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Nonequilibrium potentials for local codimension-2 bifurcations of dissipative flows
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Nonequilibrium potentials are constructed which serve as macroscopic generalized thermodynam-
ic potentials in dissipative systems far from thermodynamic equilibrium undergoing a local bifurca-
tion of codimension 2 of a fixed point. The cases of two vanishing linear stability coefficients, of
one vanishing and one purely imaginary pair, and of two purely imaginary pairs of linear stability
coefficients are treated. As a result we establish the existence and form of a nonequilibrium poten-
tial for systems sufficiently close to codimension-1 or codimension-2 bifurcations for all cases where
locally stable attractors exist in the phase diagram in parameter space. The attractors of the system,
their basins of attraction in configuration space, and their bifurcations are determined by extremum
properties of the nonequilibrium potentials.

I. INTRODUCTION

One of the goals of nonequilibrium statistical physics is
to generalize the successful formalism of equilibrium ther-
modynamics, based on the use of thermodynamic poten-
tials, in order to make it applicable to systems outside and
even far from thermodynamic equilibrium. Some results
on this problem have been obtained by us in a series of
preceding papers. ' The problem was there considered
for a dynamical system described by the autonomous set
of differential equations

q"=K'(q) (v=1,2, . . . , n)

for which a non-negative matrix of transport coefficients
Q""(q) is given on physical grounds, e.g. , as the correla-
tion matrix of a set of n noise sources with Gaussian
statistics and white spectrum appearing additively in (1.1),

q =K (q)+ v'gg;"(q)g';,

g; (q)g,"(q)=Q""(q»

(g, (t)g, (0))=5;,5(t) .

(1.2)

(1.3)

'Q- (q)
'& '& +-K-(q) '& =0
Bq Bq" Bq

(1.4)

with the condition that P is minimal in attractors, maxi-
mal in repellors, and stationary in saddles. '

As a consequence of (1.4) Eq. (1.1) can be put into the
thermodynamical form

For the sake of concreteness (but, in fact, without
relevance to the following) let us assume that (1.2) is writ-
ten in Ito calculus. Then, if a nonequilibrium potential
P(q) for this system exists, it must satisfy the Hamilton-
Jacobi equation

with

ar =0,
Bq

(1.6)

(1.7)

i.e., K is split into a force driving the system towards the
minima of P and a force which conserves tb.

As in equilibrium thermodynamics, P contains the
essential information on the "statics" of the deterministic
system (1.1), i.e., information on the behavior for t~ oo,
in the form of the extremum conditions mentioned, and it
contains the global statement about the deterministic
dynamics that P can only decrease or remain constant.
Again, as in equilibrium thermodynamics, P does not fix
K uniquely, even for a given matrix Q t', since r in Eq.
(1.5) is not yet uniquely fixed by Eq. (1.6).

The formal analogy of (1.4) to a Hamiltonian dynami-
cal system in the Hamilton-Jacobi formalism was used in
Refs. 1 and 2 to show that, in general, Eq. (1.4) corre-
sponds to a nonintegrable Hamiltonian system, and, as a
result, even though in the vicinity of a given point there
exist infinitely many differentiable local solutions of Eq.
(1.4), a global solution of Eq. (1.4) which is simultaneous-
ly single valued, smooth, and everywhere differentiable
does not, in general, exist. Methods for discovering in-
tegrable special cases of (1.4) where a global, single-
valued, everywhere differentiable solution exists were dis-
cussed in Ref. 5. Furthermore, an extremum principle
based on the weak-noise limit g~0 (but 71 ~ 0) of the sto-
chastic process (1.2) was used in Ref. 3 which singles out
a unique single-valued, continuous but not everywhere dif-
ferentiable global solution of Eq. (1.4) even in the general
case where Eq. (1.4) corresponds to a nonintegrable Ham-
iltonian system. The extremum principle is based on the
relation

q = ——,Q"" ' +»"
Bq"

(1.5)
where W(q, g) is the stationary probability density of the
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stochastic process (1.2) for g ~ 0. In all this work W(q, g)
is assumed to be unique. In order to obtain the extremum
principle W(q, g) is represented as a functional integral by
well-known methods, which is evaluated for g~0 in
saddle-point approximation. Closely related mathemati-
cal work is described in Ref. 6.

The extremum principle shows that the potential P is
very closely associated with the attractors of the system.
Explicitly, it reads

P(q) = min [P;(q)]
(i)

with

(1.8)

q(0) =q
P;(q)=min j drLO[q(r), q(r))+C(W;)

(1.9)

and

Lo ———,'Q„„(q K)(q"—K") [—Q„„=(Q ') "] .
(1.10)

Here the attractors of the system are denoted by W;
(i =1,2, . . . , m). The function P; is the potential evaluat-
ed by (1.7) for the single attractor W; by taking the
minimum in (1.9) over all trajectories starting in W; at
time t~ —~ and ending in q at t =0. The constants
C(W;) are evaluated by a method given in Ref. 4. The
unique, continuous, single-valued but not everywhere dif-
ferentiable nonequilibrium potential P is then given by
(1.8) by taking the minimum over all coexisting attractors.
A detailed example for the application of the extremum
principle to the case of several coexisting attractors was
discussed in Ref. 4.

The existence of a simple solution of Eq. (1.4) for
dynamical systems (1.1) in a sufficiently close neighbor-
hood of a codimension-1 bifurcation even far from ther-
modynamic equilibrium has been known for some time.
The first use of such a nonequilibrium potential for the
case of a Hopf bifurcation, to the best of our knowledge,
has been made by Haken in the development of his non-
linear theory of a single-mode laser near threshold. The
statistical significance of Haken's laser potential in the
sense of Eq. (1.7) became clear from Risken's steady-state
probability density of a laser amplitude near threshold.
The interpretation of the laser potential as a generalized
thermodynamic potential was given later and permitted
the familiar reinterpretation of the laser threshold as a
second-order phase transition far from thermodynamic
equilibrium. ' The same kind of description was later
applied to bifurcations in hydrodynamics. A nonequili-
brium potential for the Benard instability in one spatial
dimension was first given in Ref. 11 and was later gen-
eralized to include, e.g., non-Boussinesq effects, ' rota-
tional symmetry, ' the effects of walls and defects, ' '
etc. It is now quite generally appreciated that the ampli-
tude equation proposed by Landau' and Stuart' for the
description of a continuous instability can be formulated
in the form (1.5), (1.6) with a potential P of the same form
appearing in Landau's theory of second-order phase tran-
sitions.

The existence of a potential P for systems sufficiently

close to a bifurcation of codimension 1 is a simple conse-
quence of the center-manifold theorem (cf., e.g. , Refs. 18
and 19) applied to such systems. The center-manifold
theorem ensures that sufficiently close to the bifurcation
point, and on a sufficiently long time scale, the dynamical
system can be reduced to one with only a single dynamical
variable. In this case, Eq. (1.4) is always integrable and
allows one to find P in a straightforward manner.

Recently, an increasing number of mathematical'
and physical ' papers has been devoted to problems in-
volving bifurcations of codimension 2 of a fixed point.
An extensive review of such problems from the point of
view of applied mathematics has been given by Guck-
enheimer and Holmes. ' Recent experimental work was
presented in Ref. 27.

A codimension-2 bifurcation appears when two
codimension-1 bifurcations coalesce and occur simultane-
ously at the same point in parameter space. As a result of
the coalescence, the two bifurcating degrees of freedom
interact strongly near the bifurcation point of codimen-
sion 2, which leads to the appearance of further
codimension-1 bifurcations in the neighborhood of the
codimension-2 point. Mathematically, codimension-2 bi-
furcations may be of three different main types, depend-
ing on the nature of the coalescing codimension-1 bifurca-
tions.

The first main type appears if the flow (1.1), linearized
around a fixed point [where K "(q) =0] and diagonalized,
has two vanishing simple eigenvalues at the bifurcation
point. This case is physically relevant, e.g. , for thermoha-
line convection in a fluid layer ' in which a horizontal
fluid layer is externally stressed by a temperature gradient
and a salt-concentration gradient. Another example is
provided by thermal convection in a binary fluid subject
to a temperature gradient.

The second and third main types of codimension-2 bi-
furcations occur, respectively, if the flow (1.1), linearized
and diagonalized near a fixed point, has a purely imagi-
nary complex-conjugate pair and a simple vanishing
eigenvalue or a pair of purely imaginary eigenvalues. An
important example of the latter case occurs in laser phys-
ics, when two laser modes with different frequencies pass
the lasing threshold simultaneously (cf., e.g., Ref. 29). An
example of the former case occurs in a simple chemical
reaction-diffusion system.

Bifurcations in fluctuating systems have been studied
by Knobloch and Wiesenfeld. ' They considered the
derivation of stochastic normal forms near bifurcations of
codimension 1 and 2. However, a solution of the resulting
Fokker-Planck equation on the center-manifold for
codimension-2 bifurcations were not given there, which is
among the goals of the present paper.

Nonequilibrium potentials of the type discussed in Eqs.
(1.1)—(1.10) have so far not been studied for the case of
codimension-2 bifurcations. It is the purpose of the
present paper to present such a study. The center-
manifold analysis near the bifurcation point of codimen-
sion 2 leads, essentially, to a reduction of the original
dynamical system (1.1) to one with two degrees of free-
dom. The dynamics of these two degrees of freedom in a
vicinity of the bifurcating fixed point is governed by two
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amplitude equations, which can be brought into normal
forms' characteristic of the particular type of bifurcation
under study. Assuming a simple form of the transport
matrix the Hamilton-Jacobi equation (1.4) associated with
the two-dimensional flow on the center manifold can be
written down. Its solution is then the nontrivial task.

Quite remarkably the Hamilton-Jacobi equations turn
out to have smooth solutions in the vicinity of the bifur-
cating fixed point in the form of a formal power series in
the small parameters which measure the distance from the
codimension-2 bifurcation point. If the two-dimensional
flow on the center manifold retains a stable attractor (not
necessarily a fixed point) in the vicinity of the bifurcating
fixed point, the solution of the Hamilton-Jacobi equation
coincides with the function associated with that attractor
by Eq. (1.9). It can therefore be identified locally [eventu-
ally after taking the minimum over several coexisting at-
tractors according to Eq. (1.8)] with the nonequilibrium
potential.

As a result we establish the existence and form of a lo-
cal nonequilibrium potential for systems sufficiently close
to codimension-2 bifurcations of a fixed point for all cases
where locally stable attractors exist in the neighborhood
of the bifurcating fixed point. In those cases where the
latter condition is not satisfied, i.e., where an attractor
does not exist locally, the nonequilibrium potential, in
principle, is not determined by the form of the flow near
the bifurcating fixed point as can be seen from Eq. (1.9).

A restriction of our analysis is the fact that spatial
derivatives in the amplitude equations are not permitted.
Nothing is known about the existence of a nonequilibrium
potential if spatial derivatives are permitted in
codimension-2 bifurcations, as, e.g., in Ref. 24. For
codimension-1 bifurcations, spatial derivatives can be tak-
en into account easily by generalizing P to become a func-
tional of the spatially varying amplitude. "

The technical part of the present paper is organized as
follows. In Sec. II and Appendix A we discuss the none-
quilibrium potential for the case of codimension-1 bifur-
cation of a fixed point. In Sec. III—V and Appendixes
A—C the nonequilibrium potentials for the three types of
codimension-2 bifurcations are determined.

Except for the case of two coalescing Hopf bifurcations
we also determine the leading correction in g to the
limit (1.7), i.e., the prefactor Z (q) in W(q, q)
-Z(q) exp[ —P(q)/g]. This is done in Appendix D.

Section VI contains our final conclusions. We show ex-
plicitly that results on codimension-2 bifurcations ob-
tained earlier in the literature can be obtained by studying
the extrema of the nonequilibrium potentials which we
construct. In some cases we are able to correct or extend
earlier results. Last but not least we obtain new results on
steady-state probability densities for weak noise, which, in
future work, may be used to calculate mean exit times for
the attractors appearing in codimension-2 bifurcations.

II. LOCAL CODIMENSION-ONE BIFURCATIONS
OF FIXED POINTS

In this section we describe briefly how codimension-1
bifurcations of an equilibrium state can be analyzed with

the help of a non-equilibrium potential. An equilibrium
state q =qo of (1.1) satisfies IC "(qo) =0. A local
codimension-1 bifurcation of this equilibrium point
occurs if the matrix of coefficients of the flow (1.1) linear-
ized near q =qo has a single vanishing eigenvalue or a
pair of complex-conjugate purely imaginary eigenvalues.
In the latter case a Hopf bifurcation occurs. In the form-
er case one may have a saddle-node bifurcation (collision
of a stable and an unstable equilibrium state under mutual
annihilation), a transcritical bifurcation (collision of a
stable and an unstable equilibrium state under exchange of
stability), or a pitchfork bifurcation [bifurcation of a pair
of two stable (supercritical) or unstable (subcritical) equili-
bria from a stable equilibrium state which thereby be-
comes unstable].

In the case of a single vanishing eigenvalue the center-
manifold theorem permits a reduction of the dimension-
ality of the state space to one; similarly, this occurs in the
case of a Hopf bifurcation, where the remaimng dimen-
sionality is two. Furthermore, close to the bifurcation
point, and in a small neighborhood of the bifurcating
equilibrium state, the theory of normal forms permits a
reduction of Eq. (1.1) to the forms (cf. Ref. 19)

x =p —x (saddle-node bifurcation),

x =px —x (transcritical bifurcation),

x =px —x (pitchfork bifurcation),

x= —y+x[p —(x +y )],

(2.1)

(2.2)

(2.3)

(2.4a)

( —2px + —,x ) (saddle-node),
1

Qo
(2.5)

( —px + —,x ) (transcritical),
Qo

(2.6)

( —px + —,'x ) (pitchfork) .
Qo

(2.7)

The bifurcations of the flows (2.1)—(2.3) are now associat-
ed with the extremum properties of these local potentials
in a straightforward way.

In the case of the Hopf bifurcation the existence of a
nonequilibrium potential is slightly less trivial, since the
flow (2.4) is still two dimensional. The transport matrix is
now a symmetric (2&&2) matrix. Again we may use a lo-
cal approximation and replace the coefficients by their
values at x =y =O=p. %'e may also use the rotational

y'=x +y [p —(x +y )] (Hopf bifurcation) . (2.4b)

Here @=0 is the bifurcation point and the size of p is a
measure of the distance from the bifurcation point in
(one-dimensional) parameter space.

In order to define nonequilibrium potentials for the sys-
tems (2.1)—(2.4) a transport matrix must still be given. In
the cases (2.1)—(2.3) the matrix consists of a single coeffi-
cient Q(x, p, ). In view of the local character of the flows
(2.1)—(2.3) near x =0, p =0 it is natural to give also a lo-
cal representation of Q (x,p) and to replace it by its value
at x =O=p, , Qo ——Q(0,0), assuming that this value is
nonvanishing. Equation (1.4) is then easily solved with
the result



35 NONEQUILIBRIUM POTENTIALS FOR LOCAL CODIMENSION-. . . 1331

0
VP

0 (2.8)

invariance of (2.4) in the (x,y) plane and rotate the coor-
dinates x,y in order to diagonalize the transport matrix

such systems behave like weakly damped systems with a
two-dimensional phase space. ' lt is useful to consider the
nonequilibrium potential of such systems from a general
point of view before applying the results. The dynamical
systems to be studied satisfy the equations of motion

Qi =Q2=Qo, (2.9)

In this general case a nonequilibrium potential of Eq. (1.4)
is constructed in Appendix A along the lines of Refs.
1—4. It is shown there that sufficiently close to the bifur-
cation point the difference between Qi and Q2 may be
neglected. Then the transport matrix (2.8) preserves the
rotational symmetry of (2.4)

x=U

aH
v = — +pug (x),

Bx

where H is a Hamiltonian of the form
2

H= +V(x),
2

(3.1)

(3.2)

and a very simple nonequilibrium potential

[—iu(x '+y') + —,(x '+y')'] (2.10)

iug(x) represents the divergence of the flow in phase
space, and we assume a transport matrix to be given in the
diagonal form

x+y =p (2.11)

is obtained as a solution of (1.4). The bifurcation of the
flow (2.4) is again reflected by changes in the extrema of
(2.10). In particular, the limit cycle

0
Q"= 0 Q,

The Hamilton Jacobi equation for P reads

Qi ay Q2 ay ay

(3.3)

appearing for p )0 corresponds to a continuously degen-
erate set of minima of the potential (2.10).

Let us finally mention that (2.10) has been widely used
in quantum optics to describe the Hopf bifurcations at the
laser threshold ' and at the threshold of optical
parametric oscillators. Similarly, Eq. (2.7) and exten-
sions of it have found widespread use for the Benard in-
stability and the Taylor instability.

+ [—V'(x)+pug (x)] =0 .a
BU

(3.4)

2

+ V(x) (3.5)

Since the strength of the dissipation iu is small, it is useful
to introduce

III. SIMULTANEOUS VANISHING
OF TWO EIGENVALUES

A. General form of the nonequilibrium potential

For codirnension-2 bifurcations characterized by a
simultaneous vanishing of two eigenvalues, the center-
manifold theorem ensures that in the vicinity of the bifur-
cation point the number of relevant variables can also be
reduced to two. Therefore, close to the bifurcation point,

]

and to eliminate v by

u =v(x,E)=&2[E—V(x)] .

Defining

P+(x,E)=P(x,u(x, E)), v ~0
(x,E)=P(x, —u(x, E)), u (0

we obtain

(3.6)

(3.7)

+ —,
'
[Qi V' (x)+Q2v (x,E)] +Qi V'(x) +pu (x,E)g(x) +u(x, E) =0 . (3.8)

As in a conservative system the potential P should be con-
stant, we look for a solution in the form

where Fi (E) is a still arbitrary pair of functions of E.
For v =0 the potential P(x, u) must be continuous for

all x. Hence
P-+= g p"P„+(x,E)-

n=1

and obtain in lowest order in p,

ax

(3.9)

(3.10)

P+(x, V(x))=$ (x, V(x))

must hold for all x, from which we conclude that

(3.12)

which is solved by

Pi(x,E)=Fi (E),

F+i(E)=Fi (E)—=Fi(E) .

(3.11) In the next order in p we obtain the equation

(3.13)
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—,[Qi V' (x)+Q2U (x,E)]F'i (E)

~4~z
+u (x,E)g(x)F', (E)+U(x,E) =0 .

ax
(3.14)

In order to find an equation for F, (E) we integrate (3.14)
over x for fixed E, assuming that

(3.15)
q(E)

X

~(E)

in a finite interval x~(E) &x &x,(E) where U(xi 2,E)=0
(Fig. 1). If such a finite interval does not exist, the system
(3.1) for p, =0 does not have closed trajectories. Such a
system is globally unstable and a nonequilibrium potential
is not determined by the local flow. For stable systems
the integral is taken from x& to x2 for v &0 and from x2
back to x i for v & 0. Then we have

E = const

FIG. 1. Phase portrait of the system (3.1) at p=O. Integral
(3.16) should be taken along an E =const contour of the (x, v)
space.

f"'dx'&'+ f"'dx'& =0 (3.16) V(E) = 1 X2f U (x,E)dx,
X2 —X( 1

(3.19)

since the potential must be single valued. Using Eq. (3.14)
we find

X2
w(E)= f V"(x)U(x,E)dx )0,

X2 —X) 1

(3.20)

X~f dx U(x, E)g(x)FI (E) vg(E) = 1 X2f g(x)U(x, E)dx .
Xp —X) 1

(3.21)

[Qi V' (x)+Qpu (x,E)]F', (E) =0 .
2U (x,E)

In order to obtain (3.20) we have performed an integration
by parts. Hence

Assuming F'i(E)&0 this leads us to

2Vz(E)F' (E)—
QzV(E) +Q i tU(E)

with

(3.17)

(3.18)

E ug(E)Fi(E)= —2 f dE+Fi(EO) .' Q2V(E)+ Qi iU(E)

(3.22)

Here Eo is the smallest possible value of E, where

xi (Eo)=Xi(EO).
The equation for $~2 can now be solved and we find

2Vs(E) X

p2 (X,E)=+ f g (x )U (x,E)dx—
Q2V(E)+ Q &

w(E)

Us(E) f x Q, V' (x )+Q~U (x,E)
dx +Fz (E) . (3.23)

Q2U(E)+Qiw(E) "i U(x, E)

The continuity of p(x, U) at U =0 implies again

F2 (E)=F2(E) . (3.24)

the lowest nontrivial order of p. To this order our result
is simply

In order to fix the arbitrary function F2(E) the solvability
conditions of the equation satisfied by Pz must be studied,
following the steps given after Eq. (3.14). It turns out
that the integral terms of (3.23) drop out from the solva-
bility condition due to their change of sign for v~ —v.
The condition obtained for F2 then simply is

F~(E)=0 . (3.25)

A repetition of these steps carries the expansion to arbi-
trary order. We recall now that we are here actually in-
terested only in the system in the vicinity of the bifurca-
tion point, i.e., for p very small. In fact, the actual equa-
tions of the form (3.1) which we shall use in Secs. IIIB
and III C are given by normal forms which are only valid
to the lowest nontrivial order of p. Hence, consistency re-
quires that we determine P in the same limit, i.e., again in

y(x, U) =py/(E)

E Vs(E)= —2p dE+p i Eo
o QqV(E )+Q &

tU(E)

(3.26)

with Eqs. (3.5) and (3.19)—(3.21). We expect that the ex-
tremum properties of this potential completely determine
the bifurcations of the system for sufficiently small p in
all cases where attractors exist in the local region of state
space which is studied. The equipotential lines of (3.26)
are given by the contours of constant energy E =const.
[Deformations from constant-energy contours proportion-
al to p appear by the use of the correction (3.23)]. Extre-
ma of the potential satisfy either
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or

P'(E) =0 (3.27) there exists a finite interval xi(E) &x &x2(E) with
E) V(x), where x i 2 are the two smallest roots of

V'(x) =0, v =0 . (3.28)
x —3lv, Ix+E=O. (3.37)

The condition (3.28) determines fixed points at the extre-
ma of the "mechanical" potential V(x) appearing in the
Hamiltonian (3.2). The condition (3.27) determines limit
cycles. It is equivalent to the condition

In this interval the expression on the right-hand side of
Eq. (3.26) is defined. Outside this interval (i.e., for

I

E
I
) Vp) the system is unstable, and we exclude this re-

gion from further consideration. Let us first look for lim-
it cycles, which must satisfy P'(E, ) =0, from which

vg(E) =0, (3.29) vg(E, ) =0 (3.38)
which expresses the physical condition that the integral
over local energy losses and gains along a limit cycle must
vanish.

The stability of the fixed points and limit cycles is
determined by the second derivatives of P, which will be
studied below for various special cases. In the case of a
Brownian motion gi ——0 the potential (3.26) has a more
general meaning. Arguments along the lines of Ref. 35
show that the stationary probability distribution of the
process (1.2), (3.1)—(3.3) with a weak damping p «1 is
then exp[ P(x, v—)lg] not only for g~0 but at arbitrary
noise intensity.

vi(E, )
v2 ———b

v(E, )

where we introduced the abbreviation

(3.39)

V„(E)= 1 X~I dxx "v(x,E) .
X2 —X) 1

(3.40)

For E = —Vp the interval x
&
(x (x2 shrinks to a point

x =x& ——x2 ———xp and the limit cycle disappears. This
happens for

follows. Using (3.21) with (3.6) and (3.34) we find the
condition

B. Case without inversion symmetry

The normaI form of this case can be taken as'
v)( —Vp)

v2 —— b — =b+Iv,
l

v( —Vp)
(3.41)

X =U

U =P i +/L2U +X +bXU
(3.30)

On the other end of the allowed interval for E„at
E, = Vp, the limit cycle is as large as possible and ceases
to exist upon further increase of E, . This is realized for

4 2 2 3—
P] E V)~ P2 E' V2~ X E X~ U E' U~ t t/E' (3.31)

Scaling the variables and the bifurcation parameters by'
vi( Vo)

', b&l v,
I

-.
v( Vp)

(3.42)

and omitting the bars, henceforth, we obtain The limit cycle therefore exists in the parameter interval

X =U

v =vi+x +e(tv +bxv) .
(3.32)

5 v2

b
(3.43)

The transport matrix we use is of the type of (3.3) in the
rescaled variables. The bifurcation point is characterized
by v~ ——v2 ——0. We shall be interested in the two cases
b =+ l. Equation (3.32) is of the form (3.1) with

V(x) = —v,x ——,x,1 3 (3.33)

g(x)=v2+bx, (3.34)

i.e., the results of the preceding section are immediately
applicable with p of Sec. IIIA being identified as E in
(3.32). From Eq. (3.33) it follows that for vi ~0, V(x) is
monotonously decreasing, i.e., the system is unstable and
leaves the neighborhood of x =U =0. We therefore ex-
clude this case from further consideration.

For v& &0 the potential V(x) has a minimum at

xmin= —v
I
vi

I

= xo ~

(3.35)
Vmin= 3 I

vi I
= Vo

3/2

and a maximum Vp at xp. For

The limit cycle is stable if

P"(E,)» . (3.44)

This condition is equivalent to v g (E, ) & 0 or, via Eqs.
(3.21), (3.26), (3.34), and (3.41), to

Vi(E, )
b (3.45)(0.

v(E, )

0'(+ Vo) V'(+xo)

It is easy to see geometrically, and it is also possible to
show analytically, that [V&(E)/v(E)]'&0 for —Vp &E
& Vp. Therefore, for b &0 the stability condition (3.45) is
not satisfied, i.e., the limit cycle is not stable. For b (0,
on the other hand, the condition (3.45) is satisfied, and the
limit cycle is stable in the interval
—Ib i&lvil &v2« —5fb l&fvil».

Fixed points of the system exist, according to Eq.
(3.28), at x =+xp, v =0 where E=+Vp. The matrix of
second derivatives of P with respect to x, v at the fixed
points is given by

—Vp(E( Vp (3.36) P'(+ Vp)
(3.46)
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As a result, the fixed point x =xp, v =0, E = Vp is a sad-
dle because of V"(xo) &0 regardless of the sign of P'( Vo).
The other fixed point x = —xp, v =0, E = —Vp has
V"( —xo) & 0 and is therefore stable if and only if
P ( —Vo) & 0. This latter condition is equivalent to

us( —Vo) &0

which is satisfied if

(3.47)

(3.48)

This completes the discussion of the extrema of the none-
quilibrium potential and determines the local bifurcations
in a neighborhood of the codimension-2 point v& ——v2 ——0.

We summarize the results as follows. Only v& &0 is of
interest to us since otherwise no attractors exist close to
the origin in state space. For the case b = 1 there does not
exist a stable attractor even for v& & 0, as long as
vz & V'

I
~&

I
. Lowering vz for fixed v~ &0, a stable fixed

point x = —Q I
v~ I, u =0 and an unstable limit cycle

E =E, appear at vz ——Q
I

v&
I
. There is now a nonequili-

brium potential in state space in the neighborhood of the
attractor defined for —2

I
v&

I

~ /3 & E & E, & 2
I

v~
I

/3
which attains a maximum at the limit cycle E =E,. The
appearance of the unstable limit cycle together with the
stable fixed point indicates that there is a subcritical Hopf
bifurcation for vz~Q

I
v~

I

—0. The shape of the poten-
tial for E &E, is not determined by the attractor at
E = —Vp. Rather, the decrease for E &E, of the func-
tion defined by Eq. (3.26) for E, &E & Vo indicates that
there must exist another attractor of the system far from
the origin in state space if the system is to be globally
stable. This additional attractor then determines the form
of the potential in the domain E & E, via Eq. (1.9).

Decreasing vz further to vz= v I vi
I

the»lue E. in
creases and reaches the boundary at E, = Vp where the
unstable limit cycle forms a homoclinic orbit of the saddle

xo E Vo For vz & 7 & I
vi I

the maximum of
the potential at a limit cycle has disappeared and the at-
tractor at E = —Vp now determines the potential in the
whole domain —Vp & E & Vp.

For the case b = —1 there is no attractor even in the
case v& &0, as long as vz & ——', Q

I
v~

I
. Decreasing vz for

fixed v& &0, an attractor appears first for vz ————', Q
I
v,

I

as a homoclinic orbit E= Vp of a saddle at E = Vp. For
—5+

I
v~

I

/7 & vz & —Q I
v& I

a stable limit cycle exists
for E =E„and a nonequilibrium potential is defined for
—Vp &E & Vp which is minimal at E =E„and, as a
function of E, has boundary maxima at E=+Vp. At
vz ———Q

I
v~

I
the limit cycle at E =E, and the boundary

maximum at E = —Vp collide and disappear together by
an inverted supercritical Hopf bifurcation. For
vz & —+

I
v& I

the potential has a boundary minimum at
E = —Vp where the system has a stable fixed point and a
boundary maximum at E = Vp where the system has a
saddle. The discussion of the extrerna of the nonequilibri-
urn potential has thus reproduced all those features of the
bifurcation (cf. Ref. 19), which are associated with attrac-
tors and are, therefore, in principle, observable in a physi-
cal system.

C. Case with cubic symmetry

In the presence of the point symmetry

(x,u)~( —x, —u) (3.49)

the normal form (3.30) cannot be applied and is replaced
b 19

v=p)x+p2U —ax +bx v .

Scaling the bifurcation parameters and variables by'

2 2 2—P)=E V), P2=6 V2, X =EX, U =E V, t =t/6
and omitting the bars, henceforth we obtain

(3.50)

(3.51)

X =U

3 2v=v, x+ev2U —ax +ebx v .

This is again of the form (3.1) with

(3.52)

V(x)= ——,vox + —x
4

g(x) =vz+bx
(3.53)

and the results of Sec. III apply. We shall be interested in
the cases a =+1 and b =+1.

1. The case a=1

Let us first discuss the ease a = I. Then, for v& &0 the
potential (3.26) is defined for 0&E & ao in the interval
x~(E) &x &xz(E). For v~ &0, the potential (3.26) is de-
fined for —Vp &E & oo in the intervals

ordered according to their size, and
IVp= 4vi .

Limit cycles satisfying P (E, ) =0 now exist if

uz(E, )

u(E, )

As uz(E)/u(E) & 0, solutions exist only if

V2 &0.

(3.56)

(3.57)

(3.58)

Stability of limit cycles requires P"(E, ) & 0, which is
equivalent to

uz(E, )
b &0.

u(E, )
(3.59)

If v, &0 it is obvious, geometrically, that uz(E)/u(E)
monotonously increases with E starting from

xt(E) &x &xz(E} x3(E) &x &x4(E) ( —Vo &E &0)
(3.54)

x, (E) &x &x,(E) (0&E & ~) .

Here, the x; are the real roots of

(3.55}
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u2(0)/u(0)=0. Hence, Eq. (3.57) has a single solution in
this case, which is stable only if b = —1; for b = + 1 it is
unstable. The limit cycle for v& &0 collapses to a single
point if E, =O, which happens for vz ——0. Hence vz ——0,
vi &0 is a line of Hopf bifurcations which are subcritical
for b = 1 and supercritical for b = —1.

If v»0, on the other hand, u2(E)/u(E) first decreases
from its value u2( —Vp ) /u ( —Vp ) =vi for increasing
E & —Vo and increases again for sufficiently large posi-
tive E. ' ' Hence, there is a minimum

vq(E)

u(E) min

such that for

=C&0 (3.60)

Vz
&C (3.61)

no solution of (3.57) exists; for

Vz
vi » — C

b
(3.62)

there are two solutions at E =E, i, E =E,2 (E, i &E,q)
and for

(3.63)

C=Cvq . (3.64)

The limit cycle at E =E,
&

splits into two symmetrical cy-
cles if E, &

& 0, which happens first for

Vz

b

u2(0)

u(0)
4
5 v) (3.65)

The two symmetrical cycles collapse to the two points
x =++

~
vi ~, u =0 when E, i

———Vp, which is realized
for

u2( —Vp)

u( —V, )
= —v) (3.66)

It remains to investigate the fixed points of the potential.
For v, &0 there is only one fixed point at E =0,
x =u =0, whose stability requires P (0) & 0. This is satis-
fied for vz &0, for vz&0 the fixed point is unstable. For
vi &0 there are two equivalent fixed points at E = —Vp,
x =+~vi, u =0. The stability condition P'( —Vp) &0
leads to the condition vz& —bv& ~ Another fixed point
satisfying (3.28) is located at E =0, x =u =0. Due to
V"(0) &0 it is identified as a saddle as in Eq (3.46). A. n

explicit expression of the potential is given in Appendix B
for g, =o.

The bifurcations in the vicinity of v& ——vz ——0 for the
case a = 1 can now be summarized as follows. For
b = —1 there is a supercriticaI Hopf bifurcation along the
line vz ——0, v& &0 which takes the boundary minimum of

there is one solution, at E =E,z. For b = + 1 the solution
E =E,

&
is stable and E =E,z is unstable. For b = —1 the

situation is reversed. The constant C in Eq. (3.60) can
only be evaluated by actually doing the necessary elliptic
integrals, '

the potential at E =0 existing for vz &0 into a boundary
maximum for v2& 0 with the simultaneous appearance of
a new minimum at E =E, & 0 describing a stable limit cy-
cle. Crossing the line vi ——0 to the half-plane vi &0 the
fixed point at E =0 splits into a symmetrical pair at
E = —Vp via a pitchfork bifurcation. The pair is stable
for v2&vi and unstable for v2&vi. Decreasing v2 from
positive values for fixed v&, there exists first a boundary
maximum of P at E = —Vp describing a pair of unstable
fixed points and a minimum at E =E,z&0 describing a
simple stable symmetrical limit cycle. %'hen vz crosses
below vq ——vi there occurs a reversed subcritical Hopf bi-
furcation which turns the unstable fixed points into stable
ones and creates a symmetrical pair of unstable limit cy-
cles within the symmetrical stable limit cycle surrounding
them. When vz crosses below vz ———,'v& the pair of unsta-
ble limit cycles turns into a single unstable limit cycle
forming a homoclinic orbit of the saddle at x =0, v =0
for vz ———', vI. The two symmetrical limit cycles, the inner
one unstable, the outer one stable, coalesce and annihilate
each other at v2 ——cv, and for v2&cvi only the pair of
stable fixed points remains.

In the case b =1 the negative v& half-plane is still
separated by a line of Hopf bifurcations at vz ——0 but this
time the Hopf bifurcation is subcritical and turns a boun-
dary minimum of P at E =0 and a maximum at E =E,
existing for vz&0 into a boundary maximum for vz&0.
For v& &0 a stable attractor therefore exists only in the
domain vz&0 and the nonequilibrium potential is only
determined by this attractor for 0&E&E,. For v& &0,
vz & 0, E & E, and v~ & 0, vz & 0 the system is unstable and
the nonequilibrium potential cannot be determined by lo-
cal considerations. We therefore exclude these regions
from further consideration. Crossing the line vi ——0,
v2 & 0 into the positive vi half-plane the stable fixed point
at E =0, x =0= v undergoes a pitchfork bifurcation and
turns into a symmetrical pair of stable fixed points at
E = —Vp, x =+~vi, u =0, which is surrounded by the
unstable (symmetrical) limit cycle E =E,2 & 0. Increasing
now vz from negative values at fixed v»0 the pair of
stable fixed points undergoes a supercritical Hopf bifurca-
tion at vz ———v& and turns unstable by ejecting a pair of
stable limit cycles E =E,

&
which is surrounded by the un-

stable limit cycle E=E,2 (E,2&E, i). At vq ————,vi the
two stable limit cycles form a homoclinic double loop of
the saddle at x =0=v and merge into a single symmetri-
cal stable limit cycle for v» ——,v&. For vz ———cv~, final-
ly, the two limit cycles coalesce and annihilate each other.
Thus for vz & —cv& there exists no stable attractor and the
nonequilibrium potential is not determined by the local
flow. This region is therefore again excluded from con-
sideration.

2. The case a = —1

Finally, we analyze the case a = —1. It is clear from
Eq. (3.52) that the half-plane v»0 is a region without at-
tractors ~here the local Aow does not determine the none-
quilibrium potential. For vi &0 the solution (3.26) is de-
fined for 0(E( Vp ——

~
vi

~
/4.

A limit cycle exists for
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U2(E, )
vz ———b

U(E, )

and is stable if

(3.67)
tors. The region vi &0, vz ~0 is therefore excluded from
consideration.

IV. SIMULTANEOUS VANISHING OF A REAL
EIGENVALUE AND THE REAL PART
OF A COMPLEX-CONJUGATE PAIR

U2(E, )
b

U(E, )
&0. (3.68) The local normal form of this second type of

codimension-2 bifurcation reads

Since u2(E)/V(E) is positive and monotonously increasing
for 0& E & Vo there is a single limit cycle in the region
vzlb &0 and it is stable for b = —1 and unstable for
b =1. The limit cycle coalesces to the point E =0,
x =U =0 for E, =0 which happens for vz ——0. The limit
cycle can also disappear for E, = Vo by forming there a
heteroclinic connection of two saddle points E = Vo,
x =+@'

~
v, ~, U =0. This happens for vz/b = —

~
vl

~

/5.
A fixed point exists at E =0 where P has a boundary

extremum. It is a minimum for vz &0. The boundary ex-
tremum at E = Vo is always a saddle at x =++

~
vl ~,

U =0. Thus, for b = —1, v& & 0 and vz & 0 there is a stable
fixed point at x =O=U and the potential is defined for
0&E & Vo. Crossing the line vz ——0, vI &0 there occurs a
supercritical Hopf bifurcation which turns the minimum
of P at E =0 into a maximum by ejecting a new
minimum at E =E, describing a stable limit cycle. At
vz ——

~
vl

~

/5 the limit cycle forms a heteroclinic orbit of
the points x =++

~
v, ~, U =0 and disappears, leaving

the local flow without any attractor. Approaching the
line vi ——0 for vz &0 the domain 0 &E & Vo where the po-
tential can be defined shrinks to zero and disappears. For
b =1 and vI &0, there still is a stable fixed point at
x =U =0 for vz&0, but in addition there is an unstable
limit cycle at E =E, which forms the border of the
domain in which P can be defined. A subcritical Hopf bi-
furcation at vz ——0, vi & 0 turns the stable fixed point into
an unstable one and leaves the system without any attrac-

r'=pir +arz+cr +drz

z =@2+br z+e—r z +fz
0=co .

(4.1)

z=v2+br —z +ez(er +fz )

=v2+br z+ezg—,(r,z) .

(4.3)

The transport matrix we choose to be diagonal and isotro-
pic in the ( r, 9) plane

(4 4)

0 0 I

pQ
2

The Hamilton-Jacobi equation for P reads

Henceforth, we concentrate on the case that the coeffi-
cients a and b have opposite sign, ab &0. A special
feature of the case ab ~ 0 is considered in Appendix C.
Rescaling the variables and parameters by

2 2
7 El~ z Ez~ pI 6vI~ pz 6 v

(4.2)
t = t/e, co=eG

and omitting the bars henceforth we obtain 0=co and

r =arz+'e(v, r+cr +drz )

= arz +eg, ( r,z),

Ql 3 Ql 8 Q2+ + +(arz+eg„) +(v2+br z+ezg, ) —+al =0 .
2 Br 2r2 BH 2 Bz

L

(4.5)

Due to the rotational symmetry of the flow (4.3) 8 is a cy-
clic variable, and P is independent of 8 since otherwise P
could not be periodic in 0. This conclusion depends only
on rotational symmetry and holds even if co in (4.1) and
Q in (4.4) is an arbitrary function of r and z. (We note
in passing that symmetry-breaking perturbations of the
normal form may lead to chaotic behavior and hence in-
troduce great complications which have not yet been dealt
with in the present formalism. We exclude here the pres-
ence of such symmetry-breaking perturbations. )

The Hamilton-Jacobi equation (4.5) can be solved per-
turbatively in e,

For P, we obtain the general solution

(4.7)

with

2

u =u(r, z)=r z —vp—2/a 2 br
1+a (4.8)

1/2

z =z(r, u)= ur +v2+—2/a
2

1+a (4.9)

We introduce u as a new variable instead of z and define

n=l
(4.6) Henceforth, we distinguish the potential in the upper and

lower z half-plane by the notation P —(r, u) =P(r, +z (r, u)).
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The continuity of P for z =0 is then expressed by

P+(r, u (r, o))=P (r, u (r, o)), (4.10)

where again z=z(r, u) is implied in the integrands. The
expression for g (u) can be simplified using the identity

which is why we may keep the simpler notation in Eq.
(4.7). For P2 we obtain the equation

arz 4z
+

2 Br

2 Bz(r, u)
Z —v2 —br = —aZr

Br
(4.17)

and the fact that z vanishes at the boundaries of the in-
tegrals. Using the explicit form of g„g, we obtain by par-
tial integration

Qi r ' (z v —br —) +Q r 'z F', (u)
2

2/a —1g(u)= dr r ~' 'z +Ar + , Bz-
r) a

(4.18)

2/a —1 2 2+ g„(r,z) r' —'(z v2—br—)
a

+g, (r, z)r 'z FI (u), (4.1 1)

with

2(1+a)A= c+e,
a

B= +3f,2d
(4.19)

where we have used that g, and g, are even in z and
z =z(u, r) is always implied. In the following we restrict
our attention to the parameter domains

or, applying the identity (4.17) again in order to eliminate
the r term in the integrand,

and

b )0, a (0, v2(0 (4.12)
r2

g(u)= f dr r'~'-' 2vi V2
A z

b (0, a )0, v2)0, (4.13)

(4.14)

because in these cases there exists a fixed point at
rp =Q —v2 Ib, z =0 and closed contours u ( r, z) =const
surrounding it in the ( r, z) plane, and there is a possibility
for Hopf bifurcations to occur. [In order to save space we
shall not enter a discussion of the bifurcations of the fixed
points at r =0, zp =+~vz which always occur for v2 ~ 0;
in fact, the scaling (5.2) we have adopted would not be ap-
propriate for such a discussion, rather p~ ——ev~, p2 ——e v2,
would be necessary. ] Our restriction of parameter space
ensures that we can integrate Eq. (4.11) over r for fixed u

in a finite interval r
&
(r (r 2 where

u ) —rp [v2+br pl( 1+a)] and r, , r2 with
0& r, (u) & Q v2/b &r2(u) —& oo are two positive roots
of z(u, r) =0. Taking the integral in the (r,z) plane from
r] to r2 with z )0 and back from r2 to r ~ with z (0 and
using

z+ —+&
b 3

(4.20)

Thus, restricting ourselves to the leading order in e our re-
sult is

P(r,z)= e f ' " —du .
Q(u)

(4.21)

(4.22)

which is equivalent to

g(u, )=0 (4.23)

if Q(u, )&0. The relation fixing v~ as a function of u, is
obtained from Eq. (4.23) with Eq. (4.20) as

Let us now discuss the extrema of this solution. Limit cy-
cles in the (r,z) plane [corresponding to two-tori in the
(r, 8,z) space u (r, &,z)=u, ] satisfy

we obtain a solvability condition which must be satisfied
by Fj(u),

v) ——v)(u, ) = [Av2 ——,
'

(A +bB)(z (u, ))]
2b

(4.24)

with
Fg ( )

g ( u )

Q(u)
(4.15) r~

d
rl

r2f d 2/a —1

rl

(4.25)with

] r2
g(u)= — dr[r ~' (z —v2 —br )g„(r,z)z

a Obviously, (z ) is positive, but it need not be montonous-
ly increasing with u, . Therefore, Eq. (4.24) may have
more than one solution in a range of v& values. Such ad-
ditional solutions appear or disappear at bifurcation
points which are determined by

+ar ~' 'zg, (r,z)],
(4.16)

Q(u)= dr[Q~(z v2 br)——r~
2 2 2

a 1

(z'(u, )) =0.
dQc

(4.26)
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Whether such points exist or not depends only on the
value of a, b, v2 and not on the constants A, B defined by
(4.19).

The only admissible solutions of (4.23) lie in the range
0&z (r, u) & oo. Therefore, according to Eq. (4.8), u,
must satisfy u, & u;„with

1/a

u min

av2 v2

1+a b
(4.27)

In the case of (4.12) for —1 & a &0 and of (4.13) u, must
lie in the interval

umiII (u~ (0 ~

while in the case of (4.12) for a & —1

(4.28)

0( umi~ (u~ ( oo

A limit cycle collapses to the fixed point

V2r, =—,z=o
b

'

(4.29)

(4.30)

a
v) —— A v2

2b
(4.31)

when u, reaches its lower limit. Then (z ) defined by
(4.25) approaches zero and is monotonously increasing
with u, for u, slightly above u;„. Thus, for u, slightly
above u;„ there exists only a single limit cycle. We con-
clude that the system undergoes a Hopf bifurcation for
u, =u;„which happens for

ay ay
dr '

Bz
(4.37)

by putting

Bu c)u

Br Bz
(4.38)

This can be satisfied for vz/b &0 and yields (4.30). The
trace and determinant of the Hessian of u with respect to
r and z taken at this point are

the limit cycle is stable. (This result is in disagreement
with a corresponding result in Ref. 19, due to an algebraic
error in the evaluation of the stability of the limit cycle. )

If (A +bB)/b & 0 the Hopf bifurcation is subcritical, and
the limit cycle is unstable. For u, ~0 with
b &O, a &0,v2& 0 the derivative of vi(u, )/a diverges to
+ oo if (A+bB)/b &0 and to —oo if (A+bB)/b &0.
Thus Eq. (4.36) is also the stability condition for the limit
cycle near u, =0, which continuously evolves from the
Hopf bifurcation. As v'i(u, ) has the same sign for
u, ~u;„and u, ~0, the number of minima and maxima
of vi(u, ) inside this interval must be equal. Therefore,
the number of solutions of Eq. (4.24) can only be one
stable limit cycle, or, in general, an even number of stable
and an odd number of unstable limit cycles.

Finally, we analyze the fixed points of the system
described by the boundary extrema of P(u) at u =u
and at u =0, for the case of Eq. (4.13). For u =u;„we
can satisfy

as follows from (4.22) for u, ~u;„. The size of the limit
cycle grows without limit in the case of (4.12) and can
then no longer be reliably described by the local expansion
(4.1). In the case of (4.13) the limit cycle reaches its larg-
est size at u, =0 and forms a heteroclinic connection of
the fixed points r =0, z =+~vz before disappearing as
soon as u, &0. The critical value u, =0 is reached for

u

Br

u

Br Bz

u

Br Bz

u

Bz

8V2

2(a —2b)( —v~)+
Br2 Qz2 ab

2/a —1

(4.39)

v2a ab(1+a)A — B
(2+ 3a)b 2

A limit cycle is stable if

(4.32) and hence both eigenvalues are positive if

V2 &0.
a

(4.40)

(4.33)

g'"'(u, ) &0

and also to

(4.34)

where n is the order of the first nonvanishing derivative
of P. The condition (4.33) is equivalent to a &0 (0 =14;„).

Bu

Equation (4.41) is equivalent to

(4.41)

For vq/a &0 the fixed point (4.30) is therefore unstable.
It is stable if (4.40) is satisfied and

—vI"'(u, ) &0 .
a

(4.35)
g (u;„) (0 ~

Q (u;„) (4.42)

A +bB 0, (4.36)

i.e., in this case the Hopf bifurcation is supercritical and

In general, this condition is tedious to evaluate and we
therefore consider only the two limiting cases u, ~u
and, for the case of (4.13), u, ~O. For u, ~u;„we see
from (4.24) that vi(u, )/a is increasing with (z ) and u,
for u, &u;„ if

V2

2b

vp )0.
a

(4.43)

For the case of Eq. (4.13) another boundary of u exists at
u =0. [For the case of Eq. (4.12) with —1 & a &0 the
boundary at u =0 also exists but is only reached for

As g (u) increases with vi/a and g (u;„)/Q(u;„) =0 for
vi/a given by Eq. (4.31), we find as the domain of stabili-
ty of (4.30),
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v&~+co, depending on the sign of A, and hence is ir-
relevant. ] Putting r)u/Br =Bu/Bz =0 in this case we find
the fixed points

r =0, z =+)/vz (4.44)

However, the determinant of the Hessian of u at these
points either diverges to —oo (if a &2) or approaches
zero from the negative side (if 0 & a & 2). In either case,
the fixed points (4.45) are unstable. If 0& a &2, another
solution of Bu/Br =Bu/Bz =0 is the manifold r =0, z ar-
bitrary, which contains the fixed points (4.44) and is again
unstable.

Let us now briefly summarize the implications of the
extrema of P for the behavior of the system in the three-
dimensional (r, g, z) space. In the case of Eq. (4.12) b &0,
a & 0, v2 & 0 we have to distinguish the two possibilities

(i) A & bB, —
(ii) 3 & bB. —

(r)~&~b~B,
(ii) 2 & Ib ~B.

If (i) is realized the system has a stable limit cycle
r =+

~

vz/b ~, z =0, 0 & 8 & 2' for v( & z I
vza /b

I
~.

The domain where the nonequilibrium potential is defined
is limited by the condition u;„&u &0. The limit cycle
disappears via a Hopf bifurcation for vz~0+ (the
domain vz &0 is excluded) and it undergoes a supercritical
secondary Hopf bifurcation for v, = ——,

'
~
vza/b

~

A. For
v& larger than this critical value the limit cycle is unstable
and surrounded by a stable two-torus. Further pairs of

If (i) is realized the system has a stable limit cycle
r =+

j vz/b ~, 0&0&2@, z =0 in the domain v,
& —,

~ vza /b
~

3 —= v&0 and the nonequilibrium potential is
everywhere defined by (4.21). The limit cycle shrinks and
disappears by a Hopf bifurcation if v2~0 —;the domain
v2&0 is excluded from our considerations. The limit cy-
cle loses its stability by a secondary supercritical Hopf bi-
furcation when v& is decreased to the critical value v&

——v&p

where a stable two torus is born which exists for all

v] (v~p and surrounds the now unstable limit cycle. If
—1 & a &0 new pairs of stable and unstable two tori may
appear for v& &v&p if a has a value such that critical
values of u, satisfying (4.26) exist. If vz~0 —for v~ &0
the radius of the unstable limit cycle shrinks to zero to-
gether with the inner radius of the surrounding two torus
until they both disappear for v2 ——0.

If (ii) is realized, the system has a stable limit cycle for
v& ~ v&p but it coexists with an unstable two-torus sur-
rounding it and limiting the domain in which the non-
equilibrium potential is determined by the local flow. For
v&

——v&p the unstable two-torus collapses to the limit cycle
and destabilizes it by an inverted Hopf bifurcation. The
domain v& & v&p must be excluded from consideration, as
no local attractors exist there.

Now we discuss the case of Eq. (4.13), a &0, b &0,
v2&0. In this case, the system has two unstable fixed
points at r =0, z =+~vz. We must distinguish the two
cases

stable and unstable two tori appear and disappear in this
region at points where condition (4.26) is met. If v~ is in-
creased further towards the value

1 vza 2(1+a)A +a
~

b
~

B
2 b 2+3a

V. TW'0 SIMULTANEOUS HOPF BIFURCATIONS

This last type of codimension-2 bifurcation has the lo-
cal normal form'

3 2 5r ( p( r ) r( —br ) r z +——0—( r ),
3 3 5rz pzrz crzr] d—rz+——O(r ), —

8& =co)

02 =CO2,

(5.1)

provided there is no resonance of low order between the
two frequencies, men&+ncoz&0,

~

m
~
+

~

n
~

&4. Other-
wise, phase-coupling terms must be taken into account al-
ready in the leading terms of the normal form. O(r )

denotes homogeneous functions of fifth order. ' In the
following we consider the case where bc &0. The oppo-
site case where bc & 0 has a simplifying feature which is
treated in Appendix C. Scaling in the form

c —1 2
p2, = —Ev) d +E v2,

b —d

i = r/E, co~ =&co~, coz ——Ecclz,

(5.2)

there remains only one stable two-torus which, at this crit-
ical value of v&, forms a heteroclinic connection of the two
unstable fixed points and disappears. The region of larger
v~ is excluded as no attractors remain.

If (ii) is realized, the stable limit cycle for
v& & ——,

~
vza/b

~

3 coexists with a surrounding unstable
two-torus, which forms the boundary of the region where
the nonequilibrium potential can be locally defined. This
region is most extended for v& ——v&z. For still smaller
values of v~ the stable limit cycle remains but the unstable
two-torus has disappeared, and the domain where the
nonequilibrium potential is defined by the local flow is
now determined by the equipotential surface containing
the unstable fixed points, r =0, z = +~vz. At
v~ ————,

~
vza/b

~

& a subcritical Hopf bifurcation takes
place in which the two-torus collapses on the limit cycle
and destabilizes it. The domain of larger v& is again ex-
cluded as no attractors remain.

Until now we investigated only the nonequilibrium po-
tentials. A systematic asymptotic expansion of the sta-
tionary probability density for small noise intensity rj
yields, as a first correction to exp( —p/zl ) an
independent prefactor Z. This prefactor is calculated in
Appendix 0 for the systems treated in Secs. III and IV.
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we obtain, omitting the bars in order to simplify the nota-
tion,

The special form of lM2 in Eq. (5.2) ensures the existence of
a Hopf bifurcation. ' We choose a transport matrix in the
form

2 2rl r1(vl r 1 br2) '«lgl(rl r2)

C —1 2 2r2 =rz —vl d —Cr 1
—dr2 —erzgz(rl, rz)

b —d
(5.3)

Q, 0

Qz

0 0

0 0
(5.5)

01 =C01, 02 =CO2
0 0 0

with

4 2 2 4
gl (r l, rz) =«1+fr, r 2+gr 2

4 2 2 4gz(r l, r, ) = vz+—hr, +j r, r 2+kr 2 .
(5.4)

0 0 0 2

2

The Hamilton-Jacobi equation for P reads

Ql ay Qz ay Ql ay Qz ay
2 Br1 2 Br2 2r 1 001 Pr 2, 002

+ + 2 + + r 1 (vl r, br 2)——z z

Br1

ay ay—r2 —v1 d —cr1 —dr 2
—er1g16 —d ()r2 Br1

er —g +~, +~ =0. (56)ay ay ay
Br2 001 Bt92

n=1
(5.7)

It is solved by p, independent of 01, 02, by making the an-
satz

u(r„rz)=const. must exist in the (r, , rz) plane which
surround the fixed point P4. For the fixed point P4 to be
either a minimum or a maximum of u, the determinant of
the Hessian of u with respect to r1, r2 must be positive at
P4 ~ Evaluating it, we find

From the equation for pl it follows that

(f 1
——Fl(u),

where F1 is an arbitrary function and u is given by

(5.8)
c3 1c 8 0
Br1 BrP

ZE

c)r1Br2

2

P4

2 24vl«~2. 22& 2

(b —d)

(5.12)

u (rl, rz)=rlrz —vl+r1 —d rza P

We use the abbreviations

(5.9)
which is positive if

A)0 (5.13)

a=2d, P=, A =d bc . —c —1 2(b —d) (5.10)

From Eq. (5.8) it follows that the extrema of u (r, , rz) will
be extrema of P to lowest order in e The extrema of u are

P, : r, =r, =o,
1/2

v, (1 —c) v, (1—c)
b —d

)0
(5.11)

P2. r1 ——0, r2 ——

P3.. r, =~v„rz ——0 (v» 0),
1/2

V1d
' 1/2

V1
r20 =P4.. r 1o b —d

V1

b —d
)0, d(0

They correspond to fixed points of Eq. (5.3) to lowest or-
der in e. In the following, we consider the case where the
fixed point P4 exists and corresponds to a minimum or a
maximum of u. In this case closed contours

holds, together with the inequalities necessary for the ex-
istence of P4.

The trace of the Hessian at the point P4 is evaluated as

0 Q 8 Q 4vldr10 r20 6 —c
Br1 (3r',

2+ 2 (5.14)

=0

with

In the region bc &0 it is positive and u is a minimum at
P4 if b &

~

dlc
~

&0&c d, or if c &
~

dlb
~

&0&d &b; it
is negative and u is a maximum at P4 if
c &

~

dlb
~

&0&b &d. Altogether we have now to dis-
tinguish four cases, and it is useful to sketch the relevant
contours u =const for them. This is done in Figs.
2(a)—2(d).

The equation for $2 reads
2

dF, dF1 a/2
—,Q(u, rz) +g( u) rz+ (5.15)

du du ~r
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P2 P

2(i p(U(P)(U

u=CanSt

onst

(a)
P3

(u (P p (U(u(p )

onst

P

FIG. 2. Level curves of u. (a) b &
f
d/c

f
&c, u(P4)=min&0, (b) c & 1&

f

dlb
f

&0&d &b, u(P&)=min&0, (c)
1 & c &

f
dlb

f
&0&d & b, u(P4) =min &0, (d) c &

f
d/b

f
&0& b &d, u(P4)=max&0.

g(u, rz)=
gr] rz g](r],rz )

—v]+cr ] +dr z +gz(r], rz )(v] r] brz )——a P n 2 2 2 2

2 2—v) —cr )
—dr2

Q(u, rz)=

'2

P r] rz Q]rz —v]+cr]+drz +Qzr]( —v]+r]+brz)2a —2 2P—2 2 2 2 2 2 2 2

CK—vi —cr i
—dr 2

(5.16)

Here and in the following r, is always assumed to be
given as a function of u and rz by (5.9). The expression
for g(u, r] ) can be simplified by using the relation

We may integrate Eq. (5.15) around a closed contour
u (r, , rz) =const. Then we obtain from

Br](u,rz)
Br2

We obtain in this way

r](v] r] br z)——2 2

(5.17)
2 2——v~ —cr I
—dr 2

the solvability condition for E](u),

F](u)= —2 g(u)
Q(u)

and hence

(5.19)

(5.20)

g(u, rz)=/3r] 'r~z —r]g](r],rz)

Br~
+

&
rzgz(r], rz )

Br2
(5.18)

u (r],~z ]

P](r],rz)= —2 du +]))](u]])
Q(u)

with

(5.21)
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2 2dr2 ——r2 —v] ——cr ]
—dr 2 dt . (5.23)

The expression for g(u) can be transformed by inserting
g~(r~, »2), g2(r&, »2) and trading dr~ for dr2 by partial in-
tegration. We find

g( u)=P f dr2 r &»2
—v2 —k&r, —k2» ~»2 —k3r2a P—I 4 2 2 4

a
(5.24)

with

dgh +(a+4)e
a+4

(P+2j)+(a+2)f
a+2

(P+4)k +ag3=

(5.25)

In the following it is useful to introduce the function

2 2z(r), »2) = —v) — cr ) dr—2 . — (5.26)

We note that dr2 ——zr2 dt according to Eq. (5.23), hence z
vanishes in the points of minimal and maximal r2 of the
integration contour in (5.22) and (5.24). In Appendix E
the expression (5.24) is brought into the form

g(u)=13 f dt r, rq~(Bz +Dz+E)z (5.27)

with

bkiB=-
c

(a+2)
k

a
c (a+4) d (a+4)

v(D=
A (a+2)

( a+ 4)[(a+2)d abc]—
k]

2c

—(a+2)k2+ k3, (5.28)
ac (2 —c)

d

p v~ac2 2 2

E=—v2 —
2 2k3a d (a+2)2

We now examine the condition BP&/Bu, =0 for the ex-
istence of a limit cycle u(r, , r2)=u, . If Q(u, )&0, the
condition is equivalent to g(u, )=0. From Eq. (5.27) we
obtain

E= —D(z(u, )) —B(z (u, ))

with

dt r] razz" +'
(z"(u)) =

dt rirzz

(5.29)

(5.30)

Inserting the expression for E from Eq. (5.28) we find

g(u)=p f dt»& 'r2 '[»2g2(r, , »2) ri —r, g, (r„r2)r2],
(5.22)

Q(u)=P' f «»" 'r '(Qir 2+Q2» i»
where we defined the positive integration parameter t
around a closed contour u =const by

2 2a v&a
2v =— k D—(z) —B(z )

P d2P2
(5.31)

It is easy to show with (5.30) that (z")—v&. Hence (5.31)
is of the form v2 ——const&&v&. The value of the constant
depends on all the parameters of the local flow. There
may even be several simultaneous solutions of (5.31) for
the same value of u, . A general discussion of all the pos-
sibilities is very tedious and will not be carried out here.
We merely investigate the vicinity of the Hopf bifurcation
which gives rise to the appearance or disappearance of the
limit cycle. If b &

~

d/c
~

&0&c or c &
~

d/b
~

&0
& d &b, the Hopf bifurcation occurs when u, has its
smallest possible value u, =u;„. If c & ~d/b

~

&b &d,
the Hopf bifurcation occurs when u, has its largest possi-
ble value u, =u, „. In both cases the limit cycle col-
lapses to the fixed point P4 of Eq. (5.11). We note that
the variable z defined in Eq. (5.26) vanishes in the fixed
point. Hence, according to Eq. (5.30) (z")=0 for n & 1

and we obtain the bifurcation line from Eq. (5.31),

ac k3
3 v[ (5.32)

d (a+2)'
The stability condition for the limit cycle is ~) PIBu, &0
which, for Q(u, ) )0, is equivalent to t)g(u, )/Bu, ~0.
From Eq. (5.27) it follows that for E =0, g(u) increases
for increasing u, —u, ;„ if PD &0. Hence stability of
the limit cycle is obtained for the case where u, =u,
at the bifurcation point (i.e., b &

~

d/c &0)c or
c )

~

d/b
~
)0)d & b) if

v2=v2] =—

PD (0. (5.33)

The Hopf bifurcation (5.32) is supercritical, if (5.33) is
satisfied, otherwise it is subcritical. Similarly, stability of
the limit cycle is obtained for the case where u, =u, ,„at
the bifurcation point (i.e., c &

~

d/b
~

& b )d) if

D &0, (5.34)

P'(u, )~+0 (for u, ~u, ;„)

in the case of Eq. (5.33), and

P'(u, )~—0 (for u, —+u, ,„)

(5.35)

(5.36)

in the case of Eq. (5.36). Equations (5.35) and (5.36) ex-
press the fact that P(u) has a boundary minimum at
u, =u, ;„, and u, =u, „,respectively, i.e., the conclusion
about the stability of the limit cycle in both cases remains
valid, but the minimum of the potential has degenerated
in a boundary minimum.

In the case 6 & c the size of the limit cycle is limited by
the existence of the fixed points P2, P3 of Eq. (5.11). The
limit cycle degenerates into a heteroclinic connection of

because in the latter case g(u) decreases with decreasing
u, —u, ,„. Again, the Hopf bifurcation (5.32) is super-
critical if (5.34) holds and subcritical otherwise.

Going now back to Eq. (5.22) in order to check whether
Q (u, ) )0 is satisfied in the case (5.32), it turns out that
actually Q(u, )=0 in this case. Hence P'(u, ) does not
vanish in this case, after all. Evaluating P'(u, ) from Eq.
(5.21) by the rule of Bernoulli-Hospital we find that
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these fixed points for u, =0. In this case the integrals
(5.24) can be evaluated explicitly, and we obtain after
some algebra the condition

(a+P+ 2)(a+13+4)

c [Ph +(a+4)e]

E&0 fore&0; orc&1, b &d

E &0 for 1&c &0, b &d .

(5.44)

(5.45)

For c &
~

d /b
~

& 0 & b & d the point P~ corresponds to a
maximum of u (ri, r2) and is therefore stable if

Hence, we have the following stability condition for the
fixed point:

2

+ [(13+2)j+(a+2)f] &0. (5.46)

ah
, , [(13+4)k +ag]

P2d 3
(5.37)

We conclude as before that (5.46) is equivalent to

13E f dt r, r~~z &0 . (5.47)

(A special case of this condition was derived in Ref. 19.
However, the special result given there is incorrect due to
algebraic errors. )

Let us now investigate the stability of the fixed point
P4. For b )0&c or c &0&d &b it corresponds to a
minimum of u, and therefore also to a minimum of P if

)0. (5.38)

If (5.38) is satisfied, the fixed point is stable, otherwise it
is a maximum of P and unstable. As Q(u) is positive, the
sign of BP/Bu is opposite to the sign of g(u). It follows
from Eq. (5.27) and the fact that g(u;„)=0 for E =0
that g (u;„)& 0 if

PE f dtrir2z &0. (5.39)

In order to evaluate this condition the sign of the integral
must be determined. To this end we use Eq. (5.26) to
write

r
p 2m ax pdt r ir2z: r2 (r i r i )dr2-

2mln
(5.40)

2 2r)) )r1&, A&0,
a a

at r, r~2z &0;
for c &1,

(5.41)

where r i & ( r i & ) denotes the branch of the double-valued
function r, (u, r2) along which the contour integral has to
be taken for increasing (decreasing) rz between the
boundaries r2;„&r2,„where z =0. From Eq. (5.23) and
dt & 0 we conclude that for c & 0,

We can use the results (5.42) for c & 1 to conclude that P4
1s stable 1f

E)0 fore)1, b&d. (5.48)

VI. CONCLUSIONS

%'e now combine these results with the results obtained
above on the nature of the Hopf bifurcation and summa-
rize the various cases as follows.

(i) The case b & rd/c
~

&0&c. In this case a&0,
p&0. A stable fixed point P4 exists for E &0. If D &0
it coexists with an unstable limit cycle surrounding it.
For E =0 a Hopf bifurcation takes place which is subcrit-
ical for D )0 and supercritical for D &0. For E &0 the
fixed point P4 is unstable, and, in the case D & 0 it coex-
ists with a stable limit cycle. The size of the limit cycle is
limited by the heteroclinic bifurcation (5.37).

(ii) The case c & 1 &
~
d/b ~, d & b In th. is case a &0,

P&0. A stable fixed point P4 exists for E &0 and coex-
ists there with an unstable limit cycle if D &0. The Hopf
bifurcation takes place at E =0, it is subcritical for D &0,
and supercritical for D &0. Thus, if D &0 a stable limit
cycle coexists with the unstable fixed point in the region
E &0.

(iii) The case 1& c &
~

d/b ~, d &b. Now we have
a &0, 13&0. A stable fixed point Pq exists for E &0, and
if D &0 it coexists with an unstable limit cycle. The
Hopf bifurcation at E =0 is subcritical if D &0 and su-
percritical if D )0. In the latter case, the unstable fixed
point P4 for E & 0 coexists with the stable limit cycle.

(iv) The case c & jd/b ~, b &d. Then a&0, P&0.
The fixed point P4 is stable for E )0 and unstable for
E &0. The Hopf bifurcation is supercritical for D &0
and subcritical for D &0.

2 2r, ) &r, &, a&0,
ari) )ri&

dt r&r2z &0;
for 1)c &0,

2 2r~) &r&&, cz&0,
a a

rl& & r1&

$ dtr, .t,'. &0.

(5.42)

(5.43)

We conclude with a few brief remarks on the results ob-
tained in this paper. In the analysis of the normal forms
of codimension-2 bifurcations with weak additive noise it
turned out that, after rescaling, all cases could be con-
sidered either as weakly perturbed conservative systems,
treated in Secs. III—V and Appendix D, or, with suitably
chosen noise sources, as purely dissipative systems, treated
in Appendix C. We may add that the latter case could be
made the starting point of a perturbative analysis, in cases
where the strength of the noise sources is chosen in a
slightly different way. In fully conservative systems the
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potential is a constant (there are no attractors and repel-
lors). In this case the prefactor treated in Appendix D
dominates the whole stationary probability density. For
weak but nonvanishing dissipation a nonconstant poten-
tial appears whose equipotential lines are approximated by
the trajectories of the conservative system. A normaliz-
able probability density and the potential associated with
it via Eq. (1.7) exist only when there are closed contours,
i.e., closed trajectories of the conservative system.

As we have shown explicitly for the codimension-2
case, the potential can be used to study bifurcations and
stability. The information concerning the deterministic
dynamics which can be obtained by the standard analysis
of Ref. 19 is contained in P. In addition, P provides a
Lyapunov function for the attractors of the deterministic
dynamics and generalizes the formalism of thermodynam-
ics to the system under consideration. However, not only
are results concerning the deterministic system obtained
by other methods thus reproduced in a conceptually satis-
fying way, but also new information is obtained about the
probability density on the center manifold of the stochas-
tic system (1.2).

In previous work it was shown that the coexistence of
attractors may lead to the appearance of merely piecewise
differentiable potentials. This phenomenon was not ob-
served in the examples of the present paper, due to the
simplifying feature that all cases considered were very
close either to fully dissipative or to fully conservative
dynamics.

APPENDIX A

We then find

0= lp I
V. (A2)

'2 2

—y +x + lpl zQi + zQz
Bx By Bx By

Our aim here is to construct a nonequilibrium potential
for the case of a codimension-1 Hopf bifurcation (2.4)
with a general transport matrix of the form (2.8). We also
wish to show that for p sufficiently small, only the trace
of the transport matrix (2.8) is important, i.e., the differ-
ence between the cases (2.8) and (2.9) disappear.

We have to solve the Hamilton-Jacobi equation (1.4)
which, for the case of (2.4) and (2.8), reads

' 2 '2
Qi a Qz z z

2 Bx 2 By Bx
+ + [ —y +x [p —(x'+y')] ]

+[x+y[p —(x +y )]] =0.a
By

It is convenient to rescale the variables and the potential
according to

This equation can be solved by an ansatz in the form of a
power series in

I p I,

0= g I p I

"4. . (A4)

In zeroth order in
I p I

we find with r =(x +y )'~,

PO=Fo(r), (A5)

+For[sgn(p) —r ]+ =0 . (A6)
B(p

It has the general solution

Q~+Qz
2

+For [sgn(p ) r]—
Qi —Qz+ ,' Fo —sin(2y),

2
(A7)

where F~(r) is again undetermined. The periodicity of P~
in y requires that we choose Fo as a nontrivial solution of

Qi+Qz
4

F' +For [sgn(p ) r]=0 . — (A8)

We obtain

—r [sgn(p) ——,'r ]
go=F0(r) =

—(Qi+Qz)
(A9)

Hence, in leading order in the small parameter
I p I

the
nonequilibrium potential is only dependent on the trace
Q~ +Qz of the transport matrix.

In the original variables we obtain to this order

—Pl' + 2P
2 & 4

z (Qi+Qz)
(A10)

In order to determine the correction P ~ we have to fix
F&(r). This makes it necessary to study the solvability
condition for Pz. It then turns out that the periodicity of
Pz in cp makes it necessary to set F&(r)=const. We are
left with the result

r [sgn(p) r] sin(2y)—Qi —Qz —2 2

z (Qi+Qz)'
(A 1 1)

and find to this order

2 & 4—p +- (Qi —Qz)+, r (p r) sin(2q)) . —
z (Qi+Qz) —,

' (Qi+Qz)'

where Fo(r) is a yet undetermined function. The equation
to be solved in first order in

I p I, in polar coordinates,
reads

—,
' Fo (Q& cos p+ Qz sin y)

+ x[sgn(p) —x —y ]
—2 —2

Bx

+ y[sgn(p) —x —y ]
BP —2 —2

By

(A3)

(A12)
Higher-order terms could be calculated by repeating this
procedure. Several points are noteworthy. First we recall
that already the correction P& which we have determined
actually goes beyond the accuracy of the local normal
form (2.4), which is valid only in leading order in p.
Hence, it is consistent to work with the expression (A10)
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sufficiently close to the bifurcation point. Second,
the expansion in

~ p ~

which we have carried out turns
out to be equivalent to an expansion in the ratio
(Q~ —Q2)/(Q~+Q2) as can be seen from Eq. (A12). Suf-
ficiently close to the bifurcation point we may therefore
put Q~ ——Q2. Physically, this is due to the fact that the
oscillation at the Hopf bifurcation is very rapid on the
time scale set by

~ p ~

and tends to average over the two
orthogonal directions in state space preferred by the noise
sources. Finally we note from Eq. (A12) that the extrema
of P at r =0 and r =v p for p & 0 are not changed by the
correction P& and remain being determined by the attrac-
tors and repellors of the local dynamical system (2.4).

APPENDIX B

2r =Fr, z =Ez, p1 ——Evl, p2 ——E v2,

t = t/e, co=eco,
(C 1)

and omitting the bars henceforth, for simplicity of the no-
tation, we obtain

r ='arz+v, r+0(e),
z=v2+br z+—O(e),
0=co .

(C2)

As long as a and b have equal sign it is always possible to
choose a transport matrix Q" in such a way that the
dynamical system (82) is derivable from a potential

Qi

Here we give a more explicit expression for the poten-
tial than in the main text for the symmetric case of Sec.
IIIC1. For v& &0, and for v»0 if the energy is posi-
tive, the x coordinate may vary in the interval
—

~

x ~(E)
~

&x & +
~

x &(E) ~, where

Q"= o 2—Qi
b

a

0 0 1

r2

(C3)

Then Eq. (82) takes the form
(81)x ( (E)=v)+ (v)+4E)'

Qi ay
2 3rThe integrals u„(E) can be expressed in terms of hyper-

geometric functions and we obtain (C4)

u(E)

x2)(E) F( ——,, —,, 3,x )(E)/[2v) —x ) (E])
4 F( ——, , —, , 2,x ~ (E)/[2v~ —x

~ (E)])
z=—

with

bQi ay 0=co
a 9z

x2(E) =vi —(vi+4E)' )0 . (83)

Since the system is symmetric one finds the same averages
v„(E) in both intervals. The evaluation of integrals yields

(82)
For v& &0 in the energy range —v&/4(E(0 there are
two accessible regions —

~

x
&
(E)

~
&x & —

~

x 2(E) ~;

~

x2(E)
~

&x &
~
x&(E)

~

where x~(E) is given by (Bl),
and

vl 2 av2 a 3 ar z2

Qi bQi 3bQi Qi
(C5)

The bifurcations of the system now follow from a discus-
sion of the extrema of this potential in a straightforward
manner. In the case of Eq. (5.1) we proceed in a similar
way and choose

Q) 0 0 0

u, (E)

v(E)

F( —, , ——,, 3, 1 —x, (E)/x 2(E) )
=x2(E)

F( —', , —,', 3, 1 x i (E)/x 2(E))—(84)

which joins continuously to (82) at E =0.
In the case of a vanishing noise in the first equation of

(3.30) ( Q~
——0) the potential is given as

2ev2 2~b E u2(E)
P(x, v) =eg((E) = — (E —Eo) — f dE,

Q2 Q2 ' u(E)

C
0 0 0

0 0
1

2

0 0 0
C

br2

The potential obtained in this case is

(C6)

(85)

where (3.26) has been used. This example illustrates that
the potential is typically nonpolynomial in spite of the
fact that the drift [given by (3.30)] is a simple polynomial
expression.

APPENDIX C

P ) 2 bP2 2 1 4 bd
rl — r2+ r

& + r2+2br ir2
Q, cQi 2Qi c

(C7)

The attractors of the system and their bifurcations now
again follow from a discussion of the extrema.

We consider here the case that the coefficients a and b
in Eq. (4.1) and b and c in Eq. (5.1) have equal sign,
respectively. Rescaling the variables and parameters of
Eq. (4.1) by

APPENDIX D

Here we wish to compute for the cases of Secs. III and
IV the leading correction in rI to Eq. (1.7). We set
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W(q, g) =Z(q) exp — +O(21)(q)
7l

and determine Z(q) as a solution of Eq. (3),

.„ay az al(.. 1 „„a'y
QqP Qq Qq 2 ()q QqP

(Dl)

(D2)

U+Ql
a a

+ iMvg —V +Q2 a
ay az, ay -az
BX BX BU BU

Ql a2 Q2 a2
+ iMg+ + Z=0. (D3)

ax 2 aU

Changing the variables x, u into x,E according to Eq. (3.5)
and using

1. general case of Sec. III

With Eq. (3.1) we obtain from Eq. (D2)

P(x, + v (x,E) ) =P+ (x,E—),
Z(x, +v (x,E))=Z +(x,E—),

we obtain for Z+—,

(D4)

az-+
BX

, ay-
a

+ 'aE + Pu g+Q2u " +Q V' +V'
aE ' BE Ox aE

+ 2 + 2 +~g+0+2V&4+Vi24+V4+U2
(jx (3 gE gE gE 2

=0 . (D5)

We solve Eq. (D5) perturbatively in lM putting

=I Fi«)-+v'A +. . . ,
-

Z ——Z +pZ —+.+ + (D6)

In zeroth order of p we obtain with yet arbitrary Gp(E),

lnzp ——Gp(E) .

1 f &dx
V

X2 —Xi ~1 U

1 I"& V"
d

xl U

Using now Eq. (3.18) and its consequence

(D 1 1)

(D12)

01nZi
BX

p&2

vg + Q2v+Qi Fl Gp
V

In first order of p we have to solve
Vg
—( —)

UgFl' ——--2 +2 (Qlu+Q2u ' '),
Qlw+Q2U (Q1W+Q2U)

(D13)

+ —+ —Ql
g 1 V'

U 2 U
+Q2u F", where vs, v were defined in Eqs. (3.19) and (3.21), Eq.

(D9) reduces to

+ —Qi +Q2 —F'i1 V" 1

2 U U
(D8)

&.e.,

Go ——0, (D14)

6() ———
v g + 2 (Q2U+Qlw)F'i'+ —,(Qlu+Q2U ')F'l

v, +(Q2U+Qiw)F'i
(D9)

where w was defined in Eq. (3.20) and

Integrating (D8) along a closed contour E =const over x
and using the single-valuedness of Z

&
we obtain

Go ——const . (D15)

Thus, to lowest order in p, the prefactor Z in Eq. (4.1) is
independent of x and U. The expansion can now be car-
ried to higher orders, if desired. In the limit of vanishing
dissipation our results agree with recent results of
Reibold who assumed exactly vanishing dissipation.

—( —)=Ug
x2 g dX

X —X "i U
(D10)

2. Case of Section IV

With Eq. (4.3) we obtain from Eq. (D2)

arz+Eg +Ql + v2+br —z +ezg +Q2
ay az, , ay az
Br Br az az

ag, ag Q a'y Q(a —2)z+e +e + + Z=0.
Br 2 Bz

(D16)
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Introducing the independent variables r, u according to Eq. (4.8) and using with (4.9)

P(r, +z (r, u) }=(h —(r, u),
Z(r, +z(r, u)):Z +—(r, u—),

we obtain for Z +(r,—u),

(D17)

BZ c)z BZ
Br Br Bu

+arz+eg„+Q1 —r
Br Br i3u Bu

()a+
vs+br z+—ezg, +2zr /'Q~

u

Bg„Bzg+Z- +(a —2)z+e +e
az c™}z

a

Q1 a'y'-
2 Qr

„.az' a'y- „. az' a'y'-
Br 3r gu 8r

ay'-4 „. , a~' „.a' '—r ' +r
9u a Br jr 2

4z2 4/+ ~ +2r 2/+

Qu 2 Qu

We solve Eq. (4.18) perturbatively in e setting

P
+-=eF, ( u ) +e F~z + .

Z Z +gZ + o ~ ~
+ + (D19)

d lnGO(u)

du

f A(r u)dr

f B(r,u)dr
(D25)

Zo ——r ' 'Go(u) . (D20)

In zeroth order in e we obtain with yet arbitrary Go(u), where r, , rz are as in Eq. (4.16).
We now use the abbreviations (4.16) and their conse-

quences
In first order in e we set

Z1 ——r ' 'G1 (r, u)

and have to solve the equation

BG(
Br

=+ [Go(u)A (r, u)+ Go(u)B (r, u)]

(D21)

(D22)

T

1 ~g 1 2 g 1g'(u)= —, r — + ———1 + —g, +
P) z Br z a r z ' Bz

with

A (r, u)= Bg„Bg——1 r g, + r +
az a az Br Bz

2——1
a gg

Bz ()r 9z
+ (D26)

r 2/a —2

+ F&
az Q1a Br

Q'(u)= f drr /' 1——1
a

6 —2——1 Q1r z
a

2z2 4 gz2
r + Ql +rQ2

2 Br 2 a Br

Q1 $22 2 Q2

4z gr 2 2z
+ (D27)

r4' 'Q1 az'-
2 Br

+2Qpz F'1',

2

Q1 3r +4Q)z

„2/a —1
g + r2/~ —lg

2 — az 2z
a Br " a

4/ —1

+FI
az

(D23)

(D24)

We remark that some care must be exercised when deriv-
ing (D26) and (D27), to bring the integrands of (4.16) into
a form, using partial integration, which vanishes at the
boundaries of the integral, in order not to pick up contri-
butions from the boundaries of the integrals, when dif-
ferentiating the integral with respect to u. We can now
use these expressions, after some algebra, to rewrite the
nominator and denominator of Eq. (D25} as

Integrating Eq. (D22) along a closed contour u =const
over r and using the single valuedness of Z

~ we obtain

'2 2 4f B(r,u)dr = —g(u)+ —Q(u)F'1(u),
a a

(D28)
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P2

r, u dr

=—Q (u)F'1'(u)+ —Q'(u)F1(u)+ —g'(u)2 - 2 ~ 2 ~

a a a
r

——1 ——2 dr r ' zF'1(u)1 2 2
a a a

4d
y

"& zd
a2 rl r

(D29)

~20 +1~00+ ~02
A

Similarly, we obtain for Jt 22 by the use of Eq. (5.9)

d
~22 +1~02+ ~04

Let us now use these relations to express
T'

g (u ) p v2~00 k 1~40 k2~22 k 3~04a

(E6)

(E7)

(E8)

Using, finally, Eq. (4.15) and its derivative in (D28) and
(D29), we find from Eq. (D25), in the form

d lnGp(u)

dQ

1 Q1 2 2——1 ——2 drr ' z
2 Q(u) a a

g (u) =P(BW2+DW, +Expo)

with the notation

zd '2 z
dr

ag (u) "1 r
(D30)

from which Gp(u) now follows by quadrature. Thus, for
Q1 and d not both vanishing the prefactor Z, even in
lowest order of e, is not a constant but depends on u.

a P—1 ygJ n / r]r2 z dr'2 (E10)

pA3[(a+2)&40 —(a+4)vtJ 20+(a+4)bJ 22]

d+PX2 W22 —V1W02 — W04

where z was defined in Eq. (5.26).
This can be done by adding to Eq. (E8) the identically

vanishing terms [cf. Eqs. (E5)—(E7)]

APPENDIX E

Here we present the algebra leading from Eq. (5.24) to
Eq. (5.27). Let us define the integrals

dr2 r1r 2 'r1r 2 (E1)

First we reduce the integral

+%1 J 20 —&1J 00 —d—~02
0.'

(El 1)

with arbitrary parameters X1,A,2, A, 3. This extended expres-
sion can then be compared with Eq. (E9) noting the rela-
tions

a (8—1 4 &+4 4 P a+3f dt2r1r2 r1'=— ~ r2r1 dr1

by using Eq. (5.9) and the fact that~

~-",d. , = (t) u. ,"d.,=o.
We obtain

a+4 p a+1 dP 2J 40=- r2r1 v1 + r2 dr1a

(E2)

(E3)

a
W1 ———V1

—WPP —CW20 —dW02,

2 cx 20',c 2cxd~2 +1 ~00+ +1~20+ +1~022 p

+2cdJ 22+C ~40+d W04.

%'e find after some algebra

O'. V1 QC

2(a+2) 4Bc'+(a+4)k, — k,d2

(E12)

and upon partial integration

++4
~40 ( v1~20 b ~22 )

cx+ 2
(E5)

The integral Jr 20 can be reduced directly by using (5.9)
and we find

ac (k3 +bd )
A2-

d a+2
BC +k1

A3-
cx +2

and the values of B,D, E given in Eq. (5.28).

(E13)
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