
PHYSICAL REVIEW A VOLUME 35, NUMBER 3

Renyi dimensions from local expansion rates

FEBRUARY 1, 1987

R. Badii
Institut fiir Theoretische Physik, Uniuersitat Ziirich, Schonberggasse 9, CH 800-1 Zurich, Switzerland

A. Politi'
IBM Zurich Research Laboratory, Saumerstrasse 4, CH-8803 Ruschli kon, Switzerland

(Received 23 June 1986)

A general self-similarity relation is shown to exist, expressing the Renyi-dimension function in
terms of local expansion rates both for flows and maps. For the particular case of the information
dimension, such an implicit equation yields the well-known Kaplan-Yorke relation. Moreover, it
can be explicitly solved in some interesting cases, among which are two-dimensional maps with con-
stant Jacobian. Detailed measurements are performed for the Henon attractor, with a very accurate
estimate of its capacity. Finally, an expansion around the information dimension allows recovery of
the Grassberger-Procaccia estimates in an easy way.

I. INTRODUCTION

Several methods have been introduced to characterize
strange attractors from a purely geometrical point of
view, all relying on concepts developed in the theory of
fractal sets. ' The relevant information is extracted from
the scaling properties of the probability distribution, when
the observational resolution is increased. Accordingly, an
infinity of dimensions D~ [Renyi dimension function
(Ref. 2)] is commonly used to describe the geometric and
probabilistic features of the attractors. Many different al-
gorithms presently exist to evaluate some particularly
meaningful dimensions [capacity Do, information dimen-
sion D&, correlation exponent Dz (Ref. 4)] by computing
interpoint distances, or counting boxes.

However, strange attractors cannot be viewed simply as
geometrical objects; their dynamical properties also re-
quire careful analysis. In particular, the Lyapunov
characteristic exponents are a standard means to quantify
the degree of chaos in nonlinear dynamical systems. As
these exponents express the expansion rates of neighboring
distances along each direction in the phase space, it has
been conjectured that they could be used to estimate frac-
tal dimensions. In fact, Kaplan and Yorke introduced a
dimensionlike quantity which has been proved to be an
upper bound to the information dimension. Anyway, for
the cases usually encountered in the literature, the
Kaplan-Yorke relation is found to hold as an equality,
within the numerical accuracy. However, typical chaotic
attractors are not uniform, i.e, the Renyi dimensions Dq
are such that D+ „&D; therefore it would be desirable
to have a relation which yields all the Dq's in terms of the
expansion rates. A partial solution to this problem was
given by Grassberger and Procaccia, who attributed the
nonuniformity to the fluctuations of the Lyapunov ex-
ponents along the trajectory. They conjectured that the
evolution of the Lyapunov exponents could be described
approximately by a set of Langevin equations with a
Gaussian random source. With such assumptions they
were able to derive upper bounds to all the Dq's which,
however, are in general not exact, even when non-

II. THEORETICAL RESULTS

We start by discussing the simple, analytically solvable,
generalized baker transformation,
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Gaussian corrections are approximately taken into ac-
count.

In this paper we derive an implicit exact relation yield-
ing all the Renyi dimensions (for the whole q axis) in
terms of averages of suitable powers of the local volume-
expansion rates. Our approach, based on self-similarity
arguments, is first introduced for the paradigmatic exam-
ple of the generalized baker transformation and then ex-
tended to generic flows and maps. For several dynamical
systems, for which the volume contraction rate is con-
stant, an explicit equation for the De's can be written.
This allows easy and fast numerical calculations. As an
example, the Henon map is discussed in detail, and the
capacity Do is provided. For the same class of models,
the Renyi-dimension function is also shown to depend in
a simple way on the cumulant generating function for the
probability distribution of local Lyapunov exponents.

The Sinai map is then analyzed, as an example of a
highly nonuniform attractor, and for its fluctuating Jaco-
bian, which requires an indirect approach.

In Sec. II we derive the main relations, in both the im-
plicit and explicit form. Section III is devoted to numeri-
cal applications. In Sec. IV the expansion of the dimen-
sion function allows the recovery, in a straightforward
manner, of the Grassberger-Procaccia estimates, which
are shown to be connected to the uniformity factor. ' In
Sec. V we summarize the main results, commenting on
the reliability of the tails of the distribution of Lyapunov
exponents. Finally, the relation between expansion rates
and metric entropies is also sketched. "
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(2.1b)3n +1 Un Pa)/Pb~ 3n +En i

where p, +pb ——1 and u, '+ab '&1. Its asymptotic at-
tractor can easily be recognized as the product of a con-
tinuum by a Cantor set. The generalized dimensions dq
of a horizontal section are rigorously defined through the
self-similarity relation'

—(1—g)d —(1—g)d
P, an +5'gab ' ——1 . (2.2)

This equation, which was derived from geometrical argu-
ments, can also be interpreted from a dynamical point of
view. In fact, the action of the map can be summarized in
the following way. The unit square is cut horizontally at
a height y =p, and the two parts contracted in the x
direction by a factor p2 which can either be equal to u,
or to ab, according to the value of y [see Eq. (2.1)], with
probability p, and pb, respectively. The two resulting rec-
tangles are then stretched along the y direction by a factor
p], which assumes the value p, ' in the lower part, and

pb in the upper one. The numbers p& and p2 are the lo-
cal (i.e., position-dependent) multipliers that, in generic
systems, can be either positive or negative. As only their
magnitude is important for what concerns calculations of
fractal dimension and metric entropy, we only consider
their absolute values, indicated in the following by m~
and m2.

Exploiting these considerations, we can rewrite Eq. (2.2)
as a time average along the trajectory,

d
&(m, m, )"-")=&[V(q)]"")=1. (2.3)

Here, the quantity V(q) stands for a volume-contraction
rate in the metric in which we assign a unitary dimension
d = 1 to the stretching direction ( m» 1) and a fractal di-
mension d =d» to the contracting one (mz &1). If the
factor V(q) does not fluctuate [for a choice of d» such
that the equality holds in Eq. (2.3)], then we can eliminate
the average and, consequently, the q dependence. In such
a case, Eq. (2.3) implies that the overall dimension is
D» = 1+d» = 1+lnm ~ /

~

lnm 2
~

. The independence of q
reflects the uniformity of the set, which is obtained for
p; ~a, "(i =a,b)

The previous considerations indicate that the nonuni-
formity of a fractal set originates from the fluctuations of
the product V(q). However, an important condition to be
verified by Eq. (2.3) for it to be a meaningful relation is its
independence of the number of iterations of the map for
which the multipliers are evaluated. In the case of the
transformation (2.1), the value of V(q) is completely
decorrelated from its value at the previous iteration. This
ensures, a fortiori, the validity of Eq. (2.3) when interpret-
ing m~ and m2 as multipliers over any number of itera-
tions. In general, instead, we expect correlations to exist
between V(q, t) and V(q, t+r) [where V(q, t) stands for
V(q, x(t))]. Hence, it is necessary to compute the multi-

pliers over a time ~, large enough to-allow the decay of
correlations. In the limit ~—+ oo, we expect only the fluc-
tuations owing to the nonuniformity to remain.

We can now easily extend the previous results to the
general case of an E-dimensional phase space, by consid-
ering the volume-expansion rate over a time ~, evaluated
from the starting point x; on the trajectory

E d(k) E ~d(k)g (x )

V;(q, »)= Q mI, » (x;,r)—:+ e
k=1 k=1

(2.4)

where mt, (x;,r) are the multipliers (in absolute value) over
a time ~, computed by evolving the linearized equations;
the d»

' are the "partial dimensions"' and A, t, (x; )

=(I/»)lnmt, (x;,r) are the Lyapunov exponents computed
over the finite time ~. The partial dimensions dq

' are a
useful tool to characterize the local structure of the attrac-
tor, and can be roughly interpreted as the dimensions
along the eigendirections of the linearized flow. In gen-
eral, it is not known how to compute them directly, how-
ever, they can be used to yield upper bounds to the Renyi
dimensions D». In the case of axiom-A systems, all d» 's
corresponding to expanding directions are rigorously
equal to 1.' ' ' Furthermore, the d» 's, while satisfying,
for q + 0, the obvious constraint 0 & d'"' & 1, for
can be larger than one, as will be seen in the following.
The Renyi dimensions Dq are then given by

E
y d(k)

k=1

Finally, Eq. (2.3) can be rewritten as

lim (V(q, r)" »') =1 .
7 ~ oo

(2.5)

(2.6)

This relation can be further justified bv noting that it is a
constraint for the dimension list' dq ', determining the
proper metric which keeps the volume-expansion rate
[V(q,r)]" »' equal to 1, on the average. In particular,
taking the limit q~1, we obtain the general condition

(2.8)

E
y„d',"'&~„)=0 (2.7)
k=}

for the information dimension D&, which can be satisfied
by various choices of the d I 's. The Kaplan- Yorke
choice is recovered by defining j as the largest integer for
which QJI, , (A, t, ) )0, and choosing d'&"' ——1 for A: &j,
d", +"=QJ~, (A,I, )/~ (A,;+,) ~, and d»"' ——0 for
k &j+1. This is the choice that maximizes the estimate
of the information dimension D& and it is equivalent to
assuming that the attractor is Cantor along the (j+1)th
direction only. It has been proven' that such a choice is
exact for two-dimensional diffeomorphisms. For higher-
dimensional sets, one needs additional information on the
d»'s to satisfy Eq. (2.6), as shown by Shtern' for a partic-
ular version of the baker map. However, the Kaplan-
Yorke relation seems to hold as an equality for all the at-
tractors usually studied in the literature. To obtain analo-
gous upper bounds for the case q )0, we can proceed as
follows. Starting with the largest possible value for D»
(i.e., d» = 1, A; = 1,2, . . . ; E) it is easily seen that the aver-
age volume-contraction rate is smaller than 1, so that Dq
must be decreased to meet the requirement (2.6). The
smallest possible decrement is accomplished via a gradual
decrease of the dimensions d»

' starting from the last one
(d» '). As a result, defining the generalized index j» as
the largest integer for which

Jq g 1 —q)A, k(x ~ ) ~ yg ~ )11m e o 1
'P~ 00 I



1290 R. BADII AND A. POLITI

the upper bound for Dq corresponds to dq(k)=1, for

k &jq, dq ——0 for k &jq+ 1, and dq
' determined by

~ (k) (j +1)

relation (2.6). To clarify the meaning of Eqs. (2.6) and
(2.8), note that A,k(x;), computed over a time r, is a ran-
dom variable whose probability distribution depends on ~
itself. Therefore, a nontrivial dependence ofjq on q is ex-
pected, indicating that the Renyi dimension function Dq
may cross one (or more) integer values. In such a case,
the attractor could not be simply schematized as the prod-
uct of a continuum and a Cantor set. A generic example
of this behavior is provided by filtered chaotic signals. '

More caution is necessary for
~

& 0, since in principle, the
Cantor direction can yield dq & 1.' However, in case jq
does not change for q —& —Oc, the procedure described
above yields unambiguously an upper bound to Dq.

In the following, for simplicity, we consider jq constant
and one single Cantor direction, so that, from here on, we
indicate dq~+ simply with dq. For the fulfillment of the

I

self-similarity relation (2.6), one needs to assign several
trial values of dq, determining the right one by interpola-
tion. Fortunately, such a lengthy procedure is not neces-
sary for some dynamical systems with constant Jacobian
or divergence. In fact, for an E-dimensional map, we
have

(2.9)

If E =j+1,we solve Eq. (2.9) for mj+~(r) and substitute
into Eq. (2.6) obtaining

(1—
d& )(1—q)([mt(r)m2(r) mj(r)] q )

Hence, introducing the new variable 6=(1—q)(1 —dq),
we have

D(6)=j+ 1+ l»f~ I I

j
lim ln g mP(r)l er

k=1
(2.11)

where D(6) is another dimension function' obtained
through the following transformation of the q axis:

D [6=(1—q)(1 —dq ))=Dq ——j+dq . (2.12)

III. NUMERICAL RESULTS

In this section we perform calculations of the dimen-
sion function for the Henon attractor and the Sinai map. '

The first model is given by

2x„+1——1 —axn +yn ~

yn+1=&Xn ~

(3.1)

with a =1.4 and b =
f
J

f
=0.3. Therefore, Eq. (2.11)

reads

The simultaneous evaluation of D(6) for some 6 values
yields a fairly good estimate of the whole dimension func-
tion. In particular, for 6~0, the Kaplan-Yorke relation
is recovered while, for 8=1—dp, the capacity Dp is
found.

in Sec. IV.
In Fig. 1 we report the measured values of dq versus q,

in the range —6 & q & 6, for ~=50 iterations. The aver-
ages in (3.2) have been performed over 2 X 10 independent
samples of length ~. The central part of the curve
( —2 & q & 2) is very reliable, yielding, for instance, an es-
timated value for Do of 1.2755+5X10 . This value is
in fairly good agreement with Grassberger's result'
Dp = 1.28+0.01 while all other values in the literature are
quite a bit lower. In particular, all box-counting methods,
as shown in Ref. 19, suffer from a lack of statistical con-
vergence. In fact, it has been proven that the number of
points necessary to cover a fixed fraction of the support of
the attractor diverges faster than the number of boxes it-
self, for nonuniform attractors. On the other hand, for
large

f q f, the uncertainty on dq rapidly increases be-
cause of lack of statistical convergence. This difficulty

D(6)=1+ 1+
lim

(3.2)
0.2

where A, ~(r) =1/rlnm&(r). Note that the function G(g)
=(e ) is the characteristic function of the probability
distribution P(A, ~) of the (first) Lyapunov exponent. Its
logarithm, entering the definition of dimension function
(3.2), is the generating function for the cumulants. This
suggests that an expansion around 6=0 (i.e., around the
information dimension) will provide a measure of the
nonuniformity in terms of the deviations of the distribu-
tion P(A, ~) from a Gaussian. This point is further treated

0.1—

-6 -q -2 0 2
q

FIG. 1. Fractional part of the Renyi-dimension function d~
for the Henon attractor. The error bar on d~ rapidly grows for
increasing

f q f
.
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FIG. 2. The "Lyapunov exponents" lnG(e~)/e~ are plotted
for 8=+ po, 0.725, —0.785, and —po (curves a, b, c, and d,
respectively) versus 1/~. The first and the last curves corre-
spond to the maximum and minimum value of the Lyapunov
exponent, while curves b and c practically give the dependence
of the correlation exponent and of the capacity on the delay time
To

I
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1

FIG. 3. The logarithm of the probability distribution of Xl is

plotted vs the Lyapunov exponent A,
&

calculated over a time
7 =50. The number of computed points is 2&( 10 . Deviations
from the parabolic (Gaussian for the probability itself) shape are
self-evident. The difficulty of a reliable estimate of P on the
tails is also clear.

can be discussed with reference to Fig. 2 where
min, I A, ~(~) I, max, I A, i(~) I, and [1nG(e~)]/Bs [for
D(e)=Do and Dz] are plotted versus 1/~. The two cen-
tral curves b and c (corresponding to the capacity and the
correlation exponent, respectively) already converge for
&=10. The upper curve, instead, after a plateau for r be-
tween 5 and 25, exhibits a slow decrease with increasing ~.
This is due to the broadening of the probability distribu-
tion of the values m&(r), which requires a prohibitively
large number of samples for the estimate. This effect is
more evident for low values of A, i and the fast increase in
curve d, with r~ ao, is mainly due to the relatively small
number of samples (2&& 10 ). Moreover, extension of the
range of values allowed for the first Lyapunov exponent
A, ~ to negative values is reasonably connected to the pres-
ence of homoclinic tangencies in the Henon attractor. '

In such points, the unstable manifold, having the same
direction as the stable one, is characterized by a contract-
ing multiplier (mi &1). A possible implication of this
fact is that the global dimension D~ can become smaller
than one, for q larger than a certain critical value. Final-
ly, in Fig. 3, we report the probability distribution of the
largest Lyapunov exponent A, &, for v=50, from which can
be seen the lack of definiteness of the tails, notwithstand-
ing a number of points as large as 2&10 . This explains
the difficulty encountered in estimating the two asymp-
totes of the curve d~.

The second map studied is the Sinai transformation de-
fined by

x„+i
——x„+y„+gcos(2ny„) (mod 1),

y„+ i
——x„+2y„(mod 1),

which has a nonconstant Jacobian. Sinai proved' that,
for small nonlinearity g, the attractor is the whole unit
square, i.e., Do ——2. This attractor shows an increasing
nonuniformity when g is increased from 0 to 1/2m, when
the map becomes noninvertible. Here, we have chosen

g =0.15( 1/2ir in order to test our method in the
presence of strong fluctuations of the Lyapunov expon-
ents. In Fig. 4 we report the average rate
M=({mi(~)[mz(r)] I" «')' ' versus d, for v=40 and

q =0 and 2. The intersections with the horizontal
straight line with height 1 give the estimated values of the
capacity and of the correlation exponent. While the ex-
pected value of do ——1 is confirmed with a four-figure ac-
curacy, the correlation exponent is d2 ——0.575+1&(10
The major source for the error is given by the residual
dependence of the volume multipliers on the time r. It is
worthwhile anticipating that in the present case of a high-
ly nonuniform set, the direct application of the exact Eq.
(2.6) is by far much better than any perturbative ap-
proach, which would require a large number of terms. Fi-
nally, note that, as a consequence of the nonuniformity,

1I3

1.2

1,0

0, 9

0, 8
0.5

cl2
I

0.6 0.7 0.8
I

0.9

dp

FIG. 4. Average value of the volume multiplier
M =((m&m2)" «')'»" vs d for q =0 and 2, for the Sinai map
[Eq. (3.3)]. The multipliers are evaluated over a number ~=40
iterations. The intersections of the two curves with the horizon-
tal straight line at height 1 indicate the actual value of the frac-
tional part of the correlation exponent and of the capacity
(curves a and b, respectively).
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dq is larger than one for q &0, yielding an overall dimen-
sion Dq exceeding the phase-space dimension. This effect
is caused by the presence of regions of the attractor rarely
visited.

IV. PERTURSATIVE EXPANSION

dq ——d(+d'(q —1)+d"(q —1) /2+ ' ' ' (4.1)

where d' and d" are the derivatives of dq, computed at
q = 1. The first derivative d is related to the uniformity
factor' A, (d'= —i&~), once we refer k to the informa-
tion dimension. By substituting Eq. (4.1) into Eq. (2.6),
and introducing o =gjk

&
A,k+d~Ai+t, we can write

1= exp o 1 —q —A, +Id' 1 —q

Because of the implicit nature of Eq. (2.6), it is useful
to expand it in perturbative series to yield an explicit ex-
pression. The dimension around which it is most con-
venient to expand is, of course, the information dimension

di, explicitly given by the Kaplan- Yorke relation. There-
fore, we write

V. CONCLUSIONS

An analytic extension of the Kaplan-Yorke conjecture
to the whole Renyi-dimension function has been intro-
duced. This allowed the giving of accurate estimates of
the capacity for the Henon map, chosen as a typical ex-
ample of a two-dimensional diffeomorphism. Further-
more, the dimension function Dq could be evaluated in a
sizable range of q values ( —6 (q (6). However, the con-
vergence to the correct asymptotic values,

~ q j &&1, is
slowed down by lack of statistical convergence on the tails
of the probability distribution. Also, the existence of
homoclinic tangencies (Henon, Duffing attractors) is re-
flected in the appearance of sequences of negative values
for the most expanding Lyapunov exponents. The possi-
ble implications of this fact have been briefly discussed
and are currently under investigation.

An important class of related quantities is that of the
metric entropies Kq defined by

Eq = lim lim in(P'q "(x(t),x (t +r);e) )e-o r r(1 —q)

„(1—q)+AJ+ Id" + (4.2)

Expanding the exponential and equating terms with the
same powers of (1—q), we obtain

(cr) =O,
d'=(cr')/(2(A, ;,) ),
d"=2((ol, , )d' —(o') /6)/(A, , ) .

(4.3)

The first-order term provides the Kaplan-Yorke relation,
the second one represents the estimate of the fluctuations
in the Gaussian approximation. The last equation, yield-
ing the concavity of dq in d„gives the information on
the position of the inflection point where the dependence
of dq on q is strongest.

Since, in most cases, the uniformity factor X is very
small, ' we expect the expansion (4.1) to be sufficiently ac-
curate to the second order in (1—q), even for

~ q ~

—5,6.
This expansion is equivalent to that developed by

Grassberger and Procaccia in Ref. 7. However, the
present derivation, having started from the simple implicit
relation (2.6), turns out to be more transparent, and the
meaning of the correction terms, as coefficients of a series
expansion, clearer.

Kq ——lim in( V+ q (r))
r(1 —q)

(5.2)

where V+(r) = /k+, mk(r), and j+ is the largest integer
for which mz+ & 1. This result, recently derived by Pala-
din and Vulpiani, " is an extension of the expansions given
in Ref. 7.

Finally, let us stress that a direct application of this
method to experimental data is also possible by imple-
menting one of the recently developed techniques to com-
pute Lyapunov exponents from a time series of a single
variable.

After having completed our paper, we became aware of
work by Grassberger where a relation equivalent to (2.6)
was proposed.

where P(x(t), x(t+a);e) is the probability of finding an
orbit remaining for a time ~ within a distance e from the
trajectory joining x(t) with x(t+~). Noting that P is
simply the inverse of the product V+(~) of all expanding
multipliers (over the time r), the metric entropies Kq are
readily computed as
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