first-order tran-
sitions do not appear to be entirely excluded. Differences
between the symmetries characterizing nematic liquids
and continuous-spin models lead to additional uncertain-
ties.

It is universally observed that the director at a free
nematic-isotropic interface is obliquely tilted, which as
often remarked is contrary to the predictions of
Landau —de Gennes theory. That "universality" is strong-
ly suggestive of a fluctuation-induced mechanism. On the
other hand, anisotropies present in all real nematic liquids
but neglected in the basic Landau —de Gennes model, e.g.,
biaxial molecular shape, could be playing a major role.
Higher-level order parameters, in particular averages of
fourth-rank spherical harmonics, could also be significant.
Inclusion of these in mean-field models accounts for a
major part of the observed difference between the Frank
elastic constants K

& &
and K33 and, of particular

relevance, provides a mechanism for obtaining so-called
"tilted uniaxial" smectic-A liquid crystals.

It is possible to generalize the parabolic approximation
of Sec. IV to treat cases of director distortion, i.e., spatial-
ly varying tilt angle P(z). One important difference which
arises (in terms of the original principal-axis order param-
eters described in Sec. II) is that the local free-energy den-
sity ft. is independent of P. Hence there is no a priori
"fixed-point" value of g associated with the nematic re-
gion. Such a value can be introduced in a generalized par-
abolic approximation but must be treated as a variational
parameter. Applications of this method will be described
in future work.

An important feature which is expected to result from
director distortion is the occurrence of an asymptotic
power-law term proportional to l ' in the free energy as a
function of the wetting-layer thickness l. This is similar
to the strain-induced effect characterizing solid films, '

but unlike the latter, appears to stabilize rather than des-
tabilize the growth of wetting layers. The full conse-
quences of this effect remain to be investigated.
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APPENDIX: ON SURFACE TERMS
IN LANDAU —de GENNES THEORY

where
(A2)

Here we outline how the Landau —de Gennes free-
energy functional (2.3) can be derived from a mean-field
model ' which explicitly exhibits the role of molecular
interactions, focusing on the genesis of the surface term
fs. This treatment closely parallels ones which have been
used to derived Landau-type functionals for surfaces in
Ising models and simple fluids. As in the text, we sup-
pose that the nematic fluid occupies the semi-infinite
volume z &0, bounded by a flat wall at z =0, although
more general situations could be considered. The free en-
ergy F is a functional of the single-particle probability
density p(zcp), where co denotes the Euler angles character-
izing the orientation of a molecule and where spatial vari-
ation in the single direction z has been assumed. The pro-
totypical form of F is

F= J dz fp( [p(zci) )]}+f dz dc@p(zoo) U(zoo)
00 QQ

+ —, dzidco& dzzdtp2p(z&co&)
0 0

&& V(
l
ziz

l
~i~, )p(zz, co&),

(A 1)
where U(zoo) is the potential on a molecule due to the
wall and V(

~
z, 2 ~

coicoz)—:V(12) is the intermolecular pair
potential (usually excluding contributions from short-
distance repulsive interactions) integrated over relative
spatial coordinates parallel to the surface. The symmetry
implied by uniaxial molecules with an inversion center has
been invoked to express V(12) as an even function of
z&2=zz —z&. The quantity fp in (Al) represents other
spatially local contributions to the free energy, but is gen-
erally a functional of the orientational distribution, ' as
indicated by the square brackets [] in (Al).

We proceed to reduce the nonlocal, two-body term in
(Al), by making a formal gradient expansion of p(zen), al-
though this is not always well justified for values of z near
zero. An intermediate step in this procedure is a rear-
rangement of that term, denoted F2, following the method
of Teletzke, Scriven, and Davis. To quadratic order in
the gradient p(zen):—dp(zcp)/dz, we obtain

oo

F2 , dz —dc—vide()pVp(zoo&co2)p(zcp, )p( czp)2
OO

dz des id co2 V2 (zen ico2)p(zen i )p(zcoq),

The authors warmly thank Professors Ben Widom,
Michael Fisher, and Keith Gubbins for their hospitality at V (zco]W2)= J dxx V( ix ~co]672) . (A3)



1402 A. K. SEN AND D. E. SULLIVAN 35

The dependence of the functions V on z is a conse-
quence of the semi-infinite ranges of integration in the ini-
tial expression (Al) (Ref. 49) and would not arise if those
integrations were over all space. If, as we shall henceforth
suppose, the pair potential V(12) vanishes for separations

~
z, z i

greater than some microscopic distance R, then
V (zen&cu2) reduces to a function V (co,co&) independent
of z when z &R. In this case, if it is also supposed that
the external potential U(zen) vanishes or becomes in-
dependent of z when z )R, the free-energy density im-
plied by (Al) and (A2) acquires for z &R the same form
as obtained in an infinite domain in the absence of the
wall. This would likewise be true of the Euler-Lagrange
equations for p(zoo) generated by variation of I'. Now it is
a consequence of the (spatially) second order -nature of
those equations that the free energy F could always be
written as a semi-infinite integral of that free-energy den-
sity obtained in the absence of the wall, plus an additional
term to account for the latter

F=j dz fo([p, (zen)])
oo

+ —, dz dcoldco2VO(co, co2)p, (zen, )p, (zcoz)
0

QO

dz dcoidco2V2(coico2)p, (zcoi)p, (zcoq)
0

+f, ([p, (0~)]) . (A4)

V(zmi~z) =gi(z)k. (q i+q 2) k+g2(z)Tr(q i.q 2)

+g3(z)(k q &
k)(k q z.k)

+g4(z)k (q &.q z).k, (A5)

Here p, (zoo) equals the actual distribution function p(zoo)
in the outer region z )R and is the smooth "extrapola-
tion" ' of that function in the layer 0 & z & R. The rela-
tion (A4) can be viewed as defining the surface term

fz([p, (0~)]) as a functional of the extrapolated probabili-
ty density at z =0. In general, f'z could be determined
only by solving for the true probability density p(zen) in
the layer. Despite the formal nature of this result, it is
important to recognize that fq does not depend on spatial
gradients of p, (Ocr). Applying an analogous argument to
derivations of the Frank elastic energy shows that terms
involving surface normal gradients of the extrapolated'
nematic director, associated with the Nehring-Saupe '

elastic constant K», should never contribute.
An approximate estimate of fs agreeing with results de-

rived for a nearest-neighbor Ising model can be obtained
by neglecting both the difference p, (zen) —p(zan) as well as
gradients of the distribution function in the layer
0(z (R. The fs found by comparing (A4) with (Al)
and (A2) under this recipe receives contributions simply
from the external potential U(Ocu) and from "broken"
pair bonds. We apply this to a model potential which is
consistent with the type of molecular symmetry and level
of orientational order parameters retained in classical
Landau —de Gennes and Maier-Saupe theory. In a
Cartesian tensor representation, this reads

where [cf. (2.1)]

q; = q (co; ) = —,[3e(co; )e(co; ) —I] . (A6)

Similarly, the potential due to the wall will be represented
by

U(zen) = U(z)k. q(a)) k . (A7)

We have neglected any contributions to V and U which
are independent of the microscopic ordering tensor q(co).
Likewise, in evaluating the free energy, we shall ignore
any spatial variation of the angle-averaged number density
p„=f deep(zen). (Effects of these have been considered
in Refs. 4 and 27.) Recalling (2.1), we find that the
surface-excess part of (A4) agrees with the free-energy
functional defined in (2.3)—(2.6), given the following rela-
tions:

fi(Q) =f0(Q) —a2TrQ', (ASa)

R
a &

———p„dz g2(z),
0

(ASb)

L = —p„dzz g2 (z), m =1,2
0

(A8c)

R R
c i

——p„dz u (z) —p„dz zg, (z),
0 0

(A8d)

2
Pn

c = — dzzg (z), m =2 3 4.
2

(ASe)

The quantity a2 can be identified with the Maier-Saupe
interaction parameter. [Given a suitable model for
fo(Q), a further Landau expansion of (A8a) would give
agreement with (2.4).] We remark that constants a de-
fined analogous to (A8b) in terms of the functions g, (z),
g3(z), and g4(z) are zero, and similarly that g3(z) does not
contribute a gradient coefficient analogous to I

&
and L2.

These properties reflect the correct rotational invariances
of the integrals Vo(co, co~) and V2(cairo'). ' In contrast,
there is no necessity for any of the integrals in (ASd) and
(ASe) to vanish.

Let us further remark that stability conditions requiring
a2 and I

&
to be positive' ' suggest, on the model above,

that the surface coefficient c2 should be positive as well.
This need not be true in general of the coefficient c4, but
is in the expected case (see Sec. IIB) that L2 &0. The
coefficients c3 could be of arbitrary sign; model calcula-
tions indicate that its magnitude is usually small com-
pared with that of c2 and c4. Then one expects that the
coefficient c2& defined in (2.20) is normally positive.
These assignments, however, only hold insofar as the ap-
proximate derivation of fq given here is valid. Further-
more, as in other contexts, ' ' a generalization of the
model to include surface enhancement of the pair poten-
tial between molecules in the layer 0 & z &R could lead to
opposite signs of the coefficients.
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