
PHYSICAL REVIEW A VOLUME 35, NUMBER 3 FEBRUARY 1, 1987

Quantum localization and the rate of exploration of phase space
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Nonstationary phase-space distributions p(t) are shown to sweep out phase space at a rate N
which can be determined from the autocorrelation function, P(t)=h Tr[pp(t)]. It is demonstrated
that, after the initial decay of P (t), subsequent recurrences (increases) of P (t) cause permanent
slowdowns in the rate H. Such slowdowns may cause localization of quantum eigenstates, whereas
no such implications apply to the classical stationary distributions. The localization is discussed in
terms of the fraction of the available phase space which the dynamics accesses, and the phase-space
distribution of individual eigenfunctions.

I. INTRODUCTION

In this paper we focus on (1) the concept of the rate at
which phase space is explored, given a nonstationary ini-
tial distribution, and (2) the importance of this rate to lo-
calization of the quantum dynamics and of the eigen-
states, relative to distributions determined by prior con-
straints. This work began as a framework for understand-
ing "scar" localization' of certain eigenstates of classically
chaotic Hamiltonian systems. The scars are nonstatistical
concentrations of probability around some periodic orbits
with the shortest periods and smallest Lyapunov ex-
ponents. The scars have no analog in classical stationary
distributions of chaotic systems.

The context of this paper has been expanded beyond the
concept of periodic orbit scarring to encompass localiza-
tion under much more general circumstances. Loosely
speaking, localization happens whenever the rate of
phase-space flow slows down below the maximum possi-
ble for a given initial distribution. Such slowdown occurs
after recurrences; i.e., when the moving distribution comes
back to partially overlap the initial distribution. In this
more general context, we shall be able to shed some light
on localization of driven rotor systems, localization by
cantori, localization in the quasiperiodic regime, scatter-
ing resonance localization, and Anderson localization.

We usually discuss localization in its weak form, name-
ly, a partial localization to certain subdomains. Weakly
localized eigenfunctions have high density in a certain
subdomain but are not exponentially damped outside of
the subdomain. We shall nonetheless refer to this as "lo-
calization. "

In many circumstances we are able to predict, from
semiclassical arguments, when weak localization will
occur. This was possible in the case of the periodic orbit
scarring, for example. Strong localization of the Ander-
son type is more difficult to handle.

The concept of the rate of exploration of phase space,
and the allied concepts of the number of phase-space cells
accessed in the infinite time limit and the fraction ~ of
available phase space explored, are useful alternatives to
the usual participation ratio ideas familiar from localiza-
tion theory. The latter focus on the "participation" of in-

dividual eigenstates in a set of localized states, whereas
the former emphasizes the eigenstate content of particular
localized states. The two points of view are intimately re-
lated but by no means identical.

The paper is organized as follows. In Sec. II some con-
cepts and definitions necessary to discuss phase-space
flow in classical and quantum mechanics are defined.
The basic implications of our definition of the rate of ex-
ploration of phase space are presented in Sec. III. Section
IV gives some examples of the rate of exploration of
phase space; Sec. V discusses the amount of phase space
which is eventually accessed, and reviews the related is-
sues of available phase space in classical and quantum
mechanics. Section VI discusses the implications of re-
currences (and the associated rate reduction) for quantum
localization.

II. DEFINITIONS

f e 't"~"y'(q+s)p(q —s)ds .

(2a)

More generally, p tnay arise from a quantum density p~.
N

e ' '
p~ q —s, q+s ds. (2b)

We want to be able to define the volume p occupies in
phase space. This is conceptually simple if p is zero in
some parts of phase space, and some fixed number else-
where, such that the total probability is unity. In that

Consider a phase-space distribution p, with

Tr(p)= f f p(p, q)dpdq= 1 .

The density p has the dimensions of (action) for X de-
grees of freedom. Therefore, Tr(p ) has the dimension of
(action), or in other words an inverse of a volume in
phase space.

The density p(p, q) can be purely classical or a Wigner
transform of a quantum wave function:
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case p = V ' everywhere it does not vanish, so that
Tr(p) = 1, and

or

f f p dpdq= f f V-'dpdq=V-'

1volume=
Tr(p )

(3)

(4)

For more general distributions which vary smoothly
over phase space, Eq. (4) is still a reasonable definition for
the phase-space volume (see Fig. 1).

As an example, if p arises from a pure state density as
in Eq. (2a), then

f f p (p, q)dpdq=h

and the volume occupied is one cell of volume h, as it
should be.

Suppose now that p is a nonstationary distribution p(t),
evolving under the influence of the Hamiltonian H. We
ask: How rapidly does p(t) sweep out new regions of
phase space that it has not visited before? To answer this
question, we need a measure of where p(t) has visited. A
natural choice is

T

p (pq T)= f p(pqt)dt.

T
=h Tr[(p ) ]= f 1 ——P(r)dr, (8a)T o

where the survival probability P(r) is

P(r)=h Tr[pp(r)] . (8b)

Note that in the case that p corresponds to a pure quan-
tum state density

I p) (y I, P is obtainable from the spec-
tral distribution S(E) of the state

I y), as follows:

S(E)= f e' '~"(y
I
qr(t))dt . (9a)

$(E)= g p~5(E E„), — (10a)

where

By inverse Fourier transform,

(yI ip(t)) = f e ' ' "S(E)dE, (9b)

and of course P(t)=
I (p I

tp(t)) I
. For the case of a

pure state density, S(E) is often an experimentally obtain-
able spectrum. So the quantity P(t), and via Eq. (8), ~T,
are often easily (if indirectly) measured.

The spectrum S (E) fully resolved into 5-function
peaks:

This average density will obey p'= I &v IE. & I' (10b)

h Tr[(p'") ]= ( I .
1

This defines ~T, the number of phase-space cells ac-
cessed. The density p'"(p, q, T) clearly is nonvanishing
only where p(p, q, t) has visited, but both distributions
"feather out" rather than cut off abruptly in phase space.
That is to say, there is no sharp distinction between a re-
gion that has been visited by p(p, q, t) and one that has
not, but the number of phase-space cells visited still has
meaning. Figure 1 helps to motivate this point.

Combining the equations above and using the fact that
Tr[p(t)p(t')] =Tr[pp(t' —t)] we have

The quantities p~ for all n and fixed ip are the projections
of the localized state

I g) onto the various eigenstates
I
E„). The appropriate generalization of this to a quan-

tum density matrix p& is

S(E)= e' '~"Tr(e ' '~"p )dt . (11)

[We have written Eq. (11) in the usual quantum formula-
tion rather than the Wigner-Weyl phase-space formula-
tion; the two are equivalent. ] The same relation, Eq.
(10a), holds for this case, with p~ replaced by p„„.

We shall need a smoothed version of S(E), which is
most easily generated by limiting the time integration:

1 T
ST(E)= eiEtlk Tr(e iHtlAP)dt—2M —T

(12)

for T chosen according to the degree of smoothing
desired. This envelope ST(E) constrains S(E) in the sense
that a local smoothing of S (E), with a function
II T(E E'), where—

FIG. 1. Three cases showing the distribution of phase-space
probability and the resulting ~~-. The first two cases are self-
evident; the third shows how partial overpopulation or underpo-
pulation of phase-space cells is treated by the measure, Eq. (8).

sin[(E E')T/A)—
77(E —E')

must give ST(E) as

ST(E)= f II T(E E')$(E')dE'—
= g n, (E E„)p~ . —

(13)

(14)
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The smoothed spectral distribution Sr(E) is called the
strength function, or simply the envelope, of S(E).

III. THE RATE A'

A. Qualitative features
X

f 1 — P(r)dr

1 ——P~dz
T

2 (15)

The rate A is not guaranteed to be strictly positive, for
reasons which are apparent from Fig. 3. The "lapping" of
the already-covered regions of phase space leads to an
uneven distribution p'", as seen in Fig. 3, which tem-

CL

Typically, there are three regimes in the history of ~AT,
for a bounded system with an initially localized density p:
(1) The initial transient, including a rapid rise of
H=d~r/dt followed possibly by some decline, leading
to (2) a plateau in A, i.e., a linear increase in .t T., the
number of phase-space cells accessed. (3) Onset of the de-
cline of the rate A, which may occur in steps caused by
recurrences in P(t). The rate may temporarily become
negative (see below), but it will approach zero and remain
there asymptotically.

These three regimes are simple to understand if one im-
agines the nature of an initially localized distribution p
and its subsequent classical dynamics (the quantal case
will differ from the classical, especially in regime 3, but
the distinct regimes will be present). In Fig. 2 we see two
cases of initially localized distributions which start to ex-
plore phase space, thus P(t) declines and, Wr increases
In case A the initial region is visited by part of the mov-
ing distribution in a decaying-periodic way, which is a
common behavior. In case B the system revisits the initial
region only after a long sojourn, and when it does start to
arrive back it is quite disorganized, leading to the P(T)
shown.

The rate A is easily shown, by differentiation of Eq.
(8a), to be

FIG. 3. Showing the case of a one-dimensional harmonic os-
cillator, and the way it explores phase space for the first period
and somewhat beyond. Note the double coverage that occurs as
p(t) laps itself. This lapping, which is most severe in this
periodic situation, causes an uneven phase-space distribution to
temporarily develop. Successive lappings do the same, but the
effect diminishes with time because an average overall time is
taken.

porarily causes ~&T to diminish. This effect is most
severe in the case shown, namely, a strictly periodic
phase-space density.

From Eq. (15) it is seen that the steady-state rate (for
large enough T and before any recurrences) approaches

1 1

2 P ~d~ P ~d~
(16)

B. The rate M and the energy distribution of the density p

1. Quantum case

(19)

and thus

The faster the decay in P(t), the faster the rate of ex-
ploration of phase space. It is intriguing that this rate is
obtainable from the energy distribution, as we show next.
Quantum mechanically, the energy dispersion of the non-
stationary density p necessarily implies a decay of the au-
tocorrelation function P(t) which is related to the energy
dispersion by the time-energy uncertainty principle. In
this discussion we are necessarily restricted to pure state
densities p= ! &p) (y! .

The basic idea is to establish a link between P(t)dt—T .
and the envelope function Sr(E), which carries the infor-
rnation about the energy distribution. The key ingredient
is the equation

(p!y(t)) = f e ' ' S(E')dE'

f —iE't IRS (17)

provided —T (t & T. This follows directly from the defi-
nitions and the properties of Fourier transforms. From
this and the equation

f fir(E E')fl (ET' E")dE—'=AT(E E") — (18)—
follows

f P(t)dt =2M J [ST(E)]~dE

FICz. 2. Two typical scenarios for P(t), 'f ~-, and M. Note
that recurrences decrease M and reduce .. 4' „. 2M f [S (E)j dE

(20)
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f" [S,(E)]'dE= (21)

2. Classical case

Classically, there is no basis for the time-energy connec-
tion, since for example a very dispersed phase-space densi-
ty could have both large energy uncertainty and slow de-
cay of P(t). However, if we require that the classical den-
sity p comes from a quantum-mechanical pure state densi-
ty, the restriction of Tr(p ) =h is imposed. This places
localization requirements on p. The time-energy correla-
tion then makes sense classically too. Equation (20) is
then valid for those times, which we call T*, in the pla-
teau (region 2), with ST(E) replaced by the classical
phase-space trace Sc(E)=Tr[po(E —H)]. As T in-
creases, recurrences may happen, and these will destroy
the near equality of Sr(E) and Sc(E). Further insight
into the classical case is provided in the Appendix.

IV. SIMPLE EXAMPLES

The integral f Sr(E) dE is an interesting measure
of the localization of Sr(E). If ST(E) is confined to a
single lump, say a gaussian

ST(E)=[2m(bE) ] '~ exp[ —(E Eo—) /2(bE) ],
then

—( AE)2( g —n ~ )2/'P(t)= e ' e
n=0

Then

(22)

v7rh vof P(r)dr= (23)

where vo ——~p . This gives

The resulting correlation function P(t) will be of type A
in Fig. 2, because the recurrences due to the return of the
wave packet to its starting position are damped by the
amplitude that tunnels through the barrier. This leads to
an approximately exponential decay of the recurrences.
The recurrences cause the rate W to drop, but because of
the exponential decay the rate does not asymptotically
reach zero.

The asymptotic rate can be obtained from Eq. (16).
Physically, the nonvanishing asymptotic rate corresponds
to the continued exploration of phase space, as the distri-
bution p(x,p, t) moves along x, in narrow horizontal
bands. These bands (Fig. 4, bottom) correspond to the
resonance energies and their width in the momentum
(vertical) direction corresponds to the width of the indivi-
dual resonances.

We can model this behavior with the following form
for P(t).

A. Quantum tunneling resonance

AE A,

vo
(24)

In Fig. 4 an unbounded potential with a well, a barrier,
and associated quasibound levels is shown. Suppose now
that a wave packet is launched inside the well, as shown.

Li
'I E
li /

I

We have assumed, in the approximate evaluation of the
integral, that A,~0~~1 and AE/%~~A, . The rate W is re-
duced by a factor of A, /vo compared with Eqs. (20) and
(21). This is A, /vo times slower than what it would have
been if the barrier did not exist. This factor is normally
very small for a tunneling problem. Classically, the rate
would have rapidly reached zero, because there would be
no tunneling and the phase space inside the well would be
quickly explored.

The exponentially decaying recurrences are a common
behavior, corresponding to case A of Fig. 2. They appear
again in the case of the unstable periodic orbit, discussed
below. They lead to the conclusion that in certain regions
some of the eigenfunctions are a factor of vo/I, times
larger than "expected, " as explained in Sec. VI. Figure 5
shows P(t) and the resulting envelopes ST(E), ST(E), and
S(E).

FIG. 4. One-dimensional potential with quasibound reso-
nances. A wave packet launched inside the well, as shown at
the top, will oscillate inside and, at the same time, leak out to
the continuum by tunneling. The resulting P(t) will have an ex-
ponential decay of the recurrences, as idealized in case A of Fig.
2. The wave functions at the energies of the resonance have
enhanced probability inside the well, as shown. Off resonance,
the opposite is true. One way to understand the reduction in W
is shown at the bottom. Complete leakage out of the well occurs
at long times, but the original smooth energy distribution ST*(E)
is now organized into narrow energy bands corresponding to the
resonances; these travel along the x axis in elongated packets;
they fail to explore the regions between the packets.

B. Many harmonic oscillators

Consider a set of nearly degenerate harmonic oscilla-
tors. We launch a wave packet with initial momentum
zero, but stretch all the oscillators approximately equally.
Because of the near-degeneracy of the oscillators, the
wave packet nearly returns to its initial state after one
period, and only slowly winds its way into new phase
space thereafter, as the slightly different frequencies de-
phase. Again, we have a situation corresponding to case
A of Fig. 3, namely, damped recurrences. [However, in
contrast to the previous example, P(t) does not decay per-
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P(t)

stable periodic orbit causes a reduction of the rate by
A. /vo for nonstationary states launched on the orbit,
where X is the stability parameter and vo is the frequency
of the orbit. Such unstable periodic orbits are the source
of scar localization in classically chaotic systems. '

~ ST(E)
ST (E)

S(E)

FIG. 5. The time development of ST(E) is for the idealized
case of exponentially damped Gaussian recurrences is illustrated
here. After the initial decay, but before the first recurrence,
S~(E) is determined. Times T after the set of exponentially
damped recurrences give ST(E). Future recurrences, not shown,
eventually determine S(E), the fully resolved spectrum.

D. Phase-space bottlenecks, cantori

Suppose we divide phase space into two regions, A and
B. We launch a localized state in A. Suppose too that,
classically, slow diffusion into region B occurs. A prime
example of this behavior is a cantorus, a kind of remnant
torus which divides A from B and which leaks slowly.
Classically, the diffusion can be slow enough that re-
currences of Tr[pp(t)] while p(t) is still confined to region
A will drastically slow down the exploration of phase
space. Region A is fully explored on a time scale short
compared to the diffusion. This happens in classical and
quantum mechanics, but the consequences on the quan-
tum system are a permanent localization, as explained in
Sec. VI.

manently, but increases again in regime 3.] Since the clas-
sical and quantum phase-space dynamics are identical for
harmonic oscillators, i.e., p'""'"(t)=pq"'"'" (t) if
p'"""'(0)=pq"'"'" (0), the diminution of A is a purely
classical effect. For many sets of nearly degenerate fre-
quencies and displacement of the oscillators, the decay in
the recurrences will be nearly exponential, and Eq. (24)
pertains again. Regime 3 is delayed in coming for a near-

ly degenerate set of frequencies, so the system explores
phase space for a long time but at a reduced rate W. For
a more random set of frequencies, N tends to be much
higher, but regime 3 sets in much sooner. A harmonic
system or indeed any separable system accesses only a
small fraction of the total phase space available, where the
available phase space is defined by a superposition of mi-
crocanonical densities with the superposition being
weighted by the energy density of p.

C. Unstable periodic orbit

V. THE LGNG- TIME LIMIT

=h Tr[(p'") ]

2 T
lcm

T
1 ——P(r)dr

T

T
lim f P(r)dr

T ~ T
(25)

Equation (25) is true both classically and quantum
mechanically. In the quantum case, for a nondegenerate
spectrum (the degenerate case is slightly more complicat-
ed) we can write explicitly, in the case that the initial den-
sity p arose from a localized pure quantum state

~
cp) as

A. The number of phase-space cells explored as T~ Qo

Equation (8) gives the number of phase-space cells
which are eventually accessed as

Systems of two or more degrees of freedom have
periodic orbits which may be stable or unstable. If the
dynamics is chaotic, all the periodic orbits are unstable.
Isolated unstable orbits may also exist in integrable sys-
tems.

Suppose we select an initially localized phase-space den-

sity p, centered on the vicinity of a portion of such a
periodic orbit. The time-evolved density p(t) will return
to this vicinity after the orbital period has elapsed, but
p(t) will have spread along the unstable manifolds and
contracted along the stable ones. The result is a series of
recurrences in Tr[pp(t)] at multiples of the period of the
orbit, which again damp out. The short-time dynamics (a
few periods) of such an initial phase-space density is the
same classically or quantum mechanically, for sufficiently
small A. Therefore both classical and quantum systems
slow down their rate of exploration of phase space due to
the periodic orbit recurrences. The recurrences can be
shown to be exponentia11y damped. ' Apparently, the un-

= g (p„~)', (26a)

where

The quantities p~ are the spectral intensities which are the
coefficients of the delta functions in S(E) [see Eq. (9)].

Equation (26a) is related to the participation ratio fami-
liar in solid state contexts. The participation ratio re-
quires the p+ for a set of localized

~
p) and fixed eigen-

state
~
E„);here we need pf for fixed g) and all

~

E„).
The two are obviously related in the qualitative informa-
tion they contain about the degree of localization.
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p )
——Tr[p(0)H],

p2 ——Tr[p(0)H ], (28)

But each new constraint further restricts the available
phase space until, when all the moments are known, there
can be no "surprises"; what is available is just what is in
fact accessed. The system, with enough prior constraints

B. Digression into quantum ergodicity

In order to discuss the concept of localization, we need
to define what we mean by complete delocalization. That
is, if we are going to accuse a particular eigenstate or a
given time evolution of being localized, we have to have a
reference system firmly in mind. This cannot be a uni-
form distribution in phase space, for that would violate
things we supposedly know about p'"(oo). For example,
we might know the value of

( E ) =Tr[p(0)H] =Tr(p "H),
at t =0, before any dynamics of p(t) is known.

We are now entering somewhat subtle territory in the
study of ergodicity in quantum mechanics, ' involving
the concept of the known prior constraints on the dynam-
ics, against which the eventual phase-space flow is judged.
These constraints include (E) for instance, and they cer-
tainly affect the question at hand, namely: How many
phase-space cells could the system have accessed, given
only what we knew about it at first (the prior constraints)?

The issue of prior constraints is just as crucial in classi-
cal dynamics. Classical Hamiltonian systems are always
trivially ergodic in the sense that phase space is uniformly
covered on some manifold (e.g., the energy shell, or an N
torus). Indeed, as Lichtenberg and Lieberman put it, "In
a sense, ergodicity is universal, and the central question is
to define the subspace over which it exists. ""We may
call the system nonergodic with respect to some smaller
set of constraints or constants of the motion. The con-
cepts of localization or nonergodicity arise when the
dynamics accesses a region or manifold of lower dimen-
sionality than the prior constraints imposed. A classical
system is ergodic or not depending on our choice of the
prior constraints.

An example is a system free to rotate. If total energy is
the only prior constraint, then all such systems will be lo-
calized. Only when the additional prior knowledge of the
conservation of angular momentum is added is it possible
for the system to be called ergodic. We say, in effect, that
we already know about certain localizations and we then
incorporate them; the interesting questions then become:
Is there any localization beyond what we knew about to
begin with?

The concept of ergodicity in quantum mechanics must
be expected to have the same characteristics: We must
specify what the known constraints or constants of the
motion are before we can speak of ergodicity or the avail-
able phase-space manifold. Only those parts of phase
space satisfying the constraints are available.

It would seem natural to introduce the constraints,

po= Trip(0) l

known, becomes trivially ergodic, just as in classical
mechanics. It is interesting to see how this happens in
more detail.

Taylor expansion of the propagator exp( iH—t /fi)
shows that powers of H contain dynamical information.
Each higher power of H in effect introduces more
knowledge about the dynamics. We expand the propaga-
tor and evaluate (p ~

y(t) ) in terms of the moments:

(p ~q(t)) =(q
~

(1 iHt—/fi H'—t'/2A'+ )
~
~)

=pa —I p~t/fi p2—t /2A +
More generally, for a density p,

Tr(e ' '~"p)=go ip, )t/—A p2t /—2A +

(29a)

(29b)

The quantity Tr[exp( iHt/A—)p] is somewhat unusual.
It plays the role of (y p(t)) in the case that a mixed-
state density matrix applies. [See Eq. (9b).]

Given enough moments, it is possible to completely
determine the p~. Indeed, the Lanczos algorithm' specif-
ically generates the spectrum S (E) from the moments p„.

The concept of localization, then, is void without speci-
fying the frame of reference, i.e., the constraints that the
dynamics voluntarily obeys and which we have incor-
porated as given. These we call the "prior" constraints.

In a given physical situation there is a natural set of
prior constraints, to match one's state of presumed ig-
norance about the dynamics. There are also other ways to
summarize these constraints than to list the moments one
by one. One idea is to employ the enuelope, Sr(E), or
strength function, of the spectral distribution S(E) [see
Eqs. (12)—(14)]. We may obtain Sr(E) by direct Fourier
transform of Tr[exp( iHt/fi)p] —truncated at time T. Al-
ternately, we may use a finite number of moments in the
Lanczos method to obtain the spectral density SM(E),
where M is the number of moments taken. For short
times, this is very similar to the direct Fourier transform,
but we shall use Sz-(E). This envelope is very precisely
defined in the typical case that Tr[exp( iHt/A)p] decays—
nearly to zero and stays there for some time. The en-
velope which corresponds to knowing a few moments or
the very short-time dynamics is given by the Fourier
transform

Sf (E)= e iEt/+J r(e iHt IRp )dt—
27Th —T* (30)

for T* chosen in the region following the initial decay but
preceding any recurrences (i.e., in region 2). The star sig-
nifies this special choice. This envelope Sr(E) constrains
S(E) in the sense that a local smoothing of S(E) yields
Sr'(E), as in Eq. (14).

C. The number of available phase-space cells

The task of finding the number of available phase-space
cells is now reduced to minimizing g„(p+) subject to
the envelope constraint. The envelope can be considered
to give a local constraint, namely, that the sum of the p~
in a given small-energy region around E give a result pro-
portional to Sr*(E). To minimize the sum locally around
E is to assign similar intensities to all the p„, with the
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only variations being smooth ones imposed by the require-
ments of Sz.(E). A trivial example serves to illustrate.
Suppose there are N p~ and we assume the envelope S' is
rectangular with height AE ' and width hE. Then if all
p~= 1/N, it follows that P(tp~ p)= g„(p~) =1/N is a
rninimurn. Any fluctuations in the p+ cause the sum to
increase. The worst case is when all the p~ vanish, except
one, which must then be 1. The sum then is 1. Note that
in this case, ~ =1, whereas ~„=N in the case where
all the p+ shared the strength S equally.

When we make the p~ as smooth as possible subject to
the envelope, and account for the local density of states,
we find that the set of constraint-obeying p+ which mini-
mize the sum are

Sf.(E„)
Dz*.(E„)

where Dz-(E„) is the density of states

Dr(E„)= g Qr(E„—E„)

(31)

(32)

dE .
[Sr*(E)]
Dz. (E) (33)

In classical mechanics, a very similar form applies:

dE,[Sc(E)l'
Dc(E)

(34)

and the asterisk signifies the special p„~ which maximize
, 1.e.)

which causes a locally fluctuating phase-space distribu-
tion, rather than an absolutely smooth one, even for the
most ergodiclike eigenstates. The fluctuations cause
Tr(p ) to be larger, and therefore ~ to be smaller.

However, instead of discussing a pure quantum state y,
we may coarse grain over several nearby y's, leading to a
mixed-state density matrix p which smooths out the local
fluctuations but which is still confined to a small region
in phase space. For such coarse-grained initial densities,
the full ~ is attainable. Kay has given a related theory
of coarse-grained quantum ergodicity.

D. The break time

Classical mechanics allows an infinite amount of time
for the questions surrounding the ergodicity of the flow to
be answered. The rate A' can become very slow, due to
recurrences, and yet the phase space eventually may be
completely explored. An excellent example of this is tem-
porary confinement inside a cantorus, mentioned in Sec.
IV D.

Bounded quantum-mechanical systems are a different
matter. They have a discrete spectrum, and a finite spac-
ing between the levels. Very roughly speaking, no new re-
gions of phase space can be visited after a break time
u ~ =hD (E), where D (E) is the density of states. There
are many qualitative arguments leading to this conclusion.
For example, consider two different states

~ y, ) and

~ yb ), or to simplify the notation,
~

a ) and
~

b ). We
suppose these states are in very different regions of phase
space, but share similar envelopes, i.e., Sr'*(E)=Sr*(E)
The similar envelopes assure us that flow from region a to
region b is permitted by the constraints. The question be-
fore us is: Can p'(t) stay away from p for times longer
than u z, but visit there later? The measure of the visita-
tion is of course Tr[p'(t)p ]. The asymptotic flow from a
to b is P (a

~

b), where
where Sc(E)=Tr[p5(E —H)] and Dc(E)=Tr[6(E —H)].

The set of p+* are smoothly varying from one n to the
next. In fact, we must expect some fluctuations, because
the p+ represent the square of a matrix element

p* x %„xdx, (35)

P(a
~

b)= lim —J Tr[p'(t)p ]dtT

(37)

E
3

(36)

That is, the X fluctuations in the p~ cause —, of the phase
space to become unavailable. This may be viewed as a
consequence of the nodal structure of the eigenfunctions,

where %„(x)are the eigenstates. In the case of a spatially
Gaussian random eigenfunction +„(x), the matrix ele-
ment would also be Gaussian random, ' accounting for
the secular variation due to the envelope. Once this is
done, one obtains a 7 distribution for the matrix elements
squared, ' p~, just as in the statistical theory of nuclear re-
actions. '

The set of pf which (1) obey the envelope constraints,
and (2) maximize ~ subject to the imposition of X fluc-
tuations is called the quantum ergodic set, p+'~ . Stechel
has provided a rigorous theory of quantum ergodicity
based on the p~~,

' and has shown that

In the case of a pure state, we have
2

Tr[p'(t)p ]= g a„b„e (38)

where a„=(a ~E„), etc. Equation (37) shows that for
P(a

~

b) to differ substantially from zero, both p„' and p„
must be nonvanishing for some set of n's. In fact, the
more terms in the sum in Eq. (38) that contribute (because
both a„and b„are substantial for the same n), the longer
the possible delay in Tr[p'(t)p"] rising above zero. But
this delay cannot go past the break time: Up until u z,
the phase factors exp( —tE„t/A') for adjacent n maintain
phase coherence; but after that time they essentially be-
come random phase factors, since their arguments become
large multiples of ~. Moreover, these factors vary with
time, while they remain random. There is no way con-
tinuously many random superpositions of the a„b„can all
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vanish; i.e., there must be a visitation of p by p'(t) near
or before u z.

The break time is evidently an approximate concept.
Clusters of levels with a spacing much smaller than the
average may exist, and it will take much longer than the
break time to dephase these levels and explore the last
corners of phase space. In the case of a classical Hamil-
tonian which is chaotic, it is becoming well established
that energy-level spacings for high enough energy or small
enough R obey the Wigner surmise spacing distribu-
tion, ' '" which abhors small spacings (manifested by a
linear level repulsion at small spacing). Thus the concept
of a break time actually becomes better established for a
classically chaotic system.

In an unbound system such as the quantum resonance
considered above, there is no break time because the densi-
ty of states is infinite. Nonetheless, recurrences slow
down the rate W, and so the amount of phase space ex-
plored per unit time is affected. Whether this is a pure
quantum effect simply depends on whether the re-
currences are quantum effects. In the case of Anderson
localization, W evidently reaches zero, even though there
is a continuum of 1evels present.

VI. QUANTUM LOCALIZATION

A. Localization in the first guise: The fraction ~
The fraction ~ of available phase space which is actu-

ally accessed by the dynamics in the long-time limit is
simpIy defined as

(39)

Corresponding to the prior constraint envelope Sr*(E)
there is a rate A', which is the rate in the region T' after
the first decay and before the first recurrence of Tr[pp(t)].
This is the maximum rate for the density p', it can only
decrease due to recurrences. It is simple to demonstrate
that phase space must be explored at the maximum possi-
ble rate A for the density p (i e , the ini.tia. l rate before
any recurrences) up until Ms, or else a cannot approach
unity: From Eq. (33) we have

1

[Sz*(E))
dE

Dr" (E)

D

f [Sr'(E)] dE
(40)

This simple relation, derived with the assumption that the
density of states can be treated as a constant over the en-
ergy interval hE, is a consistency check on the meaning of
the three quantities involved. It confirms that if the rate

where D* is the average density of states. Multiplying
the numerator and denominator by Planck's constant
gives, from Eq. (20) and Ms ——hD*,

(41)

A should fall below A', then ~ &~. Put another
way, recurrences must be put off until close to the break
time or the phase space will be incompletely explored.
This is consistent with the notion that recurrences cause a
decrease in A', together with the concept of a finite time
allowed to explore phase space.

The reader will be convinced, with a little thought, that
the recurrences are indeed put off until roughly Ms in the
ideal case that the p„are smoothly distributed under the
envelope S'(E), as in Eq. (31). Fluctuations will cause
earlier recurrences, but in the case of X random fluctua-
tions, these are not drastically earlier and cause only a 3

reduction in the phase space accessed. This is a negligible
amount on two counts: First, coarse graining will remove
the effect; second, the W's expected from quasiperiodic
motion in a many-degree-of-freedom system can be orders
of magnitude smaller than 1. This results from the vast
majority of the p~ being exponentially close to zero.

Recurrences and the p„'. The envelope Sr(E) for T
after the initial decay of Tr[exp( —iHt/A)p] but before
any recurrences, i.e., Sz.(E), is some smooth shape which
defines the envelope constraint (the prior constraint) we
have been discussing. It maintains its original shape, in-
dependent of T, as long as Tr[exp( —iHt/fi)p]=0. As
soon as a recurrence happens, Sr(E) begins to develop ad-
ditional structure. (See Fig. 5.) The new structure
represents new constraints on the p„', but these are not the
agreed-upon prior constraints. Since the p~ are forced to
live under the new roof, so to speak, of the now more
highly structured Sr(E), they are forced to fluctuate rela-
tive to the p~'~ . The new fluctuations will increase
P(p

~
y) and therefore decrease ~„and ~, the fraction

of phase space explored.
We can calculate the amount of localization, as mea-

sured by its effect on ~, that a given recurrence imposes
on the dynamics, as

[S (E)]'
dE

Dr(E)

[compare Eq. (33)]. Sr(E) is the envelope imposed on the
system after some recurrences have taken place. The u is
reduced at least as low as ~ /M. For example, the
common case of the exponentially damped recurrences
gives

(43)
&o

Also, the rate M after the series of recurrences damps out
and before any other recurrences take place is
& =(A, /vo)%", as already noted in connection with Eq.
(24).

The crux of the matter is that a short-time recurrence
(before u s) imposes an Sr(E) with more structure than
Sr*(E); this in turn means that the "best'* the dynamics
can do thereafter is to sample ~~ &~* phase-space cells.
Of course, it may sample much less than this, if further
recurrences happen before ~ z, but it can sample no more
than this. This permanent effect on the quantum phase-
space exploration due to a temporary phenomenon has no
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parallel in classical mechanics.
We are often able to make rigorous statements about

the short-time dynamics, via semiclassical means, for ex-
ample. This means we can predict weak localization of
the quantum dynamics and even of the eigenfunctions (see
below) from short-time approximations. This was the
strategy for the proof that some eigenfunctions suffer par-
tial localization around certain periodic orbits in classical-
ly chaotic systems (so-called scar localization).

B. Localization in the second guise: The eigenfunctions

I. Qualitative statements

Starting with a pure state
~
(p), we can project eigen-

functions of the Hamiltonian H out of the dynamics of
~
qj(t)) as

(44)

where g„ is a normalization constant, and E„ is the eigen-
value for

~
E„). Now, for those g„which are not too

large, i.e., for the
~
E„) which have the largest com-

ponents in
~
jp), the phase-space distribution of

~

E„)
(that is, its Wigner transform) can be large only where
p+(t) traveled. If p~(t) visited only part of the available
phase space, then

~
E„) can have significant probability

only there.

2. Dynamics ofp{t) and local of
~
E„&

We can make these arguments quantitative. From Eq.
(37), it is obvious that

(45)

where
~
/3) is an arbitrary state. Here, we suppose

P(/3
~

((v) is small, and we use Eq. (45) to check if
~
E„)

has a significant component in
~
P):

/
(E. //3) f'& (46)

pn

This important equation says that if
~

(p(t)) does not ac-
cess

~

/3) very much in the course of time, and also
~
qj)

has a large component in
~
E„) (p~), then

~
E„) cannot

be found to have a large component in /3. Equation (46)
quantifies the localization of the eigenfunctions which re
suits if

~

(p(t) ) fails to explore
~
/3) within the break time

~G

(0)
f E„& /

=
/
(f'(t}

f
E„ (47)

the localization of certain
~
E„) to (or away from)

~
qj)

applies also to
~

(Iv(t) ) for any t.

C. Examples of the localization

Scattering resonance

A viable analog to W in the case of an unbound poten-
tial is the ratio of the asymptotic rate A to the initial
constraint rate A, i.e., ~ =A /W'. This ratio is just
~ =A, /v& in the example of the barrier tunneling of Sec.
IV A.

Contact may be made with a more traditional view of
resonance localization in scattering theory by asking how
large the wave function is inside the well, as a function of
the scattering energy. We adopt the usual scattering nor-
malization (E

~

E') =5(E E'). A calculation y—ields the
continuum wave function normalization factor as

gE h&S(E):——

3. Localization of certain
~
E„& to p~{0)[and pr{t)J

The necessary result of failure to explore one part of
available phase space is a heavier concentration elsewhere.
This is true of the dynamics of p(t) and of the eigenfunc-
tions

~

E„). The p~ are a direct measure of the overlap
between an eigenstate

~
E„) and a test state

~
qj ) . We

have seen that recurrences cause oscillations in ST(E).
The p+ residing under a "mountain" in ST must be larger,
on the average, than those p„" in the valleys. More impor-
tant is the fact that this overlap is also higher than the ex-
pected overlap based on ST, which is indicated by the
smooth low-resolution envelope shown in grey in Fig. 5.
The ratio ST(E)IST(E) gives the average local deviation
of the probabilities p+ from the expectations of the prior
distribution. The presence of certain p+ which are larger
than they ought to be, given only the prior constraint
ST(E), means certain

~
E„) are partially localized to the

re~ion of
~

jIv). The degree of localization is at least
Sr(E) IST(E); this ratio can only increase if we remain in
the mountain regions of the developing ST(E). Concomi-
tantly, there are states which stay out of the region occu-
pied by

~
qj). It is certainly worth noting that since

rlE 5(E E')= f dt f dt'e"—' ' ' "(qj(t')
~
(p(t))

f dt f dt E(t —t j/t( i(E —E't''j/R( ({))
~

(t ti) )

=2M5(E E') f e' "/"((p—(0)
~

qj(t t') )du =(2vrR) 5(E E')S—(E) . — (4&)

We obtain then

E& I'=S(E (49)

[Note that S(E) is a continuous function of E.] Thus, on
the resonance energies, there is an enhancement

I

S(E)IST'(E) of the overlap with a test state
~
y). This is

not a fluke, but representative of the enlargement of the
local norm of the resonant wave function inside the poten-
tial well. For example, Eq. (47) applies, and for the first
period of the motion of the wave packet

~

jIv(t) ) covers the
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whole relevant phase space inside the well, in the one di-
mensional case and in the limit vp ~~A..

In the important case of the exponentially decaying re-
currences, we get

S(E)
Sr*(E) 7 o m= —~

—4ir'm 'itt' « —Eo)'

2'(bE) 2(bE)
2

g2 (E E )

4+
Tp

2. The average overlap with a test state

Suppose we average this ratio S(E)ISz'-(E) over an en-

ergy interval comparable or greater in extent than the en-
ergy spacing of the resonances, hvp. We recall that if
Ar(E E') is used —to perform the average, then S(E) be-
comes Sz.(E), and thus the average enhancement becomes
nearly one. This is a universal phenomenon: If we take
an energy interval AE*=T'/h, the auerage projection of
all the eigenstates in the interval onto a localized test state

~
p) having the envelope Sf (E) is p~'O . Put more loose-

ly, the average of consecutive eigenstates over an interval
AE around energy E becomes more and more like a mi-
crocanonical distribution smeared over AE around E.
This is true independent of the nature of the dynamics.

3. Quasiperiodic motion and 1ocalization to invariant tori

If the dynamics is classically quasiperiodic, there is a
quantifiable tendency for the eigenfunctions to localize on
the invariant tori, which are the classical stationary distri-
butions. ' This localization will be reflected in the early
and drastic reduction in W due to recurrences. As in the
harmonic-oscillator case, which is an example of the
quasiperiodic motion we are discussing, the localization in
this case is the same classically and quantum mechanical-
ly.

There is a caveat: Quantum tunneling can occur, lead-
ing to a leakage in phase space which is not permitted
classically. Such tunneling corresponds to exponentially
small splittings in the energies of pairs or clusters
of levels. As A~O, the classical and quantal W will track
each other for times which increase exponentially as
exp(const&&R '), which is much longer than ~ ti. Recall
that such tunneling is in violation of the notion that the

(50)

[This equation should not be taken too literally in the
wings, i.e., large

~

E Eo ~, si—nce the assumption of strict
exponential decay is not good near t=O. The damage this
does is in the wings of S(E).] The ratio S(E)ISr(E)
maximizes at the peaks in S(E) with the value

S (E) „&o
Sr(E)

This enhancement is relative to that standard established
by the prior constraints, which are contained in Sr"(E),
consisting of a single smooth lump. The prior constraint
envelope did not "know" about the resonances; informa-
tion about them only appeared after T=ro& T".

dynamics is all over by a z.
The possibility of tunneling reminds us that there is no

rule which says that the classical exploration of phase
space is more (or less) extensive than the quantum
mechanical. Recurrences together with the break time ef-
fect can, and often do, make the quantum motion more
localized than the classical. Tunneling has the opposite
effect.

Comparisons of classical versus quantum wave-packet
dynamics, using the Wigner phase-space picture, have
been the subject of several studies. '

4. Anderson localization

As mentioned above, we can often make quantitative
statements about weak localization of the long-time
dynamics or of the eigenfunctions from short-time infor-
mation about the dynamics. Whether an eigenstate is
strongly localized (e.g., confined to a region, via exponen-
tial damping of the eigenstate outside the region, even
though no known constraints binding it there exist) is
really an infinite-time question and therefore much harder
to approach.

As an illustration, consider a random potential in two
dimensions with a wave packet launched somewhere on
the potential. If the wave packet simply leaves and never
returns, the eigenstates must be extended. However, the
random features of the potential will cause amplitude to
be reflected back, resulting in recurrences with the initial
state, and causing a reduction in M. The reflections off
the potential features and thus the reduction of the rate
may be entirely quantum mechanical; an analogous swarm
of classical trajectories need not show the recurrences. In
this sort of system it will be fairly easy to confirm weak
localization. But the issue of whether the recurrences
completely shut down W to zero seems to be as subtle in
the present formulation as it is in the traditional ones.
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APPENDIX: CLASSICAL TIME-ENERGY
UNCERTAINTY CORRELATIONS

Here we consider the time-energy relation for classical
phase-space distributions which could have arisen as
Wigner transforms of pure quantum states.

We estimate P(t)=Tr[pp(t)] by approximation of the
short-time dynamics of p(t). The short-time dynamics of
p(p, q, t) is simply

p(p, q, t) =p(p+ V'qH t q —P'~ t),
through order t. If we assume that the distribution is lo-
calized enough to get out of its own way, so to speak, in a
short time, then we may write
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T Tf P(r)dr= f Tr[pp(r))dr
OO OO T= f dp f dq f dip(p, q)p(p+ VqH r, q V—+r)

=f ds f du f dip(su)p(su —~VH ~~). (A2)

Defining p(s) = f p(s, u)du, we have, for T large enough,

h " p (s) h ff. '".
2 f- "'(VH(.)(-2 (VH( p sds=

OO 2 trcr
(A5)

lump, say a Gaussian (specializing to one degree of free-
dom) p(s)=(1/2mcr )'~ exp( —s /2cr ), then

(A3)
With hE =

~

VH
~

cr =(c)H/Bs)5s, we have
where the approximation is valid for distributions well
enough localized in phase space. From Eqs. (Al) and
(A3) we have

hE,1

~A'
(A6)

iVH
/ (A4)

h f" p(s)ds

The integral p s ds is an interesting measure o the
localization of p(s) along s. If p(s) is confined to a single

where bE =(c)H/c)s)o. =(c)H/c)s). The rate then goes as
hE for a single lutnp distribution for p(s). However, if
p(s) is distributed over several different regions, then the
rate W is not directly related to the usual measure of the
energy uncertainty.
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