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We investigate the role of plasma screening in fine-structure excitation of excited ( n =2) hydro-

genic ions, He+, Ne +, Ar' +, and Fe + in collisions with protons. Within the context of the semi-

classical, impact-parameter formalism, both ion-sphere and Debye-Huckel static screening models

have been used. For certain plasma conditions, the former model is easily justified by arguments

based on the ordering of various time scales; however, the latter model is more appropriate for many

plasmas presently subject to spectroscopic analysis. Substantial I,
'e.g., factor-of-10) reductions from

unscreened cross-section values are readily achievable. We discuss numerous qualitative trends ex-

hibited by the screened cross sections, and obtain empirical relations that roughly scale the cross sec-

tions for different charges of the target ion.

I. INTRODUCTION

Understanding the characteristics of hot plasmas re-
quires a detailed knowledge of various processes, includ-
ing excitation due to electron and ion collisions. Rate
coefficients for these and other processes are required for
interpretation of measured line intensities and for infer-
ring important plasma parameters such as electron tem-
perature and density. ' Therefore, a large amount of effort
has been devoted to calculating the corresponding cross
sections to sufficient accuracy. A common feature of
most calculations is that the plasma environment (within
which these basic atomic processes take place) is usually
ignored. The collision interactions which drive transi-
tions, for example, are typically taken to be those relevant
to an isolated system.

It is well known, however, that the extreme conditions
of some plasma environments can drastically alter transi-
tion rates from their values for the corresponding isolated
systems. Long-range Coulomb interactions are screened
by plasmas, leading to shorter-range interactions. Some
progress has been made in understanding the influence of
the plasma on elastic ion-ion scattering, atomic struc-
ture, radiative processes, and on inelastic electron col-
lisions with atomic ions. ' These later investigations
were undertaken, in part, because of the dominant contri-
bution Inade by electron impacts to ion-excitation rates
when the plasma temperature kT is much less-than the
threshold energy of the excitation b,E. "' The effect of

the plasma was modeled in these collision studies by static
screened interactions, the justification of which requires
some rather specific conditions. ' First, the reciprocal of
the electron-ion collision duration, I/r„=co„, must be
less than the plasma (electron) frequency, co,
= (4m e N, /m, )', where N, is the number density of
plasma electrons. If this condition is not met, plasma
screening of the target may not be accurately represented
by a potential arising from the average electronic charge
density in the ion s vicinity. Second, substantial screening
of the electronic (i.e., scattering-electron —bound-electron)
interaction is achieved only when AE & Ace„' otherwise the
bound electron's motion also is too rapid to permit screen-
ing by most of the free electrons. (These statements fol-
low from the fact that the plasma dielectric function is
well approximated by unity for co &co„and by its static
value for ~o &co, . ' )

On the other hand, a static screening approach to plas-
ma effects on ion-ion collisional cross sections is more
easily justified. First, owing to the large mass of positive
ions compared to the electron mass, the relative speed
(and hence 1/r;;=co;;) in an ion-ion collision is much
smaller. Thus the inequality co;; &&co, is much less re-
strictive. Also, because the incident charge is screened-
and effectively reduced —by plasma electrons, the interac-
tion causing the transition is strongly reduced. Further-
more, in the absence of plasma screening, it is known that
as the ratio of kT/AE increases, the relative importance
of ion-impact excitation increases with respect to
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electron-impact excitation. These considerations have led
to the present investigation of plasma effects on ion-
impact excitation and deexcitation cross sections for tran-
sitions between the fine-structure levels of hydrogenlike
ions, within the context of a static screening picture of the
plasma.

The paper is organized as follows. In Sec. II the
theoretical approach is outlined within the semiclassical,
impact-parameter distorted-wave approximation; the in-
fluence of the plasma is represented by a static model po-
tential. Various detailed results are developed in the ap-
pendixes. Specific formulas are given for the (structure-
less) ion-impact excitation of fine-structure levels of hy-
drogenlike ions. In Sec. III results are presented for the
example of proton-impact excitation and deexcitation
transitions between the (n=2) fine-structure levels of hy-
drogenlike argon. Both ion-sphere and Debye-Hiickel
models of the plasma screening are studied, and the influ-
ence of the plasma environment on the cross section is
demonstrated and discussed for a variety of plasma condi-
tions. In Sec. IV the dependence of the cross sections on
nuclear charge and empirical scaling relations are con-
sidered. Comparisons are made for several different sys-
tems. The body of the paper concludes with a brief sum-
mary of the results.

II. THEORETICAL. APPROACH

A. The semiclassical method

The specific processes examined in the present study
are fine-structure transitions in hydrogenlike ions due to a
collision with another (structureless) ion. Because of the
large masses involved, the de Broglie wavelength is always
much smaller than the classical distance of closest ap-
proach. To a good approximation the relative motion of
the two nuclei can therefore be treated classically, and
only the electron dynamics need be treated quantum
mechanically; the problem is thus explored by means of
the impact-parameter method.

The coordinate system chosen to characterize the ion-
ion scattering process is shown in Fig. 1. A laboratory-
fixed system has been chosen with z defined by the initial
relative momentum and with the origin taken to be the

nucleus (with charge Zq ) of the hydrogenlike target ion.
%'ith respect to this origin, the bound electron is posi-
tioned at r and the projectile ion of net charge Z is locat-
ed at R. The impact parameter vector p is perpendicular
to the initial relative velocity vo. The dynamics of the
atomic target are governed by the time-dependent
Schrodinger equation, which yields the following coupled
equations for the amplitudes of transition bp~ between an
initial state a and final state P:

id' (t)
ifibp~ —— X Vpre ~ bra .

y (~P)

(Throughout, a, P, and y are used generically to indicate
all the quantum numbers that uniquely specify the unper-
turbed target states. ) The phase bp&(t) in Eq. (1) is de-
fined by a first-order differential equation,

Ab pr Ep Pr——+ Vp—p(t) Vr—r(t),

o(13+ a)= I dP' —I dpp i bp~(t~ao) i
(3)

where P' is the azimuthal scattering angle. The asymptot-
ic probabilities depend on p and 0' implicitly through
their dependence on the electronic coupling.

with the initial condition b,p ( —ac)=0. Ep and Er are
the energies of the unperturbed states ~P). and

~
y),

respectively, and are obtained for the present study from
the work of Erickson. ' Note that by using unperturbed
target states and their corresponding energies, we are ig-
noring the small plasma distortion, as evidenced by "plas-
ma polarization shifts, " of the target states

~

a ) . (See
Ref. 13 for a summary of several experimental results. ) In
addition, fine-structure transition energies hE usually are
much less than the collision energies of primary interest,
and at these energies the cross sections are insensitive to
the small changes expected for b,E. The matrix element

Vpr ——(P~ V,
~ y) between states ~P) and ~y) involves

the electronic part of the ion-ion interaction potential [cf.
Eqs. (4) and (5) below]; spin-dependent interactions be-
tween projectile and target are neglected.

Once the amplitudes of Eq. (1) have been obtained, the
cross section for the transition a~P can be determined,
in the impact-parameter method, from the relation

Vp B. Plasma models

FIG. 1. Coordinate system for a collision of a structureless
ion of net charge Z with a hydrogenlike ion of nuclear charge
Z~. The z axis is defined by the initial relative velocity vo. The
bound-electron position is specified by r, 8, and P and the pro-
jectile by R, 8', and P'.

The influence of the plasma on ion-impact excitation of
the hydrogenic ions is approximated here by one of two
static model potentials. In the limit of low temperatures
and high densities, the mean electrostatic interaction ener-

gy is much greater in magnitude than the mean kinetic
energy of the ions. A reasonable model of the plasma
under these conditions is one in which each ion of charge
Z is surrounded by a sphere of radius Rz (3Z/4rrN, )'~——
containing Z uniformly distributed free electrons. ' In
this ion-sphere picture the interaction between a slow
(speed «Q Tkm/, ) screened incident ion and a fast
(speed»+kT/m, ) unscreened bound electron is ap-
proximately
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1— R
2Rz'

R
3—

2Rz

0, R & R, (ion-sphere) . (4)

In the opposite limit of high temperatures and low den-
sities, the mean thermal energy of the particles is much
greater than the magnitude of their mean electrostatic in-
teraction energy. I.inearization of the Poisson-Boltzmann
equation leads to the Debye-Hiickel potential,

V, (R,r) = — e ~ (Debye-Huckel),
/R —r/

(5)

for the interaction of an unscreened bound electron and an
ion screened only by plasma electrons, viz. , D
=(kT/4ne N, )' . (For simplicity, the screening effect
in both the ion-sphere and the Debye-Huckel pictures is
taken to be spherically symmetric, i.e., to depend only on

~

R
(

and not
~

R r~.—Because the time-averaged value
of r is much less Rz or D we can think of this simplifica-
tion, which is justified when the bound electron s orbital
motion is on a time scale « I/co„as equivalent to per-
forming a short time average. )

To calculate the transition amplitudes of Eqs. (1) and
(2) in the semiclassical approximation, one must deter-
mine the time dependence of R by solving Newton's equa-
tion of motion. The ion-ion interaction potentials used to
calculate the classical trajectory for the two static plasma
models are derived and discussed in Appendix A. The re-
sults are given in Eqs. (6) and (7),

(Z~ 1)Z I

R 2R„
1—

0, R & R„(ion-sphere);

R &R„

(6)

(Zg —l)Z
V„(R)= 1 — e (Debye-Huckel) .

R - 2D

(7)

In Eq. (6), R„=[3(Z +Z~ —I)/4rrN, ] '~ is the ion-
sphere radius in the united-ion limit, R ~0. Note that, in
both cases, the influence of the bound electron on the tra-
jectory is approximated by using the net charge, Z~ —I of
the hydrogenic target.

In summary, the cross sections are calculated from Eq.
(3) by numerically solving the coupled equations for the
transition amplitudes for a projectile of net charge Z
[Eqs. (1) and (2)]. It should be emphasized that the cou-
pled equations must be solved because in the present ap-
plication the coupling between states is so strong that the
transition amplitudes computed in first-order perturbation
theory seriously violate unitarity. The electronic interac-
tion potential [either Eq. (4) or (5)] depends not only on
the electronic coordinates but also on the internuclear

separation, which is determined by solving Newton s
equation of motion using the nuclear-nuclear interaction
potential of Eq. (6) or (7).

Several comments about these model potentials are ap-
propriate. First, in contrast to the electron scattering
problem, an unscreened bound electron interacts with a
screened projectile ion (via V, above); also, the target and
projectile are screened, leading to the ion-ion interaction
V„. Second, i.n order that the calculated cross sections are

to be of any significance, the binary collision picture must
be valid, that is, strong collisions must be well separated
in time. If R -(o/m)' is taken to give a measure of
the size of the strong-interaction region, the binary-
collision approximation restricts the ionic number density
Nz (-N, /Z) according to (4~/3)R Nz&1. For the
ion-sphere model, R &Rz so that this restriction is al-
ways satisfied. However, the ion-sphere model represents
only the strong-screening limit, and, in most plasma re-
gimes now accessible in laboratory experiments, the
Debye-Hiickel model accurately represents static Coulomb
screening at large internuclear separations, R ~Rz. '
Under conditions such that the Debye-Huckel model is
valid for all R, the binary collision restriction may not be
satisfied. Thus, it seems worthwhile to determine the
qualitative differences between the ion-ion inelastic cross
sections computed with the short-range, ion-sphere in-
teraction and those computed with the longer-range,
Debye-Huckel interaction. Furthermore, cross sections
for the Debye-shielded ions will be needed eventually to
determine when the static screening and binary collision
approximations actually do break down. When this
occurs it will be necessary to replace the usual binary
transition rates Nz(O. UO) by rates due to the fluctuating
microfield of all the plasma ions (cf. Refs. 16 and 17). Fi-
nally, we point out that at very high, yet experimentally
accessible densities the plasma frequency can exceed
b,E/A for some fine-structure transitions; roughly this
occurs when N, &10' Z /n cm . In such instances,
the interaction V, is further reduced and the influence of
plasma screening is even greater than that which we com-
pute. We do not consider this effect here.

C. The collision algebra

Calculation of the cross sections requires a fair amount
of algebra which has been worked out in various forms by
several authors (cf. Refs. 18 and 19). We include it for
completeness and also because the required radial in-
tegrals are calculated more generally here than in other
treatments.

The target fine-structure states are uniquely determined
in an I S coupling scheme by specifying the total angular
momentum J, the orbital angular momentum I, the total
spin S, and Mz, the (laboratory fixed) z projection of J.
These states are constructed in the usual way from
atomic basis states,

l 5 l
~
I,S,J,M )=J(—1) ~ g g (2J+ 1)'~2

MI = —I Ms= —S 1

S J
~
IM(SMs) .
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(For hydrogenic target ions S = —,', but for generality we carry S in the notation and substitute the value —,
'

only at the
end. ) Since these states depend only on the electronic coordinates, the matrix elements of Eqs. (1) and (2), for either of
the electronic potentials [Eqs. {4) and (5)], are simply proportional to (p ) [1/(

~

R—r
~
)]

~ y) (here, p= II,S,JMqj).
This, of course, would not be true if the screening factors of Eqs. (4) and (5) also depended on r; then, the matrix ele-
ments would be much more complicated and would differ in the two scaling models by more than a multiplicative term.
Since no new basic features are expected to result from this additional complication, it is simply ignored, and the
{screened) potentials of Eqs. (4) and (5) are used.

The matrix elements W'~r =(p
) [1/(

~

R—r
~
)] ( y) are derived in detail in Appendix B, and the results are given

below,

S J l' S J'

M = —S l S J l S JS

l 1, l' l A, l'
&g„(&',P')

( 0 0,yg(nl, n'l'),—Ml P iV,
'

where A, +l+l' is even, Ml ——MJ Ms Ml —MJ Ms,
p =MJ —MJ, and I,)p. The normalization constant
A (P,y) is given by

x [4~(2J+ 1)(2J'+ 1)(2I + 1)(2l'+ I ) ]'~2 .

(10)

Using the notation of Ref. 19, y~(nl, n'l') in Eq. (9) is the
radial integral

coupled equations [Eq. (1)], with the coupling given by
Eqs. (4) or (5) and (9)—(11), involves these eight states.
The system possesses a large degree of symmetry, howev-
er, which greatly simplifies the calculation, and is thus
worth noting. The matrix elements exhibit two basic
types of symmetry [easily verified by inspection of Eqs.
(9)—(11)],

oo I" (
yz(nl, n'1') = r z, A„I(r)%„I (r)dr,

0 A+1

where r & ( r & ) is the smaller (larger) of r and R, and A„~
is the radial portion of the hydrogenic wave function for a
given n and I. These radial integrals are worked out for
any n =n' and arbitrary l and l' in Appendix C. It is
noted, however, that, following Seaton, many authors
have used the large-R limiting form of these integrals, '

which gives an incorrect high energy dependence of the
cross sections. Since the exact form is only slightly more
complicated it is used for the present calculations.

Finally, the spherical harmonic Y~& of Eq. (9) depends
on 8', the scattering angle with respect to the +z axis (cf.
Fig. 1) and the azimuthal scattering angle P'. Because the
nuclear-nuclear interaction potentials of Eqs. (6) and (7)
are both spherically symmetric, P' remains constant in
time; 0', on the other hand, is time dependent and is deter-
mined by solving Newton's equation of motion.

We now restrict attention to the n=2 manifold of
fine-structure states and consider the scope of the cross-
section calculations. The first simplification is to truncate
the sum of Eq. (1) to include only the states of the
relevant manifold. In this case there are eight states,
which are denoted by 2 S)/p +]/2, 2 P)/2 +]/2,
2 I'3/2 +3/2 and 2 P3/2 +]/2 using the notation
n +'I.JM . The truncation is justifiable because the
splittings of the fine-structure levels are very small com-
pared to the b,n &0 splitting. (The maximum fine-
structure splitting for Ar' + is about 0.2 a.u. , whereas the
separation between the n=2 and 3 manifolds is about 20
a.u. ) Thus for each initial state

~

a), the restricted set of

W(P= J, l, Mg, y =J', l', Mg)

1+1'+I+J'+MJ MJ+1—

x W(p=J, I, —MJ, y=J', l', —Mg) . (13)

As a direct consequence of Eqs. (12) and (13), many of the
matrix elements (64 possible for n=2) are either identical
(to within a minus sign) or zero. For example, if
P=IJ,I,M&j andy= IJ, l, Mzj then 8'p—z

——0.
Further symmetry results from the law of reciprocity,

which states that

P (J,1,MJ~J', I',Mg) =P (J,l, Mg+—J', l', M—J), —(14)

J J'
~Jt = g g P(J, l,MJ~J', l', MJ) .

MJ ———JM& J~J

It is straightforward to show that (for S = —, )

(16)

where P(p+ u)=
~ b~ (t~— op)

~

is the probability of
transition from

~

u ) to
~
p ) . Thus, the number of initial

states which need to be considered is reduced from eight
to four.

A final simplification occurs when one requires only
cross sections cr(lJ~l'J'), that are averaged over initial,
and summed over final MJ values. To see this consider
such a cross section,

o(J,l~J', I')=, f dP' f dppHg't, (15)(2J'+ 1) 0 0

where
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J J'
HJ'1 ——2 g g [P(J,I, —MJ~J', I',MJ)

3fJ 1 /2 ~I

TABLE I. Unperturbed fine-structure splittings
[E(2 P~q2) =0] {from Ref. 12), Numbers in square brackets are
powers of ten by which the values are to be multiplied.

+P(J,I,Mg+ J',—I',Mg)] . (17) Z& Final state Energy (cm ') Energy (a.u. )

Therefore, to obtain all possible cross sections for transi-
tions within the n=2 manifold, without regard to initial
or final MJ, probabilities for only two initial states need
to be calculated (e.g., a=IJ'= —,', I'=0, Mq ———,

'
I and

a= I
J'= —,', I'=1, Mz ———,

' I). Note that Eq. (17) leads to
the principle of detailed balance, which guarantees that

(2J'+ l)(k') o(J, I+—J', I')=(2J+1)k o(J', I'+ J,I)—. (18)

10

18

26

2 S]/p
2 P3/2
2 Si/z
2 P3/2
2 S]/2
2 P3/2
2 S)/2
2 P3/2

0.4685
5.857
1.631[2]
3.673[3]
1.301[3]
3.884[4]
4.720[3]
1.711[5]

2.134[—6]
2.669[—5]
7.430[—4]
1.673[—2]
5.928[—3]
0.1770
2.151[—2]
0.7795

(Here initial and final center-of-mass energies are taken to
be identical. )

Though the above considerations lead to a greatly re-
stricted number of initial states which need to be con-
sidered, there still are twenty-two coupled first-order
equations which need to be integrated to obtain cross sec-
tions among the n=2 states. Sixteen pertain to the real
and imaginary parts of the amplitudes of transition into
the eight final states, two result from the second-order

~ e

equation for R, and one from the first-order equation for
the scattering angle O'. The three remaimng equations
arise from Eq. (2), where the energies of the unperturbed
target states depend only on J and l and the distortion
terms V~~ depend only on J, I, and

~
Mq ~, as can be seen

from inspection of Eq. (13): hence, there are only three
unique (dynamic) splittings.

Calculation of the cross sections o(J,I~J', I') requires
the solution of the coupled equations over a range of im-
pact parameters for a given model potential with the two
initial conditions, a= I —,,0, —, I and a= t —, , 1,—, I. For a
given (constant) azimuthal scattering angle P' the target
basis states contain the overall phase e'~ J. Thus, no loss
in generality results from the simple choice of P'=0. Be-
cause the transition probabilities have azimuthal syrnme-
try, and only depend on the magnitude of the impact pa-
rameter, the cross section for a specific (J,I,MJ
+—J', I',MJ) transition is obtained from a single integra-
tion with respect to p. The n=2 manifold contains three
unique cross sections (without regard to initial or final
MJ ), corresponding to the transitions 2 St &z~2 P»z,
2 5 $ /2~2 I 3/2 and 2 P. ~ /2~2 P3/2 ~ The calculations
have been performed on a variety of host computers. On
a VAX 8600 typically 70—120 CPU minutes were re-
quired to calculate the three Debye-Hiickel cross sections
for a given energy, screening length, and target ion. The
analogous calculation of ion-sphere cross sections took
about 30—40 CPU minutes. On a CRAY XMP the same
calculations took about 6—8 CPU minutes and 3—4 CPU
minutes, respectively.

No
D

O
2.l-

(3
LaJ
M

g) l.4-M

C)

t&2

3&2

3&2

LLJ

0.7
LLI
X'.
CL
CA

I

0o

I(.
LI I

80

4

I
p~ ~~ ~»~

320 400240
RELATlVE COLLISION ENERGY (o.u. )

H++Ar' +(J',I')~H++Ar' +(J,l) for a variety of plas-
ma conditions, as represented by the parameters of the
ion-sphere and Debye-Huckel model potentials. (Other
examples are discussed in Sec. IV.) A detailed compar-
ison of these cross sections is useful in understanding the
effect of the plasma on these atomic processes.

Table I contains the unperturbed level splittings in
atomic units for all systems considered here. Figure 2

compares the three unique cross sections relevant to the
n=2 fine-structure levels in the ion-sphere model with
Rz = 10ap, corresponding to R„=26.2a p,

' here, and in
what follows, Rz is the incident proton s screening radius.
Table II contains the numerical data corresponding to
Fig. 2 and is included to allow convenient numerical com-
parison. The overall features of this figure are typical of
the fine-structure cross sections, independent of plasma
effects; all three cross sections rapidly approach zero at
low energy because the ion-ion repulsion prevents signifi-
cant interaction. At high energies the cross sections ap-
proach zero (crcc 1/E) because the collision time is too
short to allow efficient transfer of energy. Three other

III. A SPECIFIC EXAMPLE: PROTON
EXCITATION OF THE n =2 FINE-STRUCTURE

OF HYDROGENLIKE ARGON

Figures 2, 3, and 5 summarize the results of the cross-
section calculations for the specific example of

FIG. 2. Cross sections for the n=2 fine-structure transitions
in hydrogenic argon due to proton collisions, for an ion-sphere
plasma model of radius Rz ——10ao. The quadrupole cross sec-
tion is smaller than both dipole cross sections. The EJ=O di-

pole cross section, which has the smallest excitation energy
peaks at lower energies than the AX= 1 cross section.
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TABLE II. Ion-sphere cross sections for H++Ar' + collisions (Rz ——10ao). Numbers in square
brackets are powers of ten by-which the values are to be multiplied.

Energy
(a.u. )

1

2
4
6
8

10
12
15
17
20
25
30
40
60
80

100
120
140
160
180
200
250
300
400
800

2 S)/2 —+2 P]/2

7.566[—5]
9.249[ —2]
0.9843
1.911
2.470
2.731
2.795
2.678
2.536
2.306
1.983
1.756
1.468
1.150
0.9674
0.8424
0.7507
0.6792
0.6215
0.5736
0.5331
0.4556
0.3982
0.3190
0.1783

Cross sections (ao)
2 S~/2~2 P3/2

5.024[ —09]
1.503[ —08]
8.043[ —08]
1.531[—05]
1.110[—03]
1.083[—02]
4.122[ —02]
0.1316
0.2132
0.3506
0.8645
0.7960
1.081
1.324
1.351
1.311
1.248
1.180
1.115
1.053
0.9958
0.8765
0.7781
0.6328
0.3578

2 P)/2~2 P3/2

6.671[—10]
8.976[—09]
1.715[—09]
3.532[—06]
3.527[ —04]
4.296[ —03]
1.926[ —02]
7.050[ —02]
0.1178
0.1897
0.2777
0.3234
0.3544
0.3361
0.2970
0.2624
0.2348
0.2122
0.1927
0.1753
0.1597
0.1275
0.1038
7.313[—02]
3.034[—02]

features of these ion-ion excitation cross sections are
worth noting. First, the peak of the 2 S&&2~2 P&~2
cross section is greater than that for 2 S&&2~2 P3/p and
occurs at a lower energy. This is because b,E for the
former transition is much smaller than that for the latter
(0.0059 a.u. versus 0.18 a.u.).' Second, at large energies
where the cross sections are not as sensitive to the AE
splitting, the ratio of the cross sections for the b J= 1 to 0
dipole transitions becomes statistical, i.e., (2X —, +1)/
(2X —, +1)=2. Finally, because the 1/R quadrupole
coupling between P states is of shorter range than the
1/R dipole coupling between S and P states, the quadru-
pole transition has the smallest cross section.

The above observations are characteristic of ion-impact
excitations in general, and are not necessarily indicative of
the plasma environment. Figures 3(a)—3(c), therefore, are
included to compare individual cross sections for different
screening lengths (Rz ~X, '

) as functions of the
center-of-mass energy. The chosen plasma parameters
were suggested by the work of Whitten, Lane, and
Weisheit, and are described in Table III. There are two
major features of these results which we now discuss in
turn. The first is how significantly the plasma can modi-
fy the collision process. In going from Rz ——10 to 5 (cor-
responding to an increase in X, by a factor of eight) the
cross section can change by as much as a factor of three.
Indeed, the additional data points ( X ) in these figures are
the unscreened results of Walling and Weisheit, each di-
vided by a different constant factor to fit on the same

scale. Thus, for all three transitions it is clear that plasma
screening has a substantial effect. The second important
feature in Fig. 3 concerns the relative positions of the
cross-section maxima, Ep~(Rz), considered as functions
of screening length. For the 2 S»2~2 I'&/2 transition it
is observed that the maximum occurs at slightly lower en-
ergies as the screening length Rz is increased. For the
other two transitions, the trend is reversed.

A qualitative, classical explanation of these trends can
be obtained by assuming, for simplicity, that each transi-
tion occurs at some specific internuclear separation, say
R, . As the screening length Rz increases, so does the
strength of the ion-ion repulsion and, consequently, this
classical transition separation R, also increases; likewise,
R, decreases when Rz decreases. Next we recall that the
smaller the energy of transition, the lower the collision en-
ergy at which cross-section peak occurs. Therefore, if the
"dynamical energy" splitting (i.e., the difference between
fine-structure states including diagonal potential matrix
elements),

KEp (R, ) =E'p' E' '+ Wpp(R, ) —W(R, ), (19)—

decreases with increasing R, (and, hence, increasing Rz),
the position E~ of the peak also decreases; conversely, if
bEp (Rz) increases with increasing R„Ep will increase
with increasing Rz.

The dynamical energies of interaction (i.e., fine-
structure energy plus diagonal potential matrix element)
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Z(Z„—1) 1 Z. 1 ——
Rz 2 Z+Z

1/3

The reason this trend is not observed for an ion-sphere
interaction is slightly obscure, and perhaps artificial. For
a given internuclear separation in the Debye-Huckel case
the nuclear-nuclear repulsion is of the same order of mag-
nitude as the electronic interaction, because both interac-
tions are reduced essentially by the factor e / For our
ion-sphere model, however, the electronic potential is cut
off at R =Rz, whereas the nuclear potential is cut off at
R =R„=[(Z+Z~—1)/Z]' Rz, which can be signifi-
cantly greater than Rz. (In the case of H++Ar' +,
R„=2.62Rz. ) As a result, there exists a minimum ener-

gy, below which the ion-sphere radius Rz of the incident
ion does not overlap with the bound electron, even though
the two ions experience a repulsion. This minimum ener-

gy is given by the relation

OJ
O

O

O

4J
C/)

76 x lo

5.07 x lo

2.53 x10

, I

l

0
20

16

12

0.04
I

I

0.12
I

0.16

(a)

0.20

2/3

Z+Zg —1

(20)

which increases with decreasing Rz. Its value is 0.774
a.u. for the H++Ar' + system with Rz=10ao. The tra-
jectory effect, which in the Debye-Huckel model, at small
energies, ultimately leads to greater cross sections with
greater screening, is therefore missing in the ion-sphere
model. To confirm that this explanation is correct, we
calculated cross sections for the ion-sphere model poten-
tial with R„set arbitrarily equal to Rz. The cross sec-
tions behave qualitatively like the Debye-Huckel cross
sections at all energies. [In fact, when Rz-D/2, the
S~P cross sections are nearly equal (cf. Ref. 9).]
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FIG. 8. The ion-sphere cross sections for the H++He+
H+ Ne'++ e, and H +Fe + systems. For the He+ target, at25+

the energy where the 2 S&/& —+2 P&,/& transition would exhibit, a
strong peak in the unscreened cross section, the cross section is
clearly suppressed. The nuclear repulsion prevents the bound
electron from penetrating very deeply into the proton's ion
sphere.

(cf. Fig. 2), whereas the helium results —especially for the
2 22 S1/2~2 P1/2 transition —are very different. The qual-

f 1

itative difference of the helium system is understooder oo as
o lows. As was mentioned in Sec. III the cross-section

maximum occurs at a center-of-mass energy Ep that is
roughly proportional to the energy splittings between th e
evels; in the present case the relevant splittings are the

Z4
fine-structure level separations, which scale roughly sy as

The minimum energy required for any significant
contribution to the cross section, however, scales approxi-
mately as E;„ccZ~ [cf. Eq. (20)]. For the Ar'7+ system,
Em;„&&Ep~. But, as Zz decreases the energy at which
the maximum occurs can become comparable to E . .
Wh

min'

hen this happens, the peak value of the screened cross
section will be greatly reduced. Since the 2 S —+2 P1/2 ~ 1/2

In Sec. III we discussed, in detail, proton-impact cross
sections for transitions between the n=2 fine-structure
levels of hydrogenlike argon. In this section we present
the cross sections for the analogous transitions in He+,
Ne9+ and Fe25+d Fe ions. We then explore possible scaling
relations with respect to the target's nuclear charge Zz.
Our conclusion is that while there is no obvious analytical
scaling for either plasma-model potential, comparisons of
numerical results for several target systems suggest
reasonable empirical scaling relations that may be useful
in applications.

Figures 8(a)—8(c) illustrate the ion-sphere, proton-
impact cross sections for hydrogenlike helium, neon, and
iron targets. For each target ion the plasma density has
been adjusted so that Rz ~ (Z —1) ' withbe n z z —,wi
Rz(Ar ) =10ao. This choice is made because the elec-
tronic potential depends on 1/I R—r

I
and the ratio

R/R . Th f/ z. Thus for any convenient scaling relation it is im-
portant that R and Rz have the same Zz dependerice as
r nao/Zq. -[Note that the ion-sphere radii are scaled
by (Z„—1) rather than Zz because the nuclear potential,
and hence the trajectories, depend on (Zz —1); except for
helium, there is little difference between the two ]The.
neon and iron cross sections are similar to those of argon
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ICOS
t

ifnbp ——Vp e (22)

where co@„=6~~——(Ep E~)/fi. By changing —variables to
~=cop t, the probability amplitude becomes just

bp —— J Vp~e
"d~ .

fop
(23)

For a rectilinear trajectory, the internuclear coordinate is
given by

splitting is the smallest of the levels considered here,
the energy at which the corresponding cross-section
maximum occurs is also smallest; therefore, the
2 S{~2~2 P~&q cross section will be affected the most.
In the case of He+, the cross section is so much reduced
that at all energies it becomes comparable to that of the
quadrupole transition. Since all three cross sections fall
off as 1/E beyond their respective peaks, the reduced
value of the peak cross section for the 6J=O dipole tran-
sition, relative to the others, yields the observed trend.

The neon and iron systems, on the other hand, yield
cross sections qualitatively similar to the argon results be-
cause in all three cases E;„is much less than the peak
energies. This similarity suggests that the cross sections
may exhibit an approximate Zz scaling.

At first glance, scaling in the ion-sphere collision prob-
lem seems untractable because the relevant lengths do not
scale similarly. The electronic potentials [Eq. (4)] depend
on R, r, and Rz. Of course, r varies as Z~ '. However,
Rz depends on Z, not Zz, and varies as Z' . For com-
parison purposes, though, the plasma density can be ad-
justed (as we have done for Fig. 8) so that
(Z~ —1)Rz ——const. The nuclear potential, however, de-
pends on R (which. scales as Zz ' [in the electronic prob-
lem and (Z„—1) ' in Newton's equation]) and on the ra-
tio R/R„. Since R„=[{z+Z~ ~)/Z]' Rz, which with
the above scaling for Rz scales as [(Z+Zz ~)z]' Zq ',
the scaling of V„ is unlike that of V, . Thus, we might in-
itially expect cross sections for different targets to be
qualitatively different. This is, in fact, what we have al-

ready seen in the case of the He+ target Uis a Vis the--
Ar' + target. The similarity of the neon and iron cross
sections, however, reflects the fact that, for most energies
under consideration, the trajectories are not strongly af-
fected by the nuclear repulsion, and so there is only one
important screening length, viz. , Rz. It is for this rc;ason
that the ion-sphere and Debye-Hiickel results look so
similar; there is only essentially one screening length im-
portant to either problem, Rz or D, respectively. In both
plasma models, therefore, all lengths scale approximately
as Zz ', and thus it was hoped that the cross sections in
both models might also scale simply. Unfortunately, the
first-order differential equations do not lend themse1ves to
any obvious scaling. To demonstrate this point, it is use-
ful to consider the amplitudes of transition resulting from
Eq. (1) in the limit when first-order perturbation theory is
valid. In this case Eq. (1) becomes

imp ——Vp e (21)

Ignoring the distortion terms, the phase in Eq. (2) has a
particularly simple form, and Eq. (21) becomes

UD'7
(24)R =[(u0t) +p ] =

(25)

where B0 is some constant, and q is a power to be deter-
mined. By comparing calculated values of B(Z~ ) for the
three values of Zz, we find that q =2+0.05, where the
uncertainty arises because B(zz) is only approximately
independent of E (Zz ) at large, yet finite energies.
Though obviously not a proof, this result suggests that the
general scaling determined from perturbation theory is
applicable at high energies, namely, Z~ R =const,
(ZA/~p. )2E=const and mp. ~= cot nsTo comp.letely
specify an empirical scaling we next attempted to deter-
mine the "effective" Z~ dependence of cob, by assuming
the form

cop /Z~~——const . (26)

To find the "best" value, we varied P until —for the dif-

+p
0)p~

Since Vp ~ & & I ( I/
I
R—r

I
) I

a }, the ratio Vp. /Z, is
nearly independent of Zz provided Z&Rz, Z~p, and
Zz U0/co~ are independent of Zz. Thus, if the distortion
terms are negligible, we have the scaling Z~R=const,
(Zz/co~~) E=const, and [cf. Eq. (3)] co~cr =const. Now,
for b,n &0 transitions, cop~ cc Z~ and the familiar' scaling
( Zz cr =const) results. In the present case, however,
cop ~ Zz and we have, instead, E/Zz ——const and
Z~o =const. We have found, however, that these scal-
ings are not borne out in the calculations. For an Ar' +

target the peak energy Ep of the 2 S~~2~2 P3/p cross
section [cf. Fig. 5(b)] occurs at a relative collision energy
of —80 a.u. The above scaling predicts that the peak of
the cross section for a Ne + target should occur at a rela-
tive energy of —80(+, ) —2.4 a.u. The calculated
H++Ne + results are shown in Fig. 8(b) where the peak
is seen to occur instead of —10 a.u. Moreover, for ener-
gies as large as 400- a.u. , the cross sections for the
H++Ar' + system are all nearly proportional to 1/E.
The corresponding energy predicted in the H++Ne +
system is 400{—,", ) —12 a.u., which is too small; for the
H++Fe + system [Fig. 8(c)] the corresponding energy is
predicted to be 400( —'„) -3600 a.u. , which is too large.
The reason for the discrepancy is that the assumed Z~
dependence of the phase in the above analysis is too
strong; the distortion terms cannot be ignored. On the
other hand, if the fine-structure splittings are completely
neglected and only the distortion terms are retained, a
similar analysis yields the approximate scaling
Z~R =const, E=const, cop~/Zz ——const, and
Zzo. =const. This behavior also is not borne out in the
calculations, in this case, because the Zz dependence of
the phase is too weak. The actual Zz dependence of the
phase varies in time and is not simply proportional to a
particular power of Zz, but evidently stays between the
linear and quartic relations.

In an attempt to extract an optimum empirical scaling,
we begin by restating that the cross sections all fall off as
1/E for large energies. First, we choose to explicitly in-
clude the Z~ dependence, and we have
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TABLE IV. Cross-section scaling parameters p, obtained from minimization using different energy moments p

1

2

6
8
1

2
4
6
8

1.764
1.878
1.924
1.932
1.934
1.779
1.758
1.709
1.684
1.669

2 S)/2~2 P)/2
(Target ions used in fit)

(A 17+ Fe25+)

(Ne +,Ar' +,Fe +)

1

2
4
6
8
1

4
6
8

2.158
2.146
1.978
1.964
1.960
2.105
2.059
2.062
2.082
2.096

2 Sl/2~2 P3/2
(Target ions used in fit)

(Ar"+ Fe"+)

(Ne +,Ar' +,Fe +)

1

2

6
8
1

2
4t

8

1.942
2.020
2.120
2.032
2.006
4.1785
4.501

2 Pj/2~2 P3/2
(Target ions used in fit)

(Ar»+, Fe»+)

(Ne +,Ar' +,Fe '+)

no minimum found
for these moments

ferent choices of Zz —the scaled cross sections as func-
tions of the scaled energies were, in some way, closest.
The method used was to minimize

5= [p (max) —p (min) ]/[p, (max) +p (min)] (27)

with respect to p, where p is the mth energy moment of
the cross section,

Ef(Z~ )

(Z )=Z '~ " ') o(Z„)E (Zg)dE(Z„) .pm A=A
0

(28)

The designation max (min) means the specific value of Zq
which yields the largest (smallest) value of the mth mo-
ment. In Table IV we give the results of the minimization
procedure for all three transitions and for various mo-
ments m.

Figure 9 shows the scaled cross sections versus the
scaled energies for specific choices of p, for the particular
case of a Debye-Huckel plasma. Similar scaling results
from an ion-sphere plasma, but in either case the scaling
is clearly only approximate. It is the absence of a simple
scaling of A~~ [cf. Eq. (2)], plus the additional complica-
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FIT&. 9. Scaled Debye-Hiickel cross sections vs scaled energy. The product of o.(Z)E( )o. Z E(Z) scales as 1/Z . (The ion-sphere cross sec-
tions scale similarly. ) Though these scalings are only approximate, a wide range of systems can be represented.
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tion of all states being coupled, each with a different,
time-dependent phase, that prevents the cross sections
from exhibiting a precise scaling with respect to Zz.

V. SUMMARY

The present work represents, to our knowledge, the first
study of dense-plasma effects on ion-impact excitation
cross sections. The plasma environment has been includ-
ed within the framework of two static screening models.
The static approximation is valid as long as the plasma
frequency co, is much greater than the reciprocal of the
collision duration. We have examined fine-structure tran-
sitions, which correspond to small hE, and have found
the effects of the plasma environment, as characterized by
plasma screening lengths representative of dense, high-
temperature fusion plasmas, to be very large. The cross
sections are sensitive to the screening length, the AE of
the transition, and the collision energy. At most collision
energies, the net effect of plasma screening is an overall
reduction of the cross sections, the stronger screening
causing the greater reduction. Quadrupole transitions,
which result from a shorter-ranged interaction than the
d.ipole interaction are not as sensitive to these screening
effects. This conclusion is further supported by compar-
ison of the cross sections calculated within the two plasma
models; the quadrupole results are quite similar, whereas
the dipole results are significantly different.

Finally, it has been demonstrated that, even though
there is no obvious analytical scaling apparent in the cou-
pled equations, approximate empirical scaling relations do
exist which can be used to represent a wide range of sys- .

tems and plasma environments.

ACKNO%"LEDGMENTS

One of the authors (K.F.S.) would like to express appre-
ciation to the Lawrence Livermore National Laboratory
(LLNL) for generous use of the laboratory facilities. Both
K.F.S. and N.F.L. acknowledge the Joint Institute for
Laboratory Astrophysics, where much of the research was
performed. N.F.L. acknowledges the University of
Colorado at Colorado Springs, where he was in residence
while much of this research was performed. K.F.S. and
N.F.L. are supported by U.S. Department of Energy (Of-
fice of Basic Energy Sciences) research contract to Rice
University. J.C.W.'s work was performed under the
auspices of the U.S. Department of Energy, and supported
by Contract No. W-7405-Eng-48 to LLNL.

APPENDIX A: THE ELECTROSTATIC
INTERACTION OF SCREENED IONS

The mean potential energy of two ions and their atten-
dant clouds of screening electrons is the interaction that
regulates the ion-ion collision trajectory. This energy,

V„(R)= —kT ln[g„(R)], is related to the ion-ion pair dis-
tribution g„(R), which measures the departure of the ion-
ic density from its mean value. (See Ref. 24 for a
thorough discussion of these concepts. ) In this section we
obtain simple, approximate expressions for V„(R) for two
limiting cases: (1) the ion-sphere model, for plasmas in
which Coulomb interactions strongly affect ion distribu-
tions; (2) the Debye-Hiickel model, for plasmas in which
Coulomb interactions only weakly affect ion distributions.

Ion-sphere model. The electrostatic self-energy of elec-
trons in an ion sphere of radius R I surrounding a nucleus
ZI 1s

2 2
3 ].

V =+— (Al)

and the electrostatic energy of interaction between these
electrons and the nucleus is

2 2ZleV„=—— (A2)

where —', mR IN, =Z~. Thus, the total electrostatic energy
due to plasma screening is

Z2 2

10 R,
(A3)

&& [(Z, +Z, )'"—Z', "—Z,'"] .

Next, let ZI be displaced a small distance rI &&R„
from the center of this united-nucleus sphere, and let Z2
be displaced a small distance r2 in the opposite direction,
so that R =r&+r2 is the internuclear separation. We as-
sume that, as long as the two nuclei are close, the screen-
ing electrons form a spherical cloud whose center is posi-
tioned such that V(R) is minimized. This gives the result

ZIZ2ev(««„)= v(o)+ . (A6)
2R„ R„

Addition of the Coulomb-repulsion term yields the total.
interaction energy of two nearly concentric ion spheres,

Consider first two nuclei, Z~ and Zq, with separation
R=O. The total electrostatic energy due to screening in
this case is simply

9 (Z+z)ey(12) (A4)
10 R„

where —", ~R„K,=ZI+Z2. Therefore, the net energy of
interaction due to plasma screening is

V(R =O) = V'"' —V"'—V"'
1/3

9 4m%,

10 3

Z)Z2e
V„(R &&R„)=

R
1 R
2 R„

3 R
2 R„

3 (Z(+Z ) —(Z(+Z2)' (Z( +Zq )

5 Z1Z2
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Note that, except for the departure from unity of the
rightmost term within large parentheses, this is just the
interaction of one bare nucleus with an ion sphere of ra-
dius R„centered on the other nucleus; in fact, when

Z&/Z2 is much larger or smaller than 1, the above factor
in the rightmost large parentheses approaches l.

Lastly, consider two ion spheres that barely overlap,
viz. , e= 1 —R /(R |+R2) « 1. In a first approximation,
each screening cloud retains its own identity; thus the en-

ergy of interaction is just the overlapping volume integral
of the (positive) potential of one ion sphere times the (neg-
ative) charge density of the other, and is therefore nega-
tive. This attraction, which is akin to the van der Waals
interaction between two neutral atoms, is calculated to be
very weak ( -e ),

ZiZ2e 3(Ri+R2 —R)
V„(R &R i+Re) =-

(Ri+.Rq) 16R fR2

(A8)

1.0

0.6—

0.4—

0.2—

I

0.2 0.4
R/R„

t

0.6 0.8 1.0

When R is neither very small nor very large
(-Ri+R2), we expect the composite screening cloud to
be peanut shaped, as one characteristically has for a di-
atomic molecule. However, instead of solving a
complicated —and somewhat artificial —electrostatics
problem for the "true" interaction at arbitrary internu-
clear distances, we prefer to use some simple interpolation
between the small- and large-R formulas, Eqs. (A7) and
(AS). After several expressions were tried, we settled on
the formula given as Eq. (6) of the main text. It is nearly
correct at small R values, regardless of the value of
Z&/Z2, and, although it fails to provide for any weak at-
traction at large R values, its truncation at
R =R„(R& +R2 prevents too early an onset of the
Coulomb repulsion between the two nuclei. Such a sharp
cutoff in V„(R) does indeed occur in the high-density and
low-temperature (but nondegenerate) plasma regime, and
is manifest in the ion-ion distributions g„(R) computed,
for example, by Dharma-%'ardana and Perrot using
firiite-temperature density-functional theory, and by Tana-
ka and Ichimaru using the hypernetted-chain scheme.
There are no simple formulas or prescriptions that repro-
duce these cited results, but it is well known that —for
plasma conditions of .interest here —the V„(R) values
from both of these theoretical approaches are mell approx-
imated (except for R =0) by Monte Carlo simulations, for
which accurate fitting formulas do exist (see, e.g., Itoh
et al. , Ref. 28). As Fig. 10 shows, our simple expression,
Eq. (6), agrees very well with the fits to Monte Carlo data.
In the vicinity of R=O, where Monte Carlo data do not
exist, the extent of screening indicated by our model, Eq.
(6), is about midway between that predicted by the
united-atom formula, Eq. (A7), and that predicted by the
extrapolation of the (linear) fit to Monte Carlo data.

Debye-Hii eke/ mode/. This calculation proceeds analo-
gously, The electrostatic self-energy of electrons in a plas-
ma having Debye radius D, due to polarization by a nu-
cleus Z&, is

FICx. 10. The multiplicative factor S„=RV„/Ziz2e for
screening in the ion-sphere model. The curve represents Eq. (6),
while the filled rectangles represent fits to Monte Carlo (MC)
data (Ref. 28), or—in the case of the inrier two points—
extrapolation of these fits to smaller values of R/R„. The
heights of the rectangles correspond to the variation of S„(MC)
over the range of values of Zi/Z2 encountered in the present
cross-section calculations (cf. Table III).

and the electrostatic interaction energy between this nu-
cleus and all the plasma electrons is

Z e
(&)V„=— (A10)

Thus

Z2 2

4 D
(A 1 1)

@(r)=@,(r)+C„(r)

Zie ~ Z2e iR —ri
r D /R —ri D

(A12)

where @„ is the unscreened nuclear contribution, it is
straightforward to show that the electron charge density
at ris

is the total electrostatic energy due to the screening of
that one nucleus. (We assume that the other plasma ions
are immobile, and form a charge-neutralizing background;
hence, D contains contributions from electrons only. )

Next, consider two nuclei Zi and Z2, separated by a
distance R, to be immersed in the plasma. Since the total
electrostatic potential at a distance r from Z& is

Z Iey(1)
4 D

(A9)
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Z)e p

q, (r) = — exp4~a'r

Zae iR—ri
exp

4m.D
/
R—r

i
D

(A13)

APPENDIX 8: MATRIX ELEMENTS
AND SYMMETRIES

1. Matrix elements

Consider the matrix element of 1/
i
R—r i,

ZiZ28 R R1— expR 2D D
3e (zf+z2) .

(A14)

When the energies V"' and V' ' of the individual Debye-
shielded nuclei are subtracted, one is left with the total in-
teraction energy

%'ith these expressions in hand, one can determine the to-
tal electrostatic energy of the two nuclei in the plasma,

V" '= + I d rq, (r)[ ,'4, (r—)+@z(r)]
R

Substitution of the spherical harmonic expansion of
1/

~

R—r
~

into (81) yields

oo

Ygp(&', y')&y
i Y,p i y~ &y, (n/, n'I'),

A. =01M =—A,

(82)

where

&&a I Y~p I
4'n & = f d&NJlMJ(~ 0)fg I M'(II, P) Ykp(~ Q),

v„(R)= v'"' —v'" —v'-'

1—Zj Z2e

R 2D
exp D

(A15)
and

oo
2

I' (
yg(n/, n'I') = r ~, A„i(r)W„p(r)dr .

0 A+1

(83)

(84)
which is presented in Eq. (7) in the main body of the pa-
per. Again, we see that the interaction is weakly attrac-
tive at large values of R.

The A„I are hydrogenic radial wave functions and the
are coupled spin plus angular functions, that is,

1 S 12 l S J
i&~&= i

ISJMg&=( —1)s ™g g (2J+1)' '
M M M ~

IMISMs& .
Mi ———1Ms ———S

Thus, Eq. (82) becomes

8'~~ =[(2J+l)(2J'+ 1)]' ( —1)

4 1 S 1' S
X g g Yq„(0',P') g g g g (IM~SMs

I Yap l

I'MiSMs&
OI, —x I,=—1ms ——sMr2k+1

I S

l S J l' S
M' M' —M'

1 S J 1 S

The states
I

IMrSMs & are direct-product states
i

IMi & i
SMs &, and so we have

( IM(SMs i Yx„ i
I'M/SMs & = (IMI

i Yg„ i
/'M/&5

Next, we use the relation

1 /2

IM
I
Y

l

I M & =( 1)M, (2/ + 1)(2/'+ 1 )(2k+ 1)
1 A,/M, 1 4m.

to reduce Eq. (86) to

W ~ = [4~(2J + 1)(2J'+ 1)(2/ + 1)(2/'+ 1)]'i ( —1)

Y,*„(g',y) I A, I'
X g g "

&i2 0 0 0 ~y( l,nn'I')
~=op= ~ (2~+1)'" .

(85)

(86)

(88)

S 1

X g g ( —1)'M
M~ ———SMI ———1

J 1 l' S J' l A, l'
—M1 P M1' (89)
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Since J, S, I, and MJ are all given, standard properties of the 3-j symbols permit us to restrict the sum in Eq. (89), which
now becomes

W =(—1) ' '[4~(2J+1)(2J'+1)(2/ +1)(21'+1)]' 's, l S J l' S J'
X ( —1)'

I+ I' y~ l 1, l'

I
i

(2A, +1)'/ 0 0 0
l A, l '

, yi„(n/, n'/'),—MI p' MI'
(810)

where MI ——MJ —Ms Mi' ——MJ —Ms p=MI —Mr' ——MJ —MJ.

2. Symmetry

Make explicit the dependence on J, l, MJ, etc., and consider the following matrix element:

W(J, /, —Mg,'J', I', —MJ)

=(—1) ' '[4~(2J +1)(2J'+1)(21+ 1)(21'+1)]'/'

s
X ( —1) s

s= —s

l S J
—MJ —Ms Ms MJ

l' S J'
—MJ —Ms Ms MJ

i+I' z,MJ MJ I— 1, I' I l'

(2g+ 1)1/2 Q Q Q My+Ms MJ M~ MJ Ms yi„(n/, n'I') . (811)

By using the property that

(
Ji+J2+13

m ) Ul2 Pl3 —P?l ) —Pl 2
—PPZ 3

and by first defining Ms ———Ms, and reversing the resulting sum over Ms, Eq. (811)becomes

W (J, /, Mj,J', /', —Mg )—
(812)

=( —1) ~ [4n(2J+1)(2J'+1)(2/+1)(21'+1)]' ( —1) +'+ + +

s
)
—MJ +hfs

s= —s

5 J l' S J'
MJ Ms Ms MJ MJ Ms Ms MJ

t+t' g M~ —mJ l A, l' l
yi(nl, n'I') .

~, ,
i

(2&+1) ' o o M, +Ms M,—~z MJ Ms— (813)

For P'=0 we have that Y'i„z ——( —1)"Fi„„.By using this
a comparison of Eq. (813) with Eq. (810) yields

W(J,I, —Mg', J', I', —Mj)
2(S+M/+Mj)+Mj —MJ+i+I'+ J+J'

that follows directly from Eq. (810) can be obtained by
considering 8'a'a~ it is obvious that

~a'a ~aa'

As a direct consequence of these two symmetry relations,
it follows that

X W(J, I,Mq ,J', I',Mq) . ' (814) W(J, /, MJ, J,I —Mg) = —W(J, /, Mg,'J, /, Mg)—
This reduces to

W( J, /, —MJ, J', I', —MJ) and

(& = —,
'

) (817)

W(J, I,MJ,J, /, MJ)=+ W(J, /—, Mg, J,I,MJ), —
(815) from which we get

since 2(Mq+Mj) is even. The second symmetry property W(J, I,Mg, J,/, —Mg) =0 . (819)
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A final result of symmetry (B15) is that

W(J, l,Mi,J,l,Mg) = W(J, l, M—J ,J,'l, —Mg) .

APPENDIX C: THE RADIAL INTEGRALS

(B20)

Laguerre polynomial. In Eq. (Cl), r( (r) ) is the small-
er (larger) of R (the distance between the nuclei) and r
(the magnitude of the bound-electron's position). Note
that k is constrained to 0(A, (I+I'. For transitions be-
tween fine-structure levels of the same manifold, n =n'
Substitution of Eq. (C2) into Eq. (Cl) yields

Consider the following integral:

r&
yi„(nl, n'l')—: r i, A„iA„ i dr,

0 r)
(Cl)

3
' 1/2

vn (n —l —1)!(n l' —1)!—
2n (n + l)!(n +l')!

where A'„t is the (normalized) hydrogenic wave function,
given by

1/2
3 (n —l —1 )! —v„~/2

nl = —&n (v r) Ln —I —i(var)" 2n (n +l !

X e " (v„r)'+'L„ i, (v„r)
0

A,

XL„ i i(v„r)r & i dr,
r )

(C3)

(C2)

with v„=2Z~ in and L„+t', (v„r) being the usual
I

where A=2l+1, A'=2l'+1. By defining A„ii to be the
coefficient of the integral and x =A,„r, then Eq. (C3) be-
comes

~nil' ~ — l l' 2yi(nl, nl')=
3 f e "x'+ + L„ t i(x)L„ i i(x) & i dx

&n 0 r)+

—x l+l'+A, +21 h I h d~ +pi, —x l+l'+1 —A,L h I h'
nil &n q+1 p n —l —1 n —l' —1 + P

~
e + n —l —1 n —l' —1 (C4)

where g=Rv„and A„ii =A„ti Iv„. Let I, be the first term in the large parentheses and I2 the second term; we then
have

yi„(nl, nl') =A„tt v„(Ii +I2 ) . (C5)

Next, we expand the Laguerre polynomial

k
S+AL'= &(—"" .—k—k (C6)

so that

s ++ p ++' xk+m
s p s —k P —Pl k typal t

(C7)

We have set s =n —l —1 and p =n —l' —1, and have taken l' to be the smaller quantum number, so p )s. After some
algebra Eq. (C7) reduces to

h h' kLs Lp = g Dsp~Ax
k=0

where

(C&)

max
1

D,p~~ ——( —1)"(p +&')!(s+&)!
(k i)!(A'+—k —i)!(p —k +i)!(A+ i)!(s —i)!i!

min

and where

k;„=max(0, k —p), k,„=min(s, k) . (C10)

The use of Eqs. (C8) and (C9) in the definitions of Ii and
I2 eventually yields the final, simple result

2n +A, —1

Ii+I2= &+i Gp —e g G g (Cl 1)

where

S+P
X D."pt AI'q+'+".

~ ="min

The following definitions completely specify 6, :
r;„=max[0, t —(2+ l +l'+ A, ) + 1j,
q =l +I'+A, +2,

(C12)

(C13)

(C14)
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a!
b (a —b)!

a!
(a —b)! '

J.
(j b—)! '

(C15)
I, +I2 = [8—e—~(8+6/+ 2/'+ g') ],1

(C19)

Thus Go ——8. Similarly, we find that G& ——6, G2 ——2,
G3 ——1, and so

2

Gt = g D 1111F2+r
"min

where r;„=max(O, t —1),

(C16)

with j= a —2A, —1. Altogether, Eqs. (C9)—(C15) define
the radial integrals y~.

Examples. Equation (Cl 1) is trivial to program but its
analytic form is not immediately transparent. We there-
fore present some examples of specific radial integrals.
Within the n=2 manifold there are four nonvanishing
cases: (a) l =1'=0, A, =O; (b) l= 1, l'=0, A, = 1; (c)
l =l'=1, A, =O, (d) l =l'=1, A, =2.

Case (a). l=l'=A, =O. In this case, q=2, s=1, p= 1,
A=1, A'=1. Then, Case (c): l =1'=l, &=0,

I, +I,= [24 e—&(24+—18/+6/'+g')) .1
(C21)

Case (d): l =l'=I, A, =2;

with g=Rv„=2Z&R/nas defined previously. The other
three cases can be worked out analogously, with the fol-
lowing results.

Case (b): l=k, =l, l'=0;

I, +I2= — [24—e ~(24+24/+12/ +4/ + g )] .
3

g2

(C20)

2
r 2+r

Go ——Q DIIiiF2+r
v=0

(C17)
II +I2 —— [144—e ~(144+ 144/+72/ +24/3

g3

0 1 2D IIII = —4~ (C18)

Note from Eq. (C16) that F =m!. The D's are calculat-
ed from Eq. (C9),

+6k'+0')] . (C22)

These expressions can easily be checked by directly carry-
ing out the appropriate radial integrals.
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