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Model for atomic species in a dense plasma: Description and applications
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We propose a model describing the various atomic species existing in a dense plasma; a species is
a neutral atom with a given frozen configuration in the bound spectrum, surrounded by a screening
cloud of free electrons in thermal equilibrium. First, a prescription is given to calculate these atomic
species {bound spectrum, electron density, energy). A second part is concerned with the study of
bound-bound electronic transitions; the transition energy is determined in terms of modified effec-
tive one-particle energies" for the final and initial bound states. Some numerical applications are
presented, proving that the model may be useful in calculating properties relative to various non-
equilibrium situations. Finally, turning back to total thermal equilibrium, we define average atom-
ic species" for any ionization state Z* and calculate their respective weight; we also compute the
average value of Z*"and its fluctuations.

I. INTRODUCTION

Experimental study of dense plasmas have stimulated
research in the field of atomic physics for materials under
extreme conditions of pressure or (and) temperature. A
more detailed description of these materials is needed for
the understanding of their radiative properties. Thermo-
dynamic quantities, such as the equation of state, are gen-
erally obtained with acceptable accuracy within the
framework of "average-atom" (AA) models. However,
quantities related to radiation (spectra for diagnostics, line
opacities, etc.) require a more detailed analysis of the elec-
tronic distributions

In a dilute plasma, the Saha theory allows a statistical
study of the various atoms and ions; in a dense plasma,
this theory fails and the study is much more difficult. 2 In
the latter case, it is impossible to treat one ion indepen-
dently of the surrounding electron cloud. The free elec-
trons pile up around a positive ion and tend to form a
neutral atom. When an electron jumps from a bound
state to another, without changing the net charge of the
ion, there is a relaxation of the free electrons and, as a
consequence, a self-consistent modification of the whole
spectrum. A detailed analysis of the phenomenon re-
quires the knowledge of the atomic configuration, i.e., the
occupation numbers in the whole spectrum, bound (n;)
and free (n~): { n; . .

~
n~ j. In a dense plas-

ma, there is a finite number of bound states, but the free
spectrum includes an infinite number of levels. From a
practical point of view, it is obviously impossible to take
into account any of these total configurations individual-
ly. Thus, one must treat the free electrons statistically.
This has important consequences regarding the type of
models which can be used. We shall discuss these conse-
quences in the following. In Sec. II, the definition of a
species will be given and the calculation of the related
quantities (electronic charge density, spectrum, and total
energy) will be described. Section III will mainly treat the
problem of bound-bound transitions: the transition ener-

gy will be calculated in terms of modified effective one-
electron energies, and the change in a given transition
with respect to the ionic configuration will be discussed as
an application. In Sec. IV the above model will be applied
to show that, in the case of complete thermal equilibrium,
it is possible to define an "average atomic species, "
representative of all the species having a given bound
charge, and to calculate its statistical weight. Applica-
tions will be suggested; among them are the effects of ion-
ization fluctuations.

II. ATOMIC SPECIES IN A DENSE PLASMA

A. Definition of a species

Let us focus attention on an ionic configuration with a
given number Zb of bound electrons. These electrons are
distributed among the bound levels with occupation num-
bers n,; which are 0 or 1. As mentioned in the Introduc-
tion, the ion cannot be treated independently of the free
electrons. So, in the following, we shall only consider
neutral atomic species. A species is a (fictitious) pseudo-
atom made of a given number of bound electrons in an as-
sumed configuration together with the neutralizing cloud
which results from the plasma free-electron polarization.

The free-electron charge density p~(r) is self-
consistently determined under the assumption of local
thermal equilibrium (LTE) in the continuum. Thus, a
species may be understood as the result of averaging on
the LTE continuum all the electron charge densities of
real atoms having the fixed configuration { n; .

J in
the bound spectrum.

The assumption of LTE for the free electrons is com-
mon to all the models dealing with non-LTE ionic popula-
tions. Actually, this partial equilibrium is maintained
by the collisional excitations and deexcitations of the free
electrons. The collision rate increasing like the square of
the free-electron density, free-electron LTE prevails in
dense plasmas. In most of these plasmas where NLTE
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bound populations do exist, the photon mean free path is
larger than the dimensions of the plasma, so that radia-
tion can escape without stimulating transitions which
could perturb the continuum LTE. This assumption may
thus be considered as sound and not restrictive. Once it
has been done, a species is entirely determined by the
specified bound configuration.

B. Total energy and occupation numbers

Since the early work of Slater on the self-consistent cen-
tral field for atomic structure calculations, followed by
the "density-functional theory" (DFT) of Kohn, Sham,
and Mermin, ' it is well known that the first-order varia-
tion of the total energy of a system when its configuration
changes is

5E(. . . nj. . . )= Qej5n/ .
J

This variational expression holds only if the exchange and
correlation effects are treated by means of a local func-
tional of the density Exc(p). The e's are thus eigenvalues
of a one-particle effective Schrodinger equation. Equa-
tion (1) has the considerable advantage of taking the orbi-
tal relaxation into account; when the configuration
changes, the electron density

p(r) = g n, y,*(r)p,t(r)

is modified through both the variations of the nj's and

pj. 's. But the total energy being stationary with respect to
the yj's, the 5nJ's alone contribute to 5E. Such a property
has no equivalence in the Hartree-Fock (HF) theory. In
the HF theory, Koopmans theorem, which gives an ap-
proximation of the total energy variation due to an occu-
pation number variation,

E(. . . nj = 1. . . ) E(. . . n~ =0—. . . )=ej. ,

assumes that the one-electron orbitals are frozen, i.e., no
relaxation. (This we feel is a serious shortcoming. ) Along
with the much greater simplicity in practical calculations,
this strongly supports the use of the statistical exchange
and correlation formulation instead of the HF model even
for the bound electrons. For the free electrons, it is
known that the HF model has serious shortcomings in
particular for dense materials which are the main interest
of this work.

C. Description of the free spectrum

Let us consider an atom of atomic number Z embedded
in an electron gas of uniform density p. The electrical
neutrality is preserved by means of a positive-charge back-
ground simulating the plasma ions. These we think of as
a classical fluid. A model for the ionic charge profile
around the embedded atom has been described else-
where. ' In this work we mainly focus on the electronic
transitions; we shall neither treat this ionic charge profile
in detail nor investigate the possible influence of ionic re-
laxation on electronic transitions. Except in the case of
light ions and very high temperature, the ionic relaxation
times are much greater than the bound levels lifetimes.

Here, we shall restrict ourselves to the most simple ap-
proximation of the ionic profile, which is a spherical cavi-
ty in the uniform background,

0 if r&R,
p+(r) = . (3)—P if r)R,

(we chose the positive sign for electron densities). The
cavity radius is such that the corresponding charge Z, is
exactly that of the ion, as calculated in the LTE AA
model,

4/31TRg p —Zg —ZA+ (4)

5FifpI]
5p~(r)

(6)

F~ is the total free energy for the continuum electrons. It
includes the noninteracting free energy Fo[p&], the energy
of the electrons in the external field U~, the electron-
electron Coulomb energy, and the exchange and correla-
tion free energy Fxc[p~]. The standard notations

(fg) = f f(r)g(r)dr

fo g = If(r')g (r' —r)d r' (convolution product)

have been used. In this model, the chemical potential p
depends on the uniform density p and temperature T only.
The density pI is determined by the stationarity condition
Eq. (6), for fixed T and p (grand-canonical ensemble).
Equations (5) and (6) are exact, but they cannot be solved
without an approximate form for the functional Fxc[p~].
The common approximation is the local-density approxi-
mation: Fxc[p~]~Fxc(p~), which states that Fxc is, at
any point in space, a function of the density p~ only. Such
an approximation neglects any nonlocal effect (depen-
dence on gradient Vph for instance). It is thought to be
satisfying for dense materials and is frequently applied in
solid-state physics. " In our calculations, we used a nu-
merical fit of the results of Rajagopal and Gupta, ' and
Perrot and Dharma-%'ardana' for the homogeneous elec-
tron gas.

With this treatment of exchange and correlation (XC)
effects for free electrons, Eq. (6) is equivalent to the sys-
tem

( —1/2V + Ui)y

dFxc(pi )
U1 Ul+ opl+

dpi

In the following, this radius will be held fixed for given
free-electron temperature and density, in agreement with
the assumption of no ionic relaxation.

Around the immersed ion of fixed charge Z —g,. n;,
the free electrons polarize to form a neutral atom. The
free charge coming from the continuum states is pi(r). As
this charge is in LTE at a temperature T, pI satisfies the
Kohn-Sham-Mermin equations, '

F1[pl]—F0[pl]+ &plUI ~+ 2 pl +pl +FXC[pl] ~

1 T
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free
(9) E. Exchange and correlation effects between bound

and free electrons

f(e ) = I 1+exp[13(E —p)] I (10)

The system of interacting electrons has been replaced by a
system of noninteracting pseudoparticles in an effective
potential U~, which has to be self-consistently determined.
The density pi is built using the eigenfunctions ym arid
the Fermi-Dirac average occupation numbers f(e ) (10).

Now, the content of the external potential vi has to be
made explicit. This potential includes (i) the Coulomb po-
tential of the ions [—Z/r+(1/r)o(pb+p+)]; (ii) a con-
tribution due to XC effects between bound and free elec-
trons, which will be described in Sec. II E.

D. Description of the fixed bound configuration

For the Zb bound electrons there is no notion of tem-
perature or of entropy since the configuration is frozen.
The bound electron subsystem, that is the ion in its
ground state or more generally in an excited state, feels
the external potential vb created by the free electrons, the
nucleus, and p+. We assume that the total energy of this
subsystem is

Eb[pb] +[Pb]+&Pb"b &+ 2 Pb oPb +EXC(Pb) ~

1 0

r

where pb is the bound density and K [pb] the bound kinet-
ic energy. Equation (11) is correct for an ion in its ground
state; as demonstrated by DFT theory, the energy Eb is a
functional of the ground-state density, and Exc(Pb ) is the
XC energy (approximated within the local-density approx-
imation). The subscript 0 indicates that the functional is
the one relevant to zero temperature. For excited states,
Eq. (11) has no rigorous justification. There have been at-
tempts to extend the DFT to excited states these studies
show that the energy is, in that case, a functional of a
linear combination of the densities of all the states lower
in energy than the state of interest. The theory becomes
so complex that its practical use seems out of reach. In
the present work, we keep Eq. (11) for all excited states.
The bound density is thus

In Eq. (11) we use for Exc the Wigner functional

Exc(p)= f «P cP'"+1 (15)

with c = —3(3/m)'~ /4, y= —0.05641, and v=0.07953
(in atomic units). The bound-free XC contribution is de-
fined as the difference between the total XC energy and
the sum of the XC energies, for the bound and free elec-
trons taken separately,

Exc(pb P ) Exc(Pb+P ) Exc(Pb ) Exc(p (16)

In this formula p is the density for a given real configu-
ration (with integer occupation numbers) of the free spec-
trum, before any thermodynamic averaging. Inserting the
functional defined by Eq. (15) into the right-hand side of
Eq. (16), we can write

E'(p p»=&p p-[G(p p»+«p p»]&

with

G(x,y)= [(x+y) +(x+y)' x' +x ]

(17)

~EXCbl

~xct= (20)

X[c+yv[v+(x+y)'~ ] '(v+x'~ ) 'I . (18)

Now we have to average Exc over all the possible config-
urations in the free spectrum, keeping pb fixed. To get an
approximate solution, we proceed as follows. We note
that, inside the ion, p is much smaller than pb, while out-
side the ionic volume, pb is very small and p is close to
the mean free electron density p. Thus it is appropriate to
substitute p for po in the functions 6 of Eq. (17), where
the dependence on p is not too strong. Once this has
been done, Exc is linear in p and the average is obtained
through the substitution p ~p~. We get

E ' = &p PI[G(p,p)+G(p, p )] & . (19)

The bound-free XC contribution to the external potential
v~ for the free electrons is derived straightforwardly,

Pb= g & 0' 0'.
bound

(12)

( —I/2V + Ub )y; =e;y;, (13)

The eigenfunctions are the solutions of the one-particle
equations

and its counterpart for the bound electrons,

~Ex'c
II'xcb =

BPb

1 dExc(pb)
Ub Ub +—opb +I' dPb

(14)

The bound spectrum of Eq. (13) is only relevant for
describing the ion. Ub is the total effective potential act-
ing on the bound electrons. The external contribution Ub

to Ub includes the bare nuclei potential
[ Z/r+(1/—r)op+], the Coulomb potential of the free
electrons [(1/r)opi], and the effect of XC between bound
and free electrons, discussed in the following paragraph.

can be calculated without difficulty.
We conclude by observing that the approximation of p

by P leads to Wxci [Eq. (20)] which is independent of the
density of the free electrons pi. When this form is includ-
ed in the external potential vi of Eq. (5) it truly behaves as
an external potential independent of pi in accordance with
the Kohn-Sham formulation; Eq. (11) is thus justified
within this approximation. Finally, we note that such a
constant term will not add to the entropy functional of
the free electrons.
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F. Solving the equations

The numerical technique for solving Eqs. (7)—(10) for
the free spectrum is well known. It has been presented in
detail elsewhere. ' Here we shall summarize the main
points. One has to calculate the free states associated
with the effective potential U~ [Eq. (8)], which may be
written

Z 1 T
U~ = ——+ o—(pi+ pb+p+)+ Vxc(pi)+ ~xci(pb P)

(21)

where p+ is the ionic profile [Eq. (3)], Vxc the free-free
XC potential (the derivative of Fxc with respect to p~)
and 8'xc~ the bound-free XC potential [Eq. (20)]. U& is
the potential for an atomic species with Zb bound elec-
trons. When the self-consistent solution is obtained, the
central ion is totally screened by the charge pI+pb+p+,
so that

Z= I (p&+pb+p+)dr=Zb+Z, + f (p& —p)dr .

(22)

The Coulomb part of UI is thus short ranged. Far away
from the central ion, U& goes to a constant which is
UIo ——Vxc(P)+8'xc~(0, p). The eigenvalues and eigen-
functions of Eq. (7) are

s] ——Ek
——1/2k + U(0,

'][l(r) 0 »Lbf (r) ~»Lq kL (r) +LM(r)
(23)

The asymptotic behavior of the radial part for large r is

(I[)»L(r)~r 'sin kr L +re—(k)—
2

After normalization, and taking the density of states into
account, the electron density for the free spectrum is

pI(r)=p+ z I fkdk g(2L+1)[y»L(r) kjL(kr)]—
0 L

(24)

with jL the spherical Bessel function of order L. The
density of states per unit k is

N(k) =N[](k)+ —g (2L +1)2 d'77L

L dk
(25)

(26)

(P is the inverse temperature); Eq. (16) is a direct conse-
quence of charge neutrality [Eq. (22)].

To calculate the bound charge pb, one has to solve Eqs.
(13) and (14), that is, to find the bound spectrum of the
Schrodinger equation for potential Ub (different from U~),

Z 1 0
Ub + (pl+Pb+P+ )+ Vxc(pb )+ ~xcb(pb p) .

(27)

No particular difficulty is encountered in solving these
equations. The self-consistent calculation of p[ and pb is
performed simultaneously since the equations are coupled
by the Coulomb potential. We shall not give here more
details on the iterative procedure which is now standard.

G. Total energy for an atomic species

We next present the form for the total energy of the
atomic species defined by a configuration of the bound
spectrum and a screening charge of free electrons in LTE.
Both electron populations are coupled by electrostatic and
XC potentials. As in the previous section, the fixed in-
teger occupation numbers of the bound electrons are noted
by n;, while the fractional average occupation numbers of
the free-electrons are noted by f». The eigenvalues ej.
(bound and free) are measured with respect to the uniform
potential U[0. The chemical potential for the free elec-
trons with respect to the same origin is p =p —UI0. The
total energy considered here is that of embedding the
atom in the plasma,

iI],E(. . . n; . . )=E.(. . . n; . ) —E.[p] (28)

with E[p] the unperturbed electron gas energy (at the
temperature and density of the free electrons). Starting
from (5) and (11),one gets easily

where No(k) is the density of states for the unperturbed
electron gas at density p. Let us also recall the sum rule,
with fk ——f(E»),

00

Z —Zb —Z, =]33—f k dkfk(l fk) g—(2L +1)gL(k)

AE(. . . ;. . . )=,' y;(Vql; VV';)+Eo[Pr] Eo[P]+ — + P —(P +P ))r r

1 1 0 T b$ p Z I 1+ (Pb+Pi) '(Pb+Pt) +&xc(pb)+&xc(p&)+&xc Exc(P)+ P+ + P+ —P+) .
r r r

(29)

The first three terms give the kinetic energies [Eo corresponds to the Fo in Eq. (5)], the next two terms give the electron-
ion and electron-electron Coulomb energies. The terms with the subscripts XC give the XC contributions and the last
two terms the ion-ion interaction energy. This forrnal expression can be rewritten
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2 " d'91. kbE(. . .n;. . . )= gn;c;+ —g(2L+1) f fk dk+(p2mr (p!, +p!—p))
l

1i )Pn+Pl p) )Pi +pl P))+5xc)Pn) (Pn) ) xc)Pn)+ ~xnn)Pn P)) )r

T T T 3 c 3Z
+Exc(P!) Exc(P) (Pjl xc(Pj) ~ ((pb+p!)I «(P) ~ 2Rc 5

(30)

In Eq. (30), Ezc(p) is the XC energy related to the free-energy Fxc(p) of Eq. (5) by the thermodynamic relation
Fxc ——Exc —TSxc. The statistical weight of a species is expS[pj], with S[pj] the total entropy for the electrons in the
free spectrum which is, after subtracting the unperturbed electron gas contribution,

bS[pj] = 2 (2~ +1)f d" [fkinfk+(1 fk)l"(1 fk)]+S«(«) S«(p) .2 00 T T

L dk
(31)

The computation of the total energy for a given species
can thus be done using Eq. (30). This model is particular-
ly well suited for the study of bound-bound transitions, as
will be seen in Sec. III.

III. DESCRIPTION OF BOUND-BOUND
ELECTRONIC TRANSITIONS

A. Total energy difference in a transition

We next consider the transition of an electron from ini-
tial state i to final state j in the bound spectrum. The
change in the total energy of the species associated with
that transition is

5Ez~(i~j)= bE(. . . n; =O, . . . , nj= 1, . . . )

—bE(. . .n; =1, . . . , nj =0, . . . ) .

The label Z* refers to the ionization degree of the species.
Energies in the right-hand side of Eq. (32) are defined by
Eq. (30) (the constant unperturbed electron gas energy
cancels in the difference). The calculation of Eq. (32) is
approached in the same spirit as the "transition-state"
theory of Slater. Up to now, the bound-levels occupation
numbers were integers with the values 0 or 1, but they can
be considered, for mathematical convenience, as continu-
ous variables in the interval [0,1], because all the equa-
tions of the model (due to the use of a statistical XC func-
tional) maintain their meaning for any value of the n; s.
For a zero-temperature system (atom or solid) the energy
change in a bound-bound transition is, according to Eq.
(1), 5E =a!—e;+O(5n ). Because of the stationarity, the
states (bound or free) different from i and j do not appear
in 5E to first order (although they relax) since their occu-
pation number is kept fixed. The situation is different in
the model presented here; since the free-spectrum occupa-
tion numbers obey Fermi-Dirac (FD) statistics, they
change with any relaxation of the system, and consequent-
ly the internal energy does change, even in first order.
When a bound state n; changes, the potential acting on
the continuum electrons changes, the energy levels and oc-
cupation numbers of these change, too. In such a relaxa-
tion, the stationary quantity is the free-energy I'![pj] [see

5pl
(35)

Assuming that the free density deviation pj(r) P is-
small, we can neglect the XC entropy term in Eq. (35)
since the integrated charge (5p! ) =0. Then, to first order
in the free-states energy change,

5am (g rn5Ul!p))) ~

we obtain

5Ez*(ij')= s'5n'+ej5n

(36)

—+Ps f (1 f )(p'5Ujy )+O(5n2)—.

(37)

Eq. (5)] not the internal energy Ej[pj]. Let us assume
that n;, nj change by 5n;, 5nj The. n the corresponding
change of the species energy is

56E,
55 (i j)=„;n5+nn)5+n)5p&)+O(5n') .

(33)
The first contribution to 5Ez~ comes from the bound

states [E;sj, given by Eq. (13)], the second one from the
continuum relaxation. But

5bF![pj] 5b S [p!]+T
5p( 5p)

The right-hand side first term is the chemical potential p,'
in the transition, the total free charge does not change, so
that

5b,S[p!]
5Ez, (i j)=e;5n;+sj5nj+T 5p! +O(5n ) .

5p!

(34)
Now the entropy includes a noninteracting contribution
and an XC contribution [Eq. (31)]. The first one is easily
related to the FD occupation-numbers variation, so that

5E,(i j)=E;5n;+aj5nj+ g E 5f
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(38)

where IC(r, r') is the screened Coulomb interaction. Com-
bining Eqs. (37),and (39) we obtain, with p

5E,(i,j ) =E,'5n; +ei 5ni +O(5n ),
si~ si ——PQE f (1 f~)(p~—Ui;op;) .

(39)

Equation (39) is the main result of the present work. It
shows that, in the plasma, the total energy variation due
to a change in the bound-state configuration is described,
to first order, by one-particle modified effectiue energies E"

(MEE) which take into account the continuum relaxation.
To improve the accuracy of the bound-bound transition

energy, one can use the transition-state technique, that is,
calculate the s' in the intermediate configuration of the
ion, I. . .n; ——,', . . . , ni+ —,'. . . I. One knows that this
technique makes the quadratic terms O(5n ) in the ex-
pansion of 5E vanish, so that the transition energy is

5Ui is the variation of the total potential acting on the
continuum states. Linearizing its XC contribution with
respect to the bound charge variation 5pb ——p;5n;+p 5nj.
we can write 5Ui ——Ui;op;5n;+ Uijop&5ni (p; =tp; g;).
The potential Ui; (Uij) includes the Coulomb part due to
the charge p;5n; (p&5nj. ) screened by the free electrons,
and an XC potential associated with p; (pi). We have
used the Thomas-Fermi linearized theory to screen the
Coulomb potential; details of this screening calculation
are given in the Appendix. Finally, we can write

& Exc
Ui;op;5n; =5n; f [X(r,r')+ 2 5(r—r')]p;(r')dr',

2

tron density p=0. 1148 a.u. (or 7.75X10 e cm ). The
corresponding material density is 6.52 gcm . We first
performed a full LTE AA calculation, which gave an
average ionization ZAA ——11.025, so that the ionic cavity
radius is R, =2.8407 a.u. [Eq. (4)]. The total AA energy
was bE&z EA——A E[p—]=—2472. 752 Ry, with a free-
electron gas energy E[p]=117.399 Ry. The AA configu-
ration was 1s 2s 2p 3s 3p ' 3d ' 4s Then
keeping the same value of R„we calculated several ionic
species around the average configuration, with the aim of
comparing the "exact" total energy differences [Eq. (30)]
with those estimated using the MEE [Eqs. (39) and (40)].
In each case, we made three calculations: one for the ini-
tial, one for the final, and one for the transition configura-
tions. The results are shown in Table I. One sees that the
MEE estimate with c* is always closer to the exact result
(difference of the total energies) than the estimate with the
uncorrected e. For the high-energy transitions, the
correction is not very important in relative value (cases
1,2,5). In absolute magnitude, it is significant when the
initial and final states have very different localizations in
space. This can be understood in the light of the follow-
ing argument. The Coulomb potential created by the dis-
placed bound charge is (1/r)o (ipse yi —p,*y;), the average
value of which is proportional to (yi ~

r
~ pi )—(y;

~

r
~ y; ); the correction to E; is mainly governed by

the average value of r in state i. In case 4 of Table I,
(r )4, ——2.92 and (, r )3&

——0.58; in case 7, (r )&&
——3.49

and (r )3,——0.58; in case 9, (r )4z ——3.48 and
(r') 3j =0.52. This explains the importance of the
correction in these three cases. On the other hand, in case
3, the correction is negligible because (r )3 (1 )3p
=0.59.

5E „(i~j)=ej' e,*+0(5n')— (40) C. Study of some particular transitions

for E,*,ei calculated in the transition state. The numerical
accuracy of Eq. (40) will be examined in Sec. III B.

B. Numerical results

We present a numerical test of Eqs. (39) and (40) for
iron at a free-electron temperature of 100 eV and an elec-

The atomic species mo'del is well suited for studying the
effect of ionic configuration on a transition. One assumes
that the transition probability is constant with time. The
description which takes into account the free-electron re-
laxation in LTE is correct if 1/vz (t, where vz is the plas-
ma frequency and t the initial-state lifetime. This condi-
tion is generally met.

TABLE I. Comparison between total energy differences calculations. Iron; free-electrons temperature T = 100 eV; free-electrons
density p=7. 75 X 10 e cm . Ac is the difference of the noncorrected one-particle eigenvalues c in the transition state. Ac*: idem
with the corrected eigenvalues. The exact result is given in the third column. The average-atom values also shown for comparison.
All energies in rydbergs.

Configuration

(2s 2p 3s '3d')1s 3p '~1s '3p
(1s 2p 3s'3d')2s 3p'~2s'3p
(1s 2s 22p 63d ')3s '3p '~3s 3p
(1s 2s 2p 3s'3d')4s 3p' —+4s'3p
(2s 2p 3s'3p'3d')1s 4p —+1s'4p'
(1s 2p 3s'3p'3d')2s 4po~2s'4p'
(1s 2s 2p 3p 3d )3s 4po~3s 4p
{1s2s 2p 3s')3p'3d'~3p 3d
(1s 2s 2p 3s'3p')4p 3d'~4p'3d

n0

1

2
3

4
5
6
7
8
9

519.6681
59.7797
2.4322

10.7363
532.0793
71.8901
13.9768

—3.8173
7.7950

520.4465
60.3795
2.4308

12.2137
534.4856
73.9666
15.6237

—3.7541
9.5194

Total energy
difference

{Ry)

520.6245
60.5647
2.4278

12.3402
534.7541
74.4144
15.7133

—3.7277
9.6490

(Average
atom)
(Ry)

508.3053
57.8289
2.4359
8.7931

state 4p does not exist

—3.9314
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TABLE II. Study of optical transitions in iron, at T =100 eV and p=7.75&10 e cm 3. All the configurations have the ion
1$ 2$22p in common. The energies are calculated in the transition state. Rydberg unit.

Transition
3p '4$ ~3p 4$ '

Configuration

3$3d'
3$3d
3$'3d'
3$'3d'
3$3d
3$3d

14
13
12
13
12
11

he
(Ry)

11.7100
10.7363
9.9619

10.7837
9.9105
9.0009

(Ry)

13.2323
12.2137
11.7451
12.3988
11.6779
10.9754

0.2031
0.2061
0.2096
0.2082
0.2105
0.2069

fj=bE'I &t lr lj& I'
0.5458
0.5189
0.5160
0.5375
0.5176
0.4697

Transition
3p 4$ ~3p'4$'

3$3d'
3$'3d'
3$3d
3$3d
3$'3d
3$3d

13
12
11
12
11

10.8393
9.9557
9.0355
9.9046
8.9991

12.4648 0.2074
11.7327 0.2098
11.0193 0.2064
11.6664 0.2107
10.9687 0.2070

4$ state does not exist

0.5360
0.5165
0.4693
0.5181
0.4702

As an illustration, we give in Table II some results rela-
tive to the transition 3p '4s ~3p 4s ' and 3p 4s
~3p'4s' in iron, at T =100 eV and p=7.75)&10
e cm . We kept the simple approximation of a spheri-
cally symmetric potential Ub [Eq. (13)], with no attempt
to remove angular momentum projection or spin degen-
eracies. All the configurations presented have the ion
1s 2s 2p in common, as suggested by the AA calcula-
tion. The populations which are changed are those of the
3s and 3d shells. The ionization degree of the various
species range from 11 to 14. We first note the importance
of the correction e~c.* in that case; it can be as big as
22%. The transition energy dispersion is also very impor-
tant; from 10.97 to 13.23 Ry, or =20%. The matrix ele-
ment (3p

~

r
~

4s ) is much less sensitive to the configura-
tion, about 4%. Finally, the variation on the oscillator
strength tabulated in the last column of Table II is 16%.

As shown by this example, one can easily calculate the
radiative transition characteristics for any kind of ion in
the plasma. This possibility may be of interest for gen-
erating data needed in the study of nonequilibrium situa-
tions.

IV. ATOMIC SPECIES STATISTICS

So far, we derived the model of atomic species with the
aim of improving on the AA model for generating data
adapted to nonequilibrium situations. However, Eq. (39)
may have applications in the case of LTE also. This
equation expresses the total energy variation of a species in
terms of MEE for the bound states only. In other words,
it achieves decoupling between the ion and the free elec-
trons provided the number of bound electrons, i.e., the
ionization degree, is fixed. This enables us to define an
average for all the atomic species with a given ionization
degree, as shown in the next paragraph.

A. Average species with a given ionization degree

We now consider a plasma in which bound and free
electrons are all in thermal equilibrium. Let us focus our

+O(b.n ), (41)

where the E, , are the MEE of the reference species, pro-
vided that I

g bn; = g (n; n;0)=—0.
bound bound

It follows from Eq. (41) that the total energy of a Z
species can be interpreted as that of a system of Zb in-
dependent pseudoparticles, distributed among states of en-

ergy c,*.z+. Let us recall that all relaxation effects are ac-
EZ

counted for in Eq. (41). The only limitation is the neglect
of quadratic terms (bn ) Since t.he effective system is
now noninteracting, the average occupation numbers for
the species will be given by FD statistics,

n; = I 1+exp[p(E*. ,—p, )] J (43)

In the case of complete LTE for bound and free elec-
trons, p in Eq. (43) is the same as that of Eq. (10). But
one could also consider situations where the bound-
electron temperature would. be different from the free-
electron temperature. For instance, if there is very little
energy transfer between the ions and the free electrons,
the bound-electron temperature has to be determined by a
condition of constant energy of the ionic subsystem. This
would lead to a two-temperature model. In Eq. (43), p
is understood as an effective chemical potential for the
bound pseudoparticles, to be determined by the condition

attention on the species with a given ionization degree
Z*, and particularly on the most abundant one. We
chose the energy of this one, which has the configuration
(. . n;o . .. ) a. s a reference. Now, a straightforward gen-
eralization of Eq. (39) gives the total energy of another
species with same value of Z' but a different configura-
tion I. . . n; . .j, .

b'E *(' ' ' n ' ' ' ) = b'E *(' ' ' n 0' ' ' )+ g e z*b'n
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Level

1$
2$
2p
3$
3p

&~A «y~

—122.607 71
—14.785 44
—12.703 47
—0.934 39
—0.335 71

~AA

0.99999
0.378 01
0.31404
0.084 52
0.078 43

0.12027
0.543 51
0.480 16
1.557 56
1.644 24

Zb
R,
AE
TAS
E[p]
TS[p]

5.279 88
2.869 40

—431.673 5

53.575 7
74.760 7

258.430 5

TABLE III. Results of the average-atom calculation at
T =100 eV and p=4. 77&(10 e cm in Al. The origin of ener-
gies is the exchange and correlation potential for free electron

gas U~0. Their absolute position is obtained by adding
—0.51696 Ry. All energies in Rydbergs. (r ) is the average ra-
dius of the shell.

Fz, &E—z„(.. n; .. . ) —TSz, —Tb,S[p, ] . (48)

A is a normalization constant such that. gpz, ——1, the
summation running over all integer ionization states. I'z~
is an effective free-energy including the entropy contribu-
tions and the average total energy of the Z* species, the
expression of which is given by Eq. (30), but now with the
average occupation numbers n; instead of the integer n;

B. Practical aspects of the average species calculation

This calculation starts with the choice of a reference
Z* species t. . .n;o. . . I. As this one is only a mathemati-
cal tool around which the energy is linearized with respect
to hn; [see Eq. (41)], it can be chosen with fractional oc-
cupation numbers. So we proceed as follows. We per-
form an AA calculation which provides average levels
c«. These are-used to determine the reference Z* species
occupation numbers n;o (FD) under the condition

gn;=Z —Z' . (44)
g n;o Q I 1+——exp[P(s« —v)] I

'=Z —Z* .

Equations (43) and (44) entirely define the average species
for the ionization degree Z*. The probability of this ioni-
zation degree can now be calculated. The number of pos-
sible states of the species with the given ionic configura-
tion t. . . n;. . . I is (see Sec. IIG) Q~ ——exp(S[p~]), corre-
sponding to all possible arrangements of the free spec-
trum. The number of bound configurations giving ioniza-
tion state Z is

Qb ——exp(S, )

with Sz+ the entropy of the independent bound pseu-

doparticles,

With these fixed n;o, we make the complete self-consistent
calculation of the reference Z* species, as indicated in
Sec. III. The corresponding MEE c.*.z„ the reference en-

ergy b,E(. . .n;o. . . ), and entropy b,S[p~] are simultane-
ously computed. Then, using Eqs. (43), the average n s
are calculated, and also the free-energy F, by means of
Eqs. (45)—(48). This sequence of calculations has to be re-
peated for every integer value of Z* between 0 and Z.
One can imagine that negative ions do exist, however, for
fixed conditions of temperature and density, such ioniza-—
tion states are very improbable and may be deleted, as we
shall see in the numerical example below. Once aH the
significant species are treated, the probabilities p ~ are
normalized.

Sz, ———kz g [n;inn;+(1 n; )ln(—1 n; )], —

so that the total number of Z* species is

Qz ——exp(S, +S[pl]) .

Finally, the total probability of a Z' species is

Pz, —A exp( PF,)—
with

(45)

(46)

(47)

C. Applications

In some studies, it is useful to know the average values
of Z ". For n =1, the AA model gives the answer. But
for transport phenomena, for instance, one needs (Z* )
(electronic conductivity), and similarly for the bremsstrah-
lung cross section. %'hen fluctuations are important,
(Z*") may be rather different from (Z')". The model
of average atomic species yields these averages.

TABLE IV. The various average atomic species in aluminum at T =100 eV and p=4. 77)&10 e cm . For each of them, the
average occupation numbers n; [Eq. (43)] are shown. The 3d shell exists for large ionizations only.

1$
2$
2p
3$
3p
3d

1.0000
1.0000
1.0000

1.0000
0.9027
0.8658

1.0000
0.7971
0.7343

1.0000
0.6824
0.6059

7

1.0000
0.5205
0.4439
0.1477

1.0000
0.3573
0.2973
0.0666
0.0614

1.0000
0.2193
0.1796
0.0299
0.0278
0.0257

10

1.0000
0.1157
0.0952
0.0120
0.0112
0.0106

0.999 1

0.000 23
0.000 19
0.000 18
0.000 17
0.000 16

12

0.5000
0.
0.
0.
0.
0.
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TABLE V. Probability P + of the various atomic species in aluminum at T=100 eV and

p=4. 77X 10 e cm . Rydberg units.

Ze

3
4

6
7

9
10
11
12
13

(Z*)
(Z42)

bE ~(. . .n;. . . )

—533.1474
—517.8026
—500.3762
—480.5893
—454.8157
—426.1120
—397.1376
—369.3399
—337.0107
—179.3595

—8.4255
7.988

64.630

TS

0.
22.0827
32.9470
38.7614
46.6236
50.1989
44.8554
27.1241
0.2485

10.1897
0

Tas[p, ]

—141.2545
—110.9560
—80.7413
—50.5880
—20.4398

9.6812
39.7446
70.0151

100.4267
130.9460
161.5394

—391.8929
—428.9294
—452.5819
—468.7628
—480.9995
—485.9921
—481.7376
—466.4791
—437.6859
—320.4952
—169.9619

P

1.225 X 10
1.892 X 10
0.004 73
0.042 71
0.225 71
0.445 19
0.249 55
0.031 30
6.228 X 10
7.413 X 10
9.456 X 10-"

The model has been applied to the calculation of the
probabilities Pz* in aluminum, at T = 100 eV and

p=4. 77&&10 ecm (i.e., material density is 3.06 g
cm }. The AA results are presented in Table III. Let us
recall that the AA average ionization is Z&A ——7.720. We
also give the AA total energy (hE), the entropy (TbS)
and the quantities relative to the unperturbed electron gas.

Table IV represents the occupation numbers n; versus
Z*. The states Z*=0,1,2 do not exist in the model be-
cause only the one-particle levels 1s, 2s, and 2p exist when

0
~N

60—

.
O

eQ~ ~

a

50—

30—

I I

10 2' 15

FIG. 1. Variation of the effective free-energy of the average
atomic species of ionization degree Z*, with respect to Z*.
The quantity PF ~ (P is the inver—se temperature) is, except

for a constant shift, the logarithm of the statistical weight of the
average species.

the bound charge is important, and these levels can con-
tain ten electrons at most. For smaller bound charges new
levels appear which are quasi unpopulated for Z* )11.

The total therrnodynarnic quantities, together with the
statistical weights, are given in Table V and plotted in
Fig. 1. The calculation of (Z*) gives (Z*)=7.988, a
value close to ZAA ——7.720. The deviation can be ex-
plained mainly by the differences in the treatment of XC
effects. In the AA model bound and free electrons are
treated with the same functional Fxc[p]. In the present
model Fxc[p] is still used for the free electrons, but the
XC effects among bound electrons are treated
phenomenologically, their energy being calculated with
the zero-temperature ground-state functional Exc[p].
The calculation of the free-spectrum relaxation (modifica-
tion to the e's) by means of a correction linear in 5Ut may
also contribute to the difference between (Z*) and ZA~.

For the average (Z ), we found a value of 64.630,
from which we get o.= (Z* ) —(Z*) =0.822, a measure
of the importance of fluctuations. These mainly originate
in the 2s and 2p shells whose populations vary in the ratio
of 1 to 2 among the three most probable species Z =7, 8,
and 9. The effect of the fluctuations on the radiative
properties may also be appreciated in the following way.
Assuming that the dipolar matrix element (2s

~

r
~
2p)

does not vary significantly, the 2s~2p transition proba-
bility is proportional to B=nz, (1—n2~)v2s, 2p', where v is
the transition frequency. The average (Bz, ) can be com-
puted and compared to Bz~. We find (Bz, ) /
BA& ——0.91, a result which seems to indicate a rather
small effect, but hides a large dispersion; Bz~ varies from
3.33 for Z*=7 to 1.10 for Z'=9. The model described
here allows a detailed study of the fluctuations which may
affect significantly the radiative properties of the plas-
mas. "

V. CONCLUSION

We have presented a static model describing in some
detail the various atomic species in a dense plasma. The
XC effects have been treated in the spirit of density-
functional theory. The main approximation made is to
extrapolate (with no rigorous justification) the theory
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from the ground state to higher excited states. This treat-
ment has the very important advantage of including all
the relaxation effects related to configuration changes
straightforwardly. We have shown that the variation of
the total energy between two species with the same ioniza-
tion degree, but different ionic configurations, is easily ob-
tained as the difference of two modified effective one-
particle energies, taking into account the free-spectrum re-
laxation. Generalizing this property to any variation of
the occupation numbers of the bound levels, under the
constraint of ionic-charge conservation, we defined the
average atomic species for any given ionization. We also
presented a calculation of the statistical weight of any ion-
ization state. Among the possible applications of the
model are the detailed study of radiative transitions in any
nonequilibrium configuration and the investigation of
fluctuations in equilibrium plasmas. A possible extension
of this work could be the study of dynamical effects in-
volved in the electronic transitions.
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APPENDIX: EFFECT OF SCREENING
ON THE FREE SPECTRUM RELAXATION

The change in bound density 5p;=p;5n; produces a
change 5Ut of the total potential acting on the electrons in
the continuum. Let 5Vt be the Coulomb part of 5Ut. The

Poisson equation reads

b, (5 Vt ) = 4—n.(5p; +5pt ), (A 1)

where 6pI is the "free-density" relaxation. In order to
solve (Al), 5pt is calculated in a Thomas-Fermi-like ap-
proximation, applied to the free spectrum only. We as-
sume that the variation of 5pt is well reproduced by the
variation of

~213—3n i
" ~y"/ —pU 3 —P~p —U ~'tr I 1+e I

that is, neglecting the variation of the XC potential in-
cluded in U~,

which is written
1

5PI fl(r)5VI ~

4m

'1+e
(A2)

(A3)

5n; J IC(r, r')p;(r')dr'=5Vt(r) .

With the notations Y=r6VI and g = —4~r5p;, one gets
from Eq. (Al) the differential equation

d Y =f&+g . (A4)
dr

The boundary conditions on F are (i) F behaves like r
close to the origin, and (ii) Y' decays exponentially for
large r The nu.merical solution of Eq. (A4) presents no
particular difficulty. The relation with Eq. (38) is
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