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Critical exponent for glassy packing of rigid spheres and disks
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A simple conjecture on the behavior of the canonical ensemble partition function for a system of
rigid spheres and disks, as random close packing is approached, is supported in a suggestive manner

by definite trends that emerge from "derivative-logarithm" analyses of the low-density virial series
with the presently known coefficients. The conjecture predicts that the inverse pressure at random
close packing should become zero with infinite slope, whereas it very probably does so with finite
slope as the ordered closest-packing limit is approached.

I. INTRODUCTION

The packing of rigid spheres and disks —in appearance
a mere academic problem —is of great importance' in
physics, chemistry, biology, metallurgy, ceramics, and soil
science as well as in many branches of engineering. It is
fundamental in the microscopic theory of fluids, glasses
(or amorphous solids) and crystals. On the other hand,
sphere packings are crucial in determining the macroscop-
ic granular nature of powders and other porous materials.
Disk packings are important in the structure of
monomolecular films.

Packings of identical spheres in regular arrangements
have been known for a long time to give packing fractions
g—=p~cr /6, where p is the number density and o. the
hard-sphere diameter, which are ~/6=0. 52 for simple-
cubic packing and V 3tr/8=0. 68 for body-centered cubic.
The face-centered cubic (fcc) is one of an infinite number
of structures, called primitive hexagonal, all with identical
packing fractions, presumed to be the closest or densest
possible packing, with the value &2tr/6=0. 74. In two di-
mensions g =pro. /4, and there are only two regular close
packings; square packing with g=~/4=0. 79, and tri-
angular (or hexagonal) packing with g=tr/2v 3-0.91
which is the closest possible packing.

Irregular (dense) close packing, also known as random
close packing (RCP), appears to occur at a single, unique
density value —at least in three dimensions. Perhaps the
best empirical determination of the RCP density in three
dimensions comes from actual laboratory experiments in-
volving shaking carefully prepared containers filled with
up to 80000 steel ball bearings. Extrapolation of the mea-
sured densities then serves to eliminate finite-size effects.
The most reliable packing fraction thus extrapolated for
three-dimensional RCP is probably 0.6366+0.0004, as ob-
tained by Finney. Note that 2/~=0. 63661977. . . and
that ~ is now in the denominator, not the numerator, in

contrast to the regular close packings mentioned above.
The two-dimensional random-close-packing fraction, on
the other hand, is much more uncertain. Using lucite
disks Stillinger et al. arrive at the ratio x zcp
=71Rcp/( tr/2W3) =0.90+0.01, which we have indepen-
dently confirmed by experimenting with pennies on a ta-
bletop. Berryman surveys an extensive list of both labo-
ratory experiments and computer simulations which yield-
ed values for xRcp between 0.87 to 0.98.

Both ordered and disordered packings are characterized
by a diverging pressure which is easily understood in
terms of the impenetrability of the hard sphere or disk
particles: for either system and at either close packing an
infintesimal increase in density would require application
of an infinite pressure. Extrapolation techniques based on
the first seven known virial coefficients of the low-
density expansion for the pressure of a hard-sphere system
suggest the presence of both divergences: Pade approxi-
mants point to the irregular, whereas Levin-type extra-
polants appear to suggest" regular packing pressure
divergences. Both methods, however, have been limited to
predicting only first order pole type -diverg-ences—, i.e.,
with a critical exponent of unity, in agreement with the
free-volume approximation' of regular close packing
which becomes exact in one dimension. A logarithmic
divergence (zero critical exponent) has been conjectured'
in the two-dimensional hard-disk case.

The Pade approach is extended in this paper to include
the possibility of any real value for the critical exponent
at random close packing. In Sec. II we discuss the prob-
lem in terms of the canonical ensemble pressure and pro-
pose a conjecture for the critical exponent a being bound-
ed as 0&a. & 1. This is corroborated in Sec. III by means
of suggestive trends which emerge from so-called
derivative-logarithm series analyses based on the low-
density virial expansion in powers of the density. Section
IV presents a discussion of our numerical results.
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II. CANONICAL ENSEMBLE PRESSURE

The pressure in the canonical ensemble is given by'

P = —(af/av ),
with p—:1/v = V/N, the volume per particle and f the
Helmholtz free energy per particle. The latter is defined
as

f= k—T lim [N 'lnQ(N, V, T)]
N, V—moo

(v fixed)

(2)

with k being Boltzmann's constant and T the absolute
temperature. The classical canonical ensemble partition
function Q(N, V, T) for a v-dimensional system of N par-
ticles of mass m contained in volume V, at temperature
T, and interacting pairwise through the potential function
P(r) is

N

Q(N, V, T)=A, (N!) ' f d "r& f . f d r&exp —g P(r&)/kT
i j =1

A, =h/v'2vrmkT .
(3)

For the special case of rigid particles of diameter cr (rods,
disks, spheres, etc.) P(r& )= oo (r.

~ &o) and =0 (r& &cr)
so that (3) becomes

Q (N, V, T)=AZ( N, . V), (4)

N

Z(N V)=(N!) ' f d r& f d re Q 0(rj. —o),
ij =1

Z(N L)=[L —(N —1)tr] /N! ~ e (v —o)
N, L~ oo

(L/N =u fixed)

(6)

where L is the length (volume) of the system, whence

P=kT/(v —o. ) .

As expected, the pressure clearly divergences as the densi-
ty p = 1/U approaches the closest packing density
pa= 1/o. The divergence is a first-order pole.

In two and three dimensions P in fact also diverges at
the closest packing specific volume vv

——2v 3/m (for v=2)
and UO=6/v 2~ (for v=3). In both cases, by inspection
of (5), Z(N, V)~0 as volvo+. Thus, it has been natural
to assume, in light of the rigorous one-dimensional result
(6), that the approach to zero of Z(N, V) for dimension
higher than one, is given by the power law

Z(N, V) ~ C(v —vo)r, y &0
N »1, v~v+

with C a density-independent positive constant. Together
with (1), (2), and (4) this leads to the asymptotic pressure

ykT
„+N(U —Uo)

(9)

i.e., again to a first-order divergence at closest (regular)

8(x)—:—,
' [1+sgn(x)] .

In other words, the non-ideal-gas contribution to the
equation of state (1) will be temperature independent be-
cause of (5), but still highly nontrivial in its density depen-
dence. For the ideal gas / =0: ~0 in (5) is replaced by un-

ity and Z(N, V)= V /N! immediately leads to P =kT/v.
The one-dimensional case of hard rods' readily' gives

for (5) the result

packing. It has further been conjectured' that, for very
large N, y=vN so that (9) becomes

vkT
v~v+ V —UP0

(10)

for any dimension v, and of course reduces to (7) for v= 1.
With all this in mind, we now return to the empirical

fact mentioned above that P also diverges as hard-spheres
or hard disks approach their respective (so-called Bernal)
densities. pz, which is less than the closest density pp by a
few percent. That density value corresponds to dense (to
distinguish from loose) random close packing (RCP).
Since at this density value there occurs a close, but not
closest, packing configuration, it is very conceivable that
the integral in (5) may contribute with some nonzero posi-
tive constant. This allows one to conjecture that the so-
called configuration integral in (5) behaves in that limit as

Z(N, V) ~ A+B(v —vz)~, P&0,
N»1, u~u~+

where A, B, and p are arbitrary positive constants. The
essential difference with the closest packing limit behavior
(8) is, of course, the presence of the nonzero constant A

allowing for the fact that at the Bernal density one has
close but not closest packing, i.e., the polytope volume (5)
is now not necessarily zero. Thence

p B PkT 0&a—:1 PN &1;—
U~v~+ A (U —Vg )

(12)

in other words, P ' approaches zero as U~vz+ with in-
finite versus finite slope as it did before and as was ob-
tained previously with Pade analyses.

Finally, we remark that a more general U dependence in
—D/( u —v0)~

the closest packing case (8) like, e.g. , e ', with
D, 5~0, which also approaches zero as U~vp+, will lead
to P ' —( v —vo )

+ '; that is, to a greater-than-unit pole.
On the other hand, in the RCP case replacing the—F/(v —v& )e
(U —vz)~ term in (11) by e, with E,e&0, is
easily seen to lead to no pressure divergence at all.

To conclude this section we display graphically the
(first-order) pole placements produced by the Pade
analysis of Ref. 10 based on the low-density virial expan-
sion
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P/pokT=xf(x) = x(1+Aix+ . +A6x + . . ),x~0

x =p/pp,

1/2/tr (fcc, 3D)
PO= '

2/v 3cr (triangular, 2D), A„—=p+„+~
.2

(13)

where considerably smaller errors exist in 35 and A6,
yields no clear cut suggestion of a RCP pole, even within
the rather wide empirical range cited before of
0.87 (xRcp (0.98. A possible reason for this may be that
straight Pade analyses can only produce first or-der poles;
a more general treatment is now considered.

P/pokT =x [0/1 ](x)—=
1 —A)x

g, =—2v 2~/3,
(14)

which is precisely the van der Waals equation of state for
a hard-sphere system, with A~ the excluded volume per
particle in units of Up =po . The pole predicted at
x=0.34 is plainly too far below the empirical x&-0.86.
In this respect, further approximants are clearly seen in
Fig. 1 to improve. The highest-order, or maximal, ap-
proximants are indicated in boldface; of these the [2/4]
and [3/3] reproduce the Bernal density to two-digit accu-
racy, namely, 0.8627 and 0.8622, respectively. We stress
that the central values for A5 and A6, as quoted in Ref. 9,
have been employed throughout.

We have come to realize that the results of this simple,
or straight, Pade analysis may be fortuitous for two
reasons: (i) use of other than the central values for A&

and A6 wildly moves the pole placements of Fig. 1, in
some cases beyond the physical interval 0 &x & 1, and (ii)
a similar Pade analysis of the two- dimensional case,

t6/1 j
[1/3] [0/4] [2/1] f4/23

[0/1] [1/1] [1/4] [2/3] [3/1][4/1]
S I l t % 7 I I 't I I
0 0.5 1

L2/4j, L3/3 j
RCP fCC

FIG. 1. graphical display of pole placements of straight
Pade analysis of virial series Eq. (13) for hard spheres according
to Ref. 8. Boldfaced labels refer to maximum order approxi-
mants, i.e., which incorporate maximum available information
of virial series.

Here 8„+, is the well-known (n +1)st virial coefficient.
In (13) only up to A6 (or 87) are known numerically.
For three dimensions (3D) there remains about a 4% error
in A6 and about 1% in Az. All lower-order coefficients
are known essentially errorless. In two dimensions, on the
other hand, A6 and A5 are known' with errors which are
just 0.44% and 0.005%, respectively.

The pole placements' of the different Pade approxi-
mants' [L/M](x) to the sixth order polynomial in (13),
with 1(L,+M (6, are displayed in Fig. 1. The empirical
three-dimensional Bernal density xs ——p~/po =6r/s /~1/2
—6v 2/m. =0.86 is labeled as RCP in the figure, whereas
the closest packing density x =1 is labeled fcc. The sim-
plest nontrivial approximant [0/1](x) to (13) just gives ( =
signifies "represented by")

III. DERIVATIVE-LOGARITHM SERIES ANALYSES

lnf (x) — lnR —a 1n(xs —x ),
X ~Xg

d a
lnf (x)

dx X ~Xgx x —xa —x

(16a)

(16b)

Now, using (13) and expanding the log about x =0 leaves

lnf(x) —3 &x+3 2x + +3 6x +x~0

where

~ 2=—~2 —
z

2

3:(33 A/32+ 3AI),

Differentiating (17) gives

lnf(x) — A~(1+C~x+ +C5x + ' ),5

dx X~O
(19)

C„—:(n+1)A „+&/A& (n=1, 2, . . . ) .

A. Unbiased estimation

We attempt first to estimate, on the basis of informa-
tion contained in the "virial" coefficients 3 &, A2, . . . , A6,
both a and xz. For this we combine (16b) and (19), yield-

ing

cx d lnf(x)=A )(1+C)x+ . +C5x ) .5

xg —x dx
(20)

The right-hand side (rhs) of this can now represented by
Pade approximants

3,[L/M](x) = A )PL(x)/QM(x) (21)

with PL(x), Q~(x) the Pade polynomials of order L and
M in x, and 1(L+M(5. The real, positive zeros of
QM(x) will provide estimates for x~. Subsequently, the
corresponding value of a is extracted by combining (20)
and (21) to give

In accordance with the conjectured critical exponent
0 & a & 1 of (12) one would expect f (x) as defined in (13)
to behave as

Rf (x)
x~x~ (xs —x )

in the neighborhood of the Bernal density, with R some
positive constant. The method of the "derivative loga-
rithm"' permits successively more accurate determina-
tion of both n and xz, based only on the low-density viri-
al expansion (13). Taking the natural log of (15) and then
differentiating with respect to x gives



35 CRITICAL EXPONENT FOR GLASSY PACKING OF RIGID SPHERES. . . 1379

Order [L /M]

[0/5]
[1/4]
[2/3]
[3/2]
[4/1]

[0/4]
[1/3]
[2/2]
[3/1]

[0/3]
[1/2]
[2/1]

[0/2]
fl/1]

0.9038
1.05

0.7775
(0.49+i0.59), c.c.

1.09

1.245, 2.744
1.154

0.3370
0.4296

1.015
2.944
Re &0

(0.55+i 1.09), c.c.
Re &0

0.9644
1.444
0.4411

3.252

2 333
1.772
0.0096
0.0314

1.372

TABLE I. Placement of zeros, xz, of denominator polynomi-
al in Pade approximants of Eq. (21) to low-density series defined
in Eq. (20). Column marked a is associated critical exponent
obtained from Eq. (22) and defined in Eq. (15). Entries marked
with a dash related to [1/2] and [0/4] approximants are not
given as the predicted x~ values are unreasonably large.

a =A t [(x~ —x)PL (x)/QM(x)]„ (22)

a=x~A&(1+D&x+ . . +D&x + . ),
D„=C„—C„~/x~ (n = 1,2, . . .),

(23)

and insert for xz the empirical value =6v 2/vr =0 8597.
The biased estimates for a then follow from Pade approx-
imation to the rhs of (23); thus

a =xg A i [L /M](xg ) . (24)

Table I lists the resulting values of xz and cx. We note
that, without exception, (a) all x~ predicted within the
physical interval 0&x& & 1 are associated with a critical
exponent a & 1, while (b) all x~ predicted outside this in-
terval are always associated with a & 1. Even so, the re-
sults of this unbiased search are too scattered to reveal
any additional meaningful trends. In order to pin down
our predictions of a even further we fix x~ at the empiri-
cal value and then try to determine a.

B. Biased estimation

Multiplying (20) by (x~ —x) and rearranging the rhs we
can write

[0/1] 1.351 4.0
Table II lists the results, which are also displayed in Fig.

TABLE II. Critical exponent values a in two and three-dimensions resulting from biased method Eq.
(24), as given by all Pade approximants [L/M](x) to the low-density series Eq. (23). The value of x~ is
fixed at the empirical values for random close packing of 0.8597 for hard spheres and 0.90 for hard
disks.

Order [L/M]

[0/5]
[1/4]
[2/3]
[3/2]
[4/1]
[5/0]

[0/4]
[1/3]
[2/2]
[3/1]
[4/0]

[0/3]
[1/2]
[2/1]
[3/0]

[0/2]
[1/1]
[2/0]

[0/1]
[1/0]

3D (with xq ——0.8597)

0.8307
0.8165
0.7099
0.7364
0.8599
0.7975

0.8665
1.557'
0.6557
2.1002
1.008

1.0143
0.9591
0.2938
0.5035

1.1455
3.4667

&0

1.8681
1.6219

2D (with x~ ——0.90)

0.8374
0.1912
0.5166
0.4048
0.3762
0.5313

0.9269
0.5771
0.5811
0.4683
0.6274

1.0416
0.4923

&0
0.7829

1.2198
1.6916'
1.0905

1.5125
1.5030

'With pole at x =0.613.
With pole at x =0.439.

'With pole at x =0.282.
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54 3 N 54 3 2 N

1.5-

'[3/1] [o/1]

[1/0]

[O/1]
8

O]

[4/0][ ~' [0/2
1 — [4/1] . [1/2]

[o/»=W o/4]
1/4]

[5/0] [2/2]
[3/2] [2/3]

2/1

HARO SPHERES

0 0.1 0.3 0.5 0.7 0.9 1/N

FIG. 2. Display of critical exponent values a predicted for
hard spheres from biased method Eq. (24), plotted against in-

verse order 1/X of Pade approximants, where X=I. +M.

[0/4]
[o/5] ~.

~o 3/0
[4/O] ". ts/O] ~P2/2]

O.5 & t2/3]k „o[1/2]
[3/2+[3/1] 1/3]

[4/1]
[1/4]i'

I

0.2 0.4 0.6

HARD DISKS

I I

0.8 1/t N t

FIG. 3. Same as Fig. 2, but for hard disks.

2, where N =—L +M. All approximants are plotted except
for the [1/1] and [1/3] which develop poles at some
x &xz, and the [2/0] which yields a negative value of a.
Note that the highest-order approximants (with
L +M =5) lie very close to each other, predicting an a in
the range 0.6&a &0.9. The approximants [0/X] are
connected by straight-line segments only as a reference.
Using xz ——1 in (23) instead of the empirical RCP value
of 0.86 used above produces a similar plot except that now
1.2&a &2 for the highest-order approximants, a result
tending to support the conjecture a = 1 for ordered closest
packing, Eq. (10).

The results for two dimensions are also listed in Table
II for the particular value of xz ——0.90. These are graphi-
cally displayed in Fig. 3, except for the approximants
[1/1] and [2/1]. The latter predicts a negative, whereas
the former develops a pole at x &xz. Two well-defined
trends are observed: (a) all approximants of order 4 or
greater predict a in the conjectured range 0 & a & 1, and
(b) the sequence of approximants [0/X] (N =1,2, . . . , 5)
appears to provide an upper bound to all predicted real,
positive a. Although extrapolation to %~ oo (1/X —+0)
is very rough, it suggests a value of a= —, . Similar extra-
polations of the results using xz ——0.87 on the one hand,
and xz ——0.98 on the other, yield, respectively, values of a
of 0.36 and 0.78.

Finally, we mention that the first five Levin approxi-
mants to (23) were also constructed for three-dimensions
(x~ ——0.86 and 1) and two-dimensions (x~ =0.90 and 1).
They not only did not reveal acceptable trend behavior as
in the Pade cases discussed above but produced, in rough-
ly a third (7) of all cases (20), negative values for a.

IV. DISCUSSION

Based upon a simple conjecture regarding the asymptot-
ic behavior of the canonical ensemble configuration in-
tegral for a classical system of rigid spheres or disks im-
mediately leads one to a critical exponent a for the pres-
sure divergence at random close packing which should lie
in the interval 0&+ & 1.

It is argued that a possible reason for the failure of
straight Fade analysis of the known virial series to shed
any light on the Bernal density singularity is that these
analysis, as carried out to date, assume a first-order singu-
larity at that density.

A so-called "derivative-logarithm" analysis of the low-
density virial expansion for the pressure is then carried
out in the following two ways. (1) An " unbiased" form
allowing both the pole placement (Bema] density) as well
as the exponent to be estimated. This was illustrated in
the three-dimensional case. (2) A "biased" scheme in
which the Bernal density is fixed at its empirical value
and the exponent predicted was illustrated in both three
and two dimensions. Of course, no rigorous proof of the
critical exponent conjecture is claimed, nor even of a
uniquely calculated result, particularly since one disposes
of only six coefficients in the series analyzed, versus the
twenty or more in more traditional critical-exponent
series-analyses work. '
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