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The threshold field for flexoelectric instability in nematic liquid crystals, and the upper limit of
the maximum tilt angle connected with this instability are rigorously evaluated. The nematic liquid
crystal, with positive dielectric anisotropy, is assumed to be in the homeotropic configuration,
without external field. The surface anchoring energy is considered infinitely strong on one wall and
finite on the other. The stability of the distorted configuration is discussed from the energy point of
view. The influence of the surface polarization on the threshold field is also reported. It is shown

that the surface polarization changes not only the effective flexoelectric coefficient, in agreement
with phenomenological theories, but also the effective anchoring energy, from the coupling with the
flexoelectric effect.

I. INTRODUCTION

Uniform textures of nematic liquid crystals (mono-
domain single crystals) are produced by orienting a drop
of bulk material in between two conveniently treated
plates, which define usually a fixed orientation for the
boundary molecules. This is the so-called strong-
anchoring situation. Applying an electric field on such a
texture results in a curvature volume distortion, at fixed-
boundary orientation, as, for instance, in the Fredericksz
transition. Long ago, Helfrich' had proposed a new kind
of texture instability, in the case of weak anchoring, where
the nematic orientation can change at the boundary, using
the flexoelectric coupling between the nematic and the ap-
plied field, which results in polar surface effects. This in-
stability was analyzed by Deuling, who dealt with the
dielectric case in the hypothesis of infinitely weak anchor-
ing energy, and by Derzhanski, Petrov, and Mitov, who
dealt with the conductive case, in the hypothesis of small
dielectric anisotropy e, and finite anchoring energy.
More recently Monkade, Martinot-Lagarde, and Durand
have reported on the experimental observation of polar-
surface instabilities, one of which has a similar behavior
to the Helfrich flexoelectric instability. In Ref. 3 the
theoretical analysis is performed by supposing e, to be
small enough so that the electric field E inside the nemat-
ic does not depend substantially on the position. At the
present time this restrictive hypothesis seems severe since
polar instabilities have been observed in cyano-byphenil
derivatives, where e, =10.

This paper presents a rigorous evaluation of the thresh-
old field for flexoelectric instability and the upper limit of
the maximum tilt angle connected with this instability, in
the case of large e, and finite surface anchoring energy.
In Sec, II the general equations governing the phe-
nomenon are reported. In Sec. III the threshold field is
deduced, whereas in Sec. IV the upper limit of the surface
tilt angle is discussed. In Sec. V the threshold fields for
some particular sets of the nematic material parameters
are given. Energy considerations on the stability of the

distorted configuration are reported in Sec. VI and in Sec.
VII the case of negative dielectric anisotropy is rapidly
analyzed. Finally in Sec. VIII the influence of the surface
polarization on the threshold field is considered. It is as-
sumed position dependent. The analysis shows that sur-
face polarization introduces an effective flexoelectric coef-
ficient and effective anchoring energy and that the varia-
tions of these quantities can be large.

II. CrENERAL EQUATIONS

Let us consider a nematic slab of thickness d. The lim-
iting plates are at z =0 and z =d, and the z axis is normal
to them. In the absence of external field the nematic
director n is parallel to the z axis (homeotropic align-
ment). We assume that (I) the dielectric anisotropy
e, =@~~—ez of the nematic is positive and large, (II) the
anchoring energy on the wall at z =0 is weak, whereas
that on the wall at z =d is strong (practically infinite),
(III) the nematic-liquid-crystal Debye screening length is
larger than the sample thickness. From hypothesis (III) it
follows that the nematic material can be considered as an
insulator. If an electric field E parallel to the z axis is ap-
plied to the sample, only a polar instability is possible, de-
pending on the flexoelectric properties of the liquid crys-
tals, since the nematic is dielectrically stable, given hy-
pothesis (I).

Let 8(z) be the tilt angle formed by n with the z axis.
A standard procedure' ' gives for the 8(z) bulk equa-
tion

K(8)8 —( I /Svr)D /e33(8) =B,
for the boundary conditions

—IC(8p)8p —( I /47r)D d /Id 8p+df, /d8p ——0, z =0

8d =0, from hypothesis (II)

and for the voltage across the cell

V=DE, —g(8p) .
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In Eqs. (1), (2), and (3),

(i) B = integration constant;
(il) K(e)=K33I 1 —k sin 8+ —,

'
kf sin 28/[1 —(e, /e~~)

)&sin 8]j =effective elastic constant, ' k =1—(K~~/
K33 ) =elastic anisotropy, and kf =4rre /(K 33e~

~
()

(iii) e33(e)=e~~cose+ej sin H=z, z component of the
dielectric tensor;

(iv) f, = —,'w sin Hp
——anchoring energy. If we limit our-

selves to consider T«T, this form of f, is adequate.
But when T=T, it is necessary to modify f, introducing
terms connected with order electricity. In this paper we
consider only the case T && T,

(v) Hp ——8(z =0), ed —8(z =d), 8=d 8/dz,
eo —(de/dz)o',

d
(vi) I,= f dz/e33(e);
(vii) P(ep) = 2n(—e/e,. ) in[1 —(e, /e~~) sin Hp], where

e =e
~ +e3 is the sum of the flexoelectric coefficients

(viii) D =z component of the dielectric displacement.

Equation (1) shows that, in our hypothesis, 8(z) is a de-
creasing function of z. In fact if 8(z) is not monotone a
point z exists, at least, where it is maximum or
minimum, and then 8(z*)=0. Since 8(d)=0 this point
can only be a maximum. Let us suppose that 8(z) is not
monotone. In this case by putting 8(z') =HM, from Eq.
(1) we deduce that the integration constant is

B = —(1/4n)D /e33(HM)

Consequently Eq. (1) becomes

(1/4m)e, D (sin HM —sin 8)
K(e)e

[e33(HM )e33(e)]

creasing function, i.e., 8(z) &0, for any z. By taking into
account this condition, from Eqs. (1), (2), (3), and (iv), (vii)
we obtain

f 'IK(e)/[B+(1/4n)D /e33(e)][' de=d, (1')

I K ( ep )[B+ ( 1 /4m')D /E'33( ep )] I

V=Df '
+ [w —eD/e33(eo)] sinepcosep ——0, (2')

' 1/2K(e)
B+(1/4m)D /e33(e)

X —f(ep) .d8
e33 8

(3')

III. DETERMINATION OF THE THRESHOLD
FIELD

Since Hp&(O, m/2), from Eq. (2') we deduce that for any
Op the dielectric displacement D must be larger than
w e33(8 ) /e, and hence

D &D& e~~u/L ——or E &E& ——ulL, (4)

where u =K33/e, L =K33lw is the extrapolation length
and E =D/

~~
eis the electric field in the nematic medium

when it is in homeotropic alignment. Equation (4) is ob-
tained supposing e & 0, as we will do in the following. In
the case e ~ 0 similar equations are obtained.

Eliminating B in Eqs. (1), (2), and (3) we obtain

f f(D, eo, e)de=d

and

which is absurd since K(e) & 0 and e33(e) & 0 for any 8 in
the range (O, n./2). Hence 8(z) cannot have a maximum in
(O, d). 8(d)=0 implies that 8(z) is a monotonically de-

80
V =D f [f(D, ep,'8)/e33]de f(ep), —

where

(2")

f(D, eo', 8) =
D
4m e33(e)

K(e)
1 +

e33(eo)

eD

e33(eo)

2 2 2sin Opcos Op

K(ep)

1/2

f(E,xp,'y) = 1

Xp

K(xoy )

1 —Xp EE I —p
1 —(ea/e~~)xo

' K(xo) 4~ [1—(ea«~~)xo][1 (ea/e~~)xoy ]

f ( D, 8p, 8) dePends only on x p ——sin Hp and x =sin H. Hence we can rewrite it as
r ' 1/2

where y =x /xp( & 1).
With Eq. (5'), Eq. (1")becomes

1

d =xp f f(E,xp,y)(1 —xoy )
'

dy .

Equation (6) in the xo~O limit gives the threshold field.
By taking into account that lim„pK(xoy ) =K33 we ob-

tain

g(E;y)= lim f(E,xp,y)
xo~p

=K33[(eE—w) —r E2(1 —y )]

where r =e,K33/4~.
By definition y & 1; hence the function g(E;y) will be
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real for any y only if

(eE w—) r—E &0,
which gives

E & E2 ——(u/L)[1 —(r/e)] (9)

30

q) 20—

10—

h &(E)=(r/K33)Ed (12a)

and the curve

hz(E) = —,
' ln t [(e +r)E —w]/[(e r)E —w] j . —(12b)

The h2(E) curve has a vertical asymptote for E =E2, and
for E & E2, it decreases monotonically. For E~ co,
h2(E) approaches

lim h2(E)= —,
' ln[(e+r)/(e —r)] .

E—+oo

Furthermore for E =E2 we have

h &(Ez) =(d/L)r/(e r), —

which is a large number, for a relatively strong anchoring
and thick sample. " Hence, as already pointed out, in this
particular case E3—E2. However, E3 is always greater
than E2.

IV. DETERMINATION OF THE UPPER LIMIT
OF THE MAXIMUM TILT ANGLE CONNECTED

%'ITH THE FLEXOELECTRIC INSTABILITY

For E &E3, Oo is different from zero. In this case Eqs.
(1") and (3") give E and Oo versus the applied voltage V
when the voltage is the electric parameter used in the
thermodynamics description. .' On the other hand, if D
is the electric parameter used in the description, ' Eq.
(1") gives the surface tilt angle Oo versus the electric dis-
placement D, and Eq. (3") gives the voltage across the
sample. In any case the tilt angle distribution is always
given by

~oI f(D, Oo', 8)dO=z . (13)

I.et D be the independent electric parameter. In this case
Fig. 1 shows Op versus the reduced electric displacement
E =D/e~~, obtained by numerical integration of Eq. (6).

From Eq. (9) we deduce that e must be larger than r, i.e.,
e & eg K33 /4m, as well known, ' and furthermore that

' E2)E).
In the considered xp~0 limit, by taking into account

Eq. (7), Eq. (6) gives

d = (K33/2rE) ln t [(e +r)E w—]/[(e r)E —w—] j . (10)

Equation (10) defines another threshold field E3. A sim-
ple analysis shows that E3 )E2. Consequently the
threshold field for the fiexoelectric instability is given by
Eq. (10). In any case if the anchoring energy is not very
weak and the sample is not very thin" E3—E~. In fact if
we rewrite Eq. (10) as

(r/K33)Ed = —,
' lnI[(e+r)E w]/[(e —r)E —w—]j, (11)

we can determine E3 as the intersection point between the
curve

0
0 't0 15

E =D/el) (~gs unitS)
20

FIG. 1. Surface tilt angle 00 vs the reduced electric displace-
ment E =D/ej~. Curve a corresponds to e =1.4&10 dyn'
whereas curve b to e =2.8)&10 dyn' . The other material
parameters are reported in the text.

2

e33( OOM )

The function of 8 on right-hand side is at its maximum
for 8=0. It follows that the previous inequality implies
the following:

e cos Op~
2 2

e33(OOM)K(OOM) 4&eii

giving the upper limit of the maximum surface tilt angle
OoM for any set of material parameters. In particular if
Opl is small the above-mentioned equation gives

OoM & ([1—(r/e) ]/I I+(e, /e~~)[(e/r) —1]—k j )'

(13')

obviously independent of the sample thickness d and an-
choring energy w, since only the limit of large fields is
considered. By assuming e = 1.4& 10 dyn' 2,

K33 ——5X10 dyn (Ref. 12) and e, =9.7 (Ref. 13) we ob-
tain Op~ (26', in agreement with. the numerical calcula-
tion shown in Fig. 1, curve a.

With Eq. (13') and the boundary condition (2) we can
evaluate the order of magnitude of the surface gradient
Op~ for large E. A simple calculation gives

OoM- (e /K33 )EOoM—— (13")

In the numerical calculation we have supposed that the
nematic liquid crystal is 7CB and hence E

& &

—%33
=5X10 dyn (Ref. 12) and e, =9.7, e~~

——15.7, ' with
d =10 pm. The curve a corresponds to m =5&&10
erg/cm, e =1.4~10 dyn', whereas the curve b cor-
responds to the same anchoring energy and e =2.8)& 10
dyn'~ . This figure shows that Oo(E) is a monotonically
increasing function of E, which approaches a value
OoM &7T/2 for E +oo . It is p—ossible to show this by
evaluating dOoldE, using Eqs. (6) and (5') and taking into
account the well-known theorems on the derivatives of
functions defined by means of integrals. Here it is impor-
tant orily to evaluate the upper limit of Op~
= limz Oo(E), which plays an essential role in the in-
terpretation of recent measurements. This limit is easy
to obtain. In fact by imposing the condition of reality of
f (D, Oo 8) defined in (5), in the D~oo limit [and hence
eD/e33(Oo) »w], we obtain

scn OpM cos Opl

«OoM )
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V. THRESHOLD FIELD FOR SOME PARTICULAR
SETS OF MATERIAL PARAMETERS

Let us consider now the threshold field for some partic-
ul ar cases .

(a) e, =0. Equation (7) gives E =U /L, corresponding
to a threshold voltage V2 ——U (d /L ). Furthermore, Eq. (6)
gives

E3 ——U [( 1/L)+( 1/d)]

and hence

V3 ——U [1 + (d /L )] ( 14)

V3 is the threshold voltage for the examined instability.
(b) e, & 0, w ~ cc (strong anchoring on both limiting

walls). In this case Eq. (8) gives E2( w ~ oo ) = co . Conse-
quently there is no flexoelectric instability.

(c) e, & 0, w =0: there is no interaction between the
nematic and the solid substrate. The boundary condition
(2) is now the trasversality condition; the surface torque
coming from the volume must be zero on the surface. In
this situation Eq. (9) gives E2 ——0, since at w =0 corre-
sponds L = co . Then Eq. ( 1 1) becomes

E3 —(K33 /2rd) ln[ ( e +r) /(e —r) ]
and the threshold voltage is found to be

V3 —(K33 l2r) ln[(e + r) l(e —r) ]
If e »r Eq. ( 16) gives

( 16)

( 17)

coincident with the threshold voltage given in Refs. 1 and
2. However, we would point out that Eq. ( 17) holds only
if e » r, whereas Eq. ( 16) is valid for generic e and r. At
the threshold, the ratio between the coherence length
defined as g = (4rrK33 /eg )

' E= (K33 /r)E, and the sample
thickness d, is found to be g/d =2/ln[(e + r) I(e —r) ].
By using for K33 and e, the above-mentioned values, and
assuming e = 1.4 X 10 dyn' ~ we obtain g/d=2.

i.e., it approaches —ao as E~ oo . This fact implies that
the birefringence of the sample, proportional to

f sin 8(z)dz= f (1/I OI )sin OdO

approaches zero as E~ (x), or V is very 1arge. This cir-
cumstance is due to the fact that e, is positive; hence for
large E in the bulk 8(z) =0, and the deformation is limit-
ed near the wal 1 with weak anchoring . The layer where
8(z) is different from zero gets progressively thinner when
E increases, giving zero birefringence in the considered
limit.

figuration. In order to obtain such information, we

analyze the total free .energy expanded in the power series
of 8o. If D is the independent electric parameter in the
thermodynamics description, the total free energy is given
by2, 6—8

F= f [—,
' K(8)8 + ( 1/8n )D /e33(8)]dz

0

—( 1 /4n)DQ. ( Oo) + —,
'

w sin Oo .

Equation ( 18), by using Eq. ( 1), becomes

E= f K(8)OdO ——,
' Bd —( 1/4m)DQ(. Oo)

00

+ 2 M sin Hp ~

( 18)

( 19)

r

Q ln
(e +r)E —w

(e r)E —w—Oo+0 (Oo) (22)

By putting (22) and (20) in ( 19) the total free-energy ex-
pansion up to the second order in Oo is found to be

(eE w) rE I, — (e—+r)E —w

2rE (e r)E —w—
Oo+ 0 (8") .

33
(23)

Equation (23) shows that for E & E3, given by Eq. ( 10),
the coefficient of Oo is negative; hence the distorted con-
figuration is energetically stable. It follows that the flex-
oelectric instability is actual .

By taking into account Eq. (2) the latter three terms in

Eq. ( 19), in the limit Oo~0, give

( 1 /877)e~(E d I (eE w) +(d /K33 )

X [(eE —w) —r E ] jOo+O(Oo) .

(20)

The first term is independent of Oo,
' we can then neglect it

in the following stability considerations.
From Eqs. ( 1 ) and (2), in the limit of small angles, we

have

f K(8)8dO=Oo f [(eE —w) —r E ( 1 —y )]' dy

+ 0 (Oo), (2 1 )

where y =8/Oo, as in the previous case. Since (2 1 ) must
be real we still obtain the condition (9)~ If this condition
is satisfied, after a trivial integration we obtain

2 2E2f K(8)OdO= —(eE —w)+
0 2 2rE

VI. ENERGY CONS IDERATIONS
ON THE STABILITY OF THE DISTORTED

CONFIGURATION

Up to now we have determined the threshold field by
considering Eq. ( 1") in the limit Oo~0. In this way we
have no information on the stability of the distorted con-

VII. NEGATIVE DIELECTRIC AN ISOTROPY

Let us consider the case e, (0, and hence r (0, corre-
sponding to a nematic liquid crystal dielectrical ly unsta-
ble. Now 8(z) is no longer a monotone function.

The function g (E;y ) for the present situation is

g(E yI) —K33[(eE —w)'+
I

r'
I

E'( 1 —y')] '"
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which defines the threshold field.
Equation (10') in the w —&co limit gets Fredericksz's

threshold field for usual dielectric instability, whereas for
e =0 and w finite it becomes Rapini-Papoular's expres-
sion. '

VIII. INFLUENCE OF THE SURFACE
POLARIZATION ON THE FLEXOELECTRIC

INSTABILITY

In Sec. III we determined the threshold field in a gen-
eral way and in Sec. VI the analysis of the stability of the
distorted configuration was made by means of a Landau's
expansion of the total free energy in terms of the surface
tilt angle. As is well known it is possible to obtain the
same results by linearizing the total free energy (18) in 8,
and analyzing the Euler-Lagrange equation connected
with this approximated form of F. Of course, this
method does not give information on Op. Following this
procedure we write (18) as

F= f [2K330 +(1/8n)e, E 8 +eEOO]dz

+ —,'wOq+O(8 ) . (24)

The function 8(z) which minimizes (24) is a solution of
the differential equation

8(z) (e,E /4—mK33)8(z) =0, (25)

in the bulk, and on the boundaries 8(z) must satisfy the
conditions

K338p+ ( w eE)0p 0at—z =0——

which is real for any E, since y&(0, 1). By taking into
account Eq. (7'), Eq. (6) in the xp~0 limit gives

I

&'
I
E'/[«E —w)'+

I

&'
I
E']=»n'(

I

&'
I
'"Ed/K33)

(10')

P, (8,z)=p(z) cos8(z)n, (28)

where p(z) is different from 0 only near the limiting wall
at z =0, on a range l of some molecular lengths. When
P, is present, the total polarization independent of the
electric field is P=Pl+P, where Pl is the flexoelectric
polarization. ' Taking into account (28) the total free ener-

gy up to the second order in 9 is now

f I —,K338 +e (E —4~p/equi)88

+ [(1/8~)eaE' —pE [(e.«~~) —
2 ]

+(2mp /e~~)[(e, /e~~) —1]8 Idz

+ —,
' w8~+O(0 )+const . (29)

and —n are not equivalent. The physical origin of this
polarization is well examined in. ' ' A surface polariza-
tion can exist even if the two ends of the nematic mole-
cules have the same chemical affinity with the surface,
but the surface imposes an order parameter different from
the bulk. This is due to the fact that the nematics are
quadrupolar ferroelectric materials. The connected polar-
ization is called order polarization. In the following we
suppose that the surface order parameter is the same as
the bulk one and hence the order polarization is identical-
ly zero. This hypothesis holds good probably very far
from T, .

As pointed out in Refs. 15 and 16 the surface polariza-
tion plays an essential role only if the nematic is in the
homeotropic alignment. The functional form proposed'
for

~
P,

~

(Refs. 15 and 16) is of the kind
~
P, (8,z)

~

=p5(z), where 5(z) is Dirac's function and p a constant
depending on the chemical affinity between the ends of
the molecules and the surface. This model introduces a
large discontinuity in

~
P,

~

and some problems in the
evaluation of the contribution of the self-energy to the to-
tal free energy. For this reason it is better, as in Ref. 4, to
suppose that

and (26)
Minimizing (29) we obtain the Euler-Lagrange equation

Od ——0 atz=d.
The solution of (25) is of the kind 8(z) =a cosh(qz)
+b sinh(qz), where q =( ,e/m4K33)' E. Substituting the
above form of 8(z) in the boundary conditions (26) we ob-
tain that 8(z) is not identically zero (i.e., a and b do not
vanish) only if the equation

K338 I (1/4m )e,E —2pE —[(e, /e~~) ——,
'
]

+4Ir(p /e~[)[(e, /e~~) —1]+4m'/e~~I 8=0
(30)

with the boundary conditions

[(eE —w)/K33] tanh(qd) =q (27) 0

K33OQ+ [w —e (E 4vrpp /e~t ) ]8& —0at z =0——
holds. Equation (27) defines the threshold field and is
equivalent to Eq. (10). As pointed out, this linearized
analysis cannot give information on Op. For this reason
we analyzed the problem in a different way. But if we
wish to study only the influence of some other effect on
the threshold field for flexoelectric instability, the linear-
ized analysis is sufficient. In the following we use this
method to determine the influence of the surface polariza-
tion P, on E3.

As known' ' a surface polarization P, can occur if the
two ends of the nematic molecules have different chemi-
cal affinity with limiting surface. In this case the surface
gives a preferential order to the nematic molecules since n

and (31)

Od ——0 atz=d,
where pp ——p (0). Let us consider now the order of magni-
tude of P, If N =10 ' cm. is the molecular density and

p = 1 debye is the electric molecular dipole,
P, „=Np 10 statcoulomb/cm . Of course, P, &&P,~„,
since the polar order near the surface is far from com-
plete. If P,=1—10 statcoulomb/cm (Ref. 17) and it
drops to zero over a distance of the order /=70 A (Ref.
15) for any z in the range (0, l.), Eq. (30) can be approxi-
mated as
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8~(z) —(4mep/K33e(~)8~(z) =0, z E (0, l) (30') 8z(d)=0, at z =d . (31")

where p= —p0/l, with the boundary condition

—K338q(0)+[w —e(E 4—np0/e~~)]8&(0) =0 at z =0 .

(31')

Hence we can solve the problems (30'), (31') and (30"),
(31") separately, and impose the matching conditions. In
Eq. (30) the coefficient of 8(z) is a continuous function.
This implies that 8(z) and 8(z) are continuous functions,

For any z in the range (l,d) we have p(z) =p(z)=0 and
Eq. (30) becomes

i.e.,

8&(l) =82(l) and 8&(l) =82(l) .

82(z) (e,—E /4nK33)82(z)=0, zH(l, d)

with the boundary condition

(30") Let us suppose p0&0. The solution of Eqs. (30') and
(30") with the boundary conditions (31'), (31"), and (32)
gives the threshold field

[(R/qz)+ I]—[(q~/q2)+(R/q~)] tanh(q~l)
q d= —,'ln

[(R /q2) —1]—[(q ~ /q2) —(R /q ~ )] tanh(q ~ l)
(33)

where

and

q& (4~ep/K——33e~() qz —(e /4nK33)'~~E

R =[e(E—4mpa/e~~) —w]/K33 . (35)

We observe that for pa~0, q, —+0 and Eq. (33) gives Eq.
(27). Supposing. pa —1—10 statvolt/cm and i=10 6 cm
the term q~1 is found to be of the order of 10 '—3X 10
Hence, tanh(q~l)=q~l. With this approximation Eq. (33)
becomes

(e, /4nK33 )'i E. d

= —, in[ [(e+r*)E—w*]/[(e r)E —w*]—],
where

(36)

and

r"=r +(e, /e~~~)(pal/r) (37)

w' =w

+(See�/e~~)p0

. (3g)

In (36) we have neglected terms of the kind rl/L and
(rel/K33)E since near the threshold they are much
smaller than the others. Equation (38) shows that if
pa&0, w &w, i.e., the effective anchoring energy is
smaller than that in the absence of surface polarization.
Furthermore from Eq. (37) r*&r. The condition e &r
obtained from Eq. (9) now becomes e+(e, /e~~)(ppl!r) & r.
In our conditions the presence of the surface polariza-
tion is equivalent to a flexoelectric coefficient e =e
+(e, /e~~)(

~ pa ~

l/r) larger than e, as already pointed out
phenomenologically in Refs. 3, 4, and 5. The correction
on e introduced by P„with the above-mentioned values
of p0 and l is of the order of 10 dyn'~, in agreement
with the estimation reported in Ref. 3. We would point
out that this correction is of the same order as e.

From the above discussion it follows that the value of
the threshold field, given by Eq. (36), is smaller than that
obtained with P, =O. A similar analysis is possible for
p0&0 and shows that w*&w and r*&r, or e*&e. In

this case the threshold field is larger than that obtained
with P, =0.

In conclusion, contrary to the model of Refs. 3 and 4,
the existence of surface polarization is not simply
equivalent to a flexoelectric renormalization (here the
change r~r*). There is also a change in the anchoring
energy (w~w ) from the coupling between flexo and
surface polarization.

IX. CONCLUSIONS

In this paper the flexoelectric instability in nematic
liquid crystal has been reconsidered. The threshold field
has been calculated exactly. We obtain relations which
contain as particular cases other relations found in litera-
ture and valid only for some particular sets of material
parameters. Furthermore, the maximum tilt angle is
evaluated. Its value depends, obviously on the flexoelec-
tric coefficients, dielectric anisotropy, and splay elastic
constant. For reasonable values of these parameters the
maximum surface tilt angle is found to be relatively small
for large e, . Hence the flexoelectric transition is optically
a "ghost" transition, as experimentally observed. In the
last part of the paper we have considered the influence of
the surface polarization, assumed position dependent, on
the threshold field of the examined instability. Our
analysis shows that the presence of this polarization intro-
duces large variations on the flexoelectric coefficient, as
already predicted, and on the surface energy, from the
coupling between flexo and surface polarization. The ob-
vious conclusion is that surface polarization can mask the
flexoelectric effect and that the presence of the Aexoelec-
tric effect and surface polarization introduces some prob-
lems on the w determination.
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