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Nonresonant wave-particle interaction in semiclassical quasilinear theory
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A nonresonant nature of wave-particle interaction is clarified from the viewpoint of quantum
mechanics. The interaction of particles and quasiparticles can be described by the use of transition
probability which is found to have both resonant and nonresonant contributions. The resonant tran-
sition probability is known as Fermi s golden rule, which is now supplemented by the nonresonant
contribution, resulting in the proper conservation of energy and momentum in the particle-
quasiparticle system.

I. INTRODUCTION

The quasilinear theory of weak plasma turbulence was
introduced from the two different points of view: one
based on the Vlasov equation' and the other based on the
quantum-mechanical viewpoint. ' In the quantum-
mechanical viewpoint, the decay (or growth) of plasma
waves is considered as a result of competition between ab-
sorption and emission of quasiparticles by plasma parti-
cles. The process involves a resonant transfer of energy
between plasma particles and quasiparticles. The rate of
change of number of quasiparticles N~(haik) with momen-
tum Ak and energy RQk is conveniently given by Feynman

1agrams as
S
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where N, (p) is the number of plasma particles of species s
with momentum p and a mass m„Vis the volume of the
box in which the system is quantized, and e is the dielec-
tric constant. The first and the second terms of Eq. (I)
can be interpreted as induced and spontaneous emission in
a two-energy-level system, respectively; Eq. (I) may be
described by

Ns (»
8N~(Rk)

Bt
Ns (p-5k)

(k,+) (k,+)

Ns(p-'hk)

p -hk
S

(I)
where summations are taken for the momentum of plas-
ma particles p and for species of particles s. Based on
Fermi's golden rule, the equation leads, in a semiclassical
limit, to
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Although the quantum-mechanical treatment is
straightforward because of its heuristic nature, it was no-
ticed that the quantum derivation for the rate of change
of plasma particles does not introduce the nonresonant in-
teraction between particles and wave fields. ' The classi-
cal derivation reveals that nonresonant particles do carry
energy and momentum attributed to waves. It has indeed
been shown that nonresonant interaction plays an essential
role in the plasma turbulence such as the high-energy ion
tail formation in the ion-acoustic turbulence. ' This was
the motivation of the present paper in which the quantum
derivation of the quasilinear theory is reconsidered.

In Sec. II a transition probability is formulated for the
particle-quasiparticle interaction. A general perturbation
method is used to recover Fermi's golden rule, and the ex-
tra term which is responsible for the nonresonant interac-
tion is first introduced. In Sec. III the transition probabil-
ity is used to derive the rate of change of the number of
plasma particles in the process of interaction between par-
ticles and quasiparticles. In Sec. IV equations of conser-
vation of energy and momentum in the particle-
quasiparticle system are derived. Section V concludes
with discussions.

II. TRANSITION PROBABILITY

The quantum-mechanical behavior of systems com-
posed of particles and quasiparticles can be described by a
wave function or state vector, which can be expanded in a
series of eigenstates whose coefficients b~(t) satisfy the
equation

~ —l

b (t)= ——ge "M „(t)b„(t),m

where E ~„~ is the energy of the system in the state m (n)
and H~„(t) is the matrix element of the Hamiltonian
whose contribution comes from the interaction between
plasma particles and quasiparticles (plasmons, phonons,
etc.). The quantity

~

b (t)
~

is the probability for the
system to be in a state m at time t.

First, we shall consider a plasma with no external mag-
netic field and follow the quantum-mechanical derivation
of Fukai and Harris" with some modification. We will
see where the concept of nonresonant interaction can be
introduced. Suppose an electrostatic wave has a potential
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p(x, t) =pk(t)expIi I
k.x —cok(t —tp)1I (4)

where the amplitude pk(t) is slowly time varying. A
first-order perturbation theory together with the Born ap-
proximation gives the probability amplitude for the tran-
sition i (q —k)~f (q) during the time t —tp as

i ~ le (E —E ), )t'bf(t)= ——f dt'e
'0

t
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where we have used

0, n&i
1 tt=t

Let us set s =t t—' If. the time variation governed by the
f1 (Eq Eq g )s ~

term e q is fast compared to the wave evolu-
tion time of pk, we may expand pk(t —s) as

Pk(t s)=P—k(t) s-
Bt

The transition probability per unit time is then
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where the symbol P denotes the principal value. The
second term in the right-hand side of Eq. (9) is responsible
for the nonresonant interaction between plasma particles
and wave fields as we will see later.

Now we turn to general solutions of Eq. (3) involving a
time-dependent interaction Hamiltonian. The method we
describe here is similar to the one developed by Heitler'
for the radiation problems involving discrete bound states
of electrons.

Let us start with Eq. (3) which gives the time variation
of the probability amplitude b~(t) for the state m. We
seek a solution which satisfies an initial condition such
that at t =0 the system is in a state

I
4;) and all other

probability amplitudes are zero: b„(0)=5„;,where 5„; is
the Kronecker delta. Here we note that Eq. (3) is mean-
ingful only when t ~ 0. We may extend the solution, sim-
ply for the analytical convenience, to the negative t by
adding the inhomogeneous term to the right-hand side of
Eq. (3),

b (t)= ——g e " " H „(t)b„(t)
dt

+5;5(t) . (10)

Equation (10) is valid for all t and we seek a solution
which satisfies conditions

where r=t tp and—
1

vq, k ~ (Eq Eq —k ) teak

The second and third terms of the right-hand side of Eq.
(7) was not considered in the derivation by Fukai and
Harris. Taking the limit ~—+ ac and discarding rapidly os-

+SV
cillating terms with e q', we obtain

b~+, (t) =b;(t) =0 for t &0,
b;(+0)=1,
b ~,.(+0)=0,

where t =+0 means that t approaches zero from the pos-
itive side. The Dirac delta function 5(t) in Eq. (10)
expresses the required jump at t =0. By integrating over
a small region of t around t =0, we get b;(+0)—b;( —0)= 1, while b~+; is continuous at t =0.

Let us write a solution of Eq. (10) as

b (t)= — f dEG;(E,t)e, (12)
2&i

then the function 6;(E,t) is required to satisfy

(E E)6;(E,t)+ih-
Bt
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where we used the relation

5(t)= f dEe (14)

where the singular function g(x) is defined as
r

1=Pg(x)= lim
1

+o x+ig
—in.5(x)

and has properties

xg(x) =1, (17)
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Equation (13) can now be written for m&i as

BG;G;(E,t)= gH „(t)G„;(E,t) iA g(E —E), —
Bt
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0 (t &0)
g(x)e'"'dx —2 '

( o) . (19)

g Hmn Gni =Hmi Gii + g Hmn Gni
n n (+i)

then Eq. (15), through the iteration, becomes

G; (E,t) = G;; (E)g(E E)U— ;(E,t)

itic(E—Em ) V—m;(E, t)
for m&i, where

U;(E, t) = H;(t)

(20)

(21)

For the purpose of the present analysis we assume that the
function Gm;(E, t) is slowly time varying and we use the
approximation G;=Q„HmnG„ig(E E—) in the itera-
tion procedure. The summation in Eq. (15) can split off a
factor G;; as

where

I;(E)=—„H,, + g H,„g(E E-„)U„,(E)' .
n (&i)

(25)

b;(t) =exp( i Im—I;t —ReI';t) . (26)

Since
i
b;(t)

~

=e ', 1/2ReI; is the lifetime of the
initial state. When we consider ReI; —+0,

The assumption BG;;/Bt=0 corresponds to the time in-

dependence of the wave frequency. Since G; is given by
Eq. (21), we are now in a position to calculate bm(t) by
substituting G; into Eq. (12). We are interested in the
time at which a system is found in the state m with the
probability

~

b (t)
~

. The time should be long enough so
that at least some transitions from state i can occur;
taboo. We assume that I;=ReI;+i ImI; is indepen-
dent of E. Then

+ g H „(t)g(E E„)U„;—(E,t),
n (&i)

(22)
(27)
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The function G;; may be obtained directly from Eq. (13),
by setting BG;; /Bt =0, as

where E; =E;+DE, bE =A'Iml;, and gr(E E; )—
=limp +p[1/(E E; +i I—)]. We express g(E Em) in-
Eq. (21) as g (E E)=lim —.+0[1/ (E Em+i'o)], —
and use the relation

gr(E E., )g (E E )

r(E; E)[gz(E —E; ) g(E——E—)] (28)

G;;(E)= 1

E E;+i%I;(—E)
(24) for o & I (assumption cr ( I will result in the same transi-

tion probability to find) to get b (t) from Eq. (12),

i
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b ( t) = g &(E; E )[U ;(—E;,t)e ' —U ;(E , t)]

Since the probability of finding a system in a state m at
time t is given by

~

b (t) ~, the transition probability
from the initial state i to the state m per unit time
can be found by

~ i —i' (E; —E )t
bm = — U;(E;,t)e-m ~ mI

~Um «')
+g r(E; —E )

at
BH;

at

u~;= ib (t) I2
di

=b b +b*bm, (30)

where the overdot denotes the time derivative and the as-
terisk denotes the complex conjugate. We can evaluate

bm from Eq. (29) as

X(e ' —1)+O(d H;/Bt ), (31)

where the relation (17) was used. Since we have assumed
that G; (E, t) is slowly time varying, we can set
BU;(E; )/Bt=BH;/Bt and 8 H;/dt =0. Therefore,

b may be approximated by
—1

b = — U; (Ei,t)e-m ~ ms (32)

We now calculate a transition probability per unit time
from Eq. (30) with Eqs. (29) and (32),

ui; = ——U; (E;,t)e

—1

X ' g' (E; E)[U*;(E;,t)e —' —U';(E, t)]

+&@~ r«i Em) 0r«— —
m

~IImz ~ ~IImi iA I (E,, —E )&+g(E; .—E ) e '+c.c.
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The most interesting situation is that where the transition
from the initial state i to the final state f takes place after
an elapse of long time. Setting t~ co in Eq. (33) and us-

ing Eq. (18), we obtain for toj;,

rifi I
Ufi(Ei'~t)

I
'C~ r(E~' ——Ef )

BHf*;
+Uf;(E;, t)

' g* r(E; Ef)g—*(E; Ef)—

e, and an imaginary part e; defined by

BX,

co —k.p/m,

4m.e,

p
Vk'

m2e,2

p Vk ~p
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where N, =N, (p) is the number of plasma particles of
momentum p. The relation

+C.C. (34)
e„(k,Qk) =0 (39)

Approximating U~;(E;, t) by the first term of Eq. (22)
and using the definition of the g function, we finally ob-
tain

i Hf;(t) i
5(E; Ef)—

+p, „~Hf;(t) ~',
(E. Ef )~ dt

(35)

wf;= ~Hf; ~

5(E; Ef) . — (36)

III. RESONANT AND NONRESONANT
PARTICLE-QUASIPARTICLE INTERACTION

Our goal in this section is to derive a rate of change of
plasma particles resulting from the interaction between
particles and quasiparticles in the lowest-order process.
The transition probability derived in Sec. II plays a major
role in the analysis.

For simplicity, we consider an electrostatic oscillation
in a plasma in the absence of magnetic field. Let us intro-
duce the dielectric constant e(k, co) which has a real part

I

where E; (=E;+iiiImI;) is replaced by E; assuming
E,. »A'Iml;. If we neglect the time dependence of the
interaction Hamiltonian, we recover the transition proba-
bility known as Fermi's golden rule,

gives the dispersion characteristics of quasiparticles with
momentum Ak and energy AQ~. Following Harris, the
rate of change of N, (p) can be written by the Feynman
diagram as

BN, (p)
Bt

s s
hk p +Ilk p

p+hk g p ~ p-hk
s 'hk s 0k s p

s

(40)

where plasma particles of species s with momentum p are
either created or destroyed by the interaction with quasi-
particles denoted by A, with momentum iiik. Different
from the scattering process between particles, ' where
only "resonant particles" interact with each other, the
scattering process between particle and quasiparticle in-
volves "nonresonant particles" which carry some of the
energy and momentum of quasiparticles. To emphasize
the nonresonant interaction, circles are added at the in-
teraction region in Eq. (40). Temporal evolution of the
number of quasiparticles Ni (A'k) should be incorporated
in the process of interaction. Equation (40) is now ex-
pressed by the mathematical equation, using the transition
probability Eq. (35)
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k.p ~&s 8 k-pk +Qgk. 5 Q„— X,(p)
ms ~P Bp ms

k

4~e,'eQ& q 1 aX, aX,(ek)k.
Vk (Bene/Bco)n„&p (Qz —k p/m ) &p

To make the classical contact, we set A' —+0, K, (p) « 1, and %Aqua~(A'k) finite. Then Eq. (41) becomes

&N, (p) 8m e,
fiQgXg(Rk)k 5 Qg-

Vk (Bene/d~)n Bp

(42)

The first term in the right-hand side was derived previous-
ly ' and contributes to the resonant interaction. On the
other hand, the second term in the right-hand side contri-
butes to the nonresonant interaction which will be shown
to be responsible for the carriage of energy and momen-
tum in the system.

IV. CONSERVATION OF ENERGY AND MOMENTUM

In this section we derive equations of conservation of
energy and momentum based on the semiclassical equa-
tions (2) and (42).

The time change of the plasmon energy can be found by
multiplying fiQq on both sides of Eq. (2) as

B IVg
=2rk~k+~k

classical limit. With the help of Eqs. (39) and (47), Eq.
(49) can be further simplified as

p2 BX,
2 Bt

am„am„'
(Bcoe„/Bco)n„Bt Bt

(50)

where the first term in the bracket of the right-hand side
comes from the resonant interaction, the second term is
from the spontaneous emission, and the third and the
fourth terms are related to the nonresonant interaction.
With the help of Eq. (43), Eq. (50) becomes

where

W'I, ——A'QgNg(Rk),

4~ e, Qg BX, k.p
Vk (Bcoe/Bco)n &p

8m e, Qk k.p
2 2 2

Sg ——g Q ~ X,(p)5 Qt, —
Vk (Bloc/d~)n m,

We introduce the approximation

8 a
coe ci)E„=Qg'

8co Q„8co n„8cd

(44)

(45)

(46)

(47)

a
COE'q

BCO Qk

=0 . (51)

k

8'k

8
6061

BCO Qk

(52)

Since quasiparticles, whose energy is fiQ&N~(haik), carry
the energy not only of the electric field but also of the ki-
netic energy of oscillating particles in the electric field,
the quasiparticle energy with a correction factor
(Bcoe„/Bco)n„should be used in the conservation of energy.
The quantity

where Eq. (39) was used. Then the growth rate y~ given
by Eq. (45) can be expressed as

e;(k, Qg)

[ae„(k,~)/a~]Z (48)

Qd ~e. /~~ )n„BÃq(A'k)
A'Ak

( BcdE'/Bco )n„Bt

Next, the time change of particle energy in the system can
be evaluated from Eq. (42) as

BXg 2Qpe;
fiQgXg (haik ) —Sg

2m, Bt ~ Bene/Bc@ n„

,e„—1 B&g(Ak)
AQk

( Bcoe/Bco )n„

is the energy density of the electric field carried by quasi-
particles. Thus, Eq. (51) shows the conservation of energy
in the system.

The time change of the momentum carried by particles
in the system can be calculated similarly. Multiply p on
both sides of Eq. (42) and take the summation over p and
plasma species s; then we find

g gp~, (p)Bt

= g 2kfiQg Ng(haik)
k Bcoe/Bco n

8& es +k k'p2 2

k5 Qg — N, (p)
Vk (Bcoe/Bco)n„ms

(49)
(~e./~~)n„BK, (Alc)

(53)
In deriving Eq. (49), we carried out a partial integra-
tion over p keeping in mind that g —&V f d U in the where we carried out a partial integration over p, as was
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done to derive Eq. (49). Equation (53) can be further sim-
plified as N, (p)+grQ N, (Ak),

2p72~

g g pN, (p) = —g 2ykA'kNk(A'k)
(3t

k BN, (ek)S„+g erik

k k k Bt
(54)

8 g pN, (p) =0 . (60)

which was used in conventional quantum-mechanical
derivation. ' Conservation of' momentum in the
electron-plasmon system is, from Eq. (58), given by

The time change of momentum carried by quasiparticles
can be found from Eq. (2) by multiplying A'k as

fikNk(irik) =2ykfikNk(haik)+ Sk,k
(55)

Bt Qk

Since the momentum of plasmon Pk is physically carried
by nonresonant particles, the total momentum in the sys-
tem should be given by

or if we define the momentum of the plasmon as

Pk ——RkNi (Ak), (56)

g pN, (p),

not by

we get

k
2ykPk+

Q
Sk

Bt k
(57)

Equation (54) together with Eq. (55) gives the equation of
conservation of momentum in the system,

g pN, (p)+ g irikNi (k),
p k

which was used in conventional quantum-mechanical
derivation. The plasmon momentum is related to its ener-

gy by

Pk/ Wk ——k/Qk, (61)

—g gpN, (p) '=0. (58)

V. DISCUSSION AND CONCLUSION

It is clear from Eq. (54) that nonresonant particles are re-
sponsible for canceling the momentum carried by quasi-
particles resulting in the conservation of momentum
described by Eq. (58).

(63)

which was equivalently shown in the relation between
wave momentum and energy in the classical theory. '

The classical quasilinear equations may be derived in a
straightforward manner with the help of prescriptions

~p f d k
(62)

k (2ir )

QN, (p)~V f d u f, (v), p=m, v

We have derived equations of conservation of energy
and momentum in the particle-quasiparticle system. The
system involves the interaction between particles and
quasiparticles in resonance and in nonresonance. Non-
resonant interaction has been shown to appear as a term
of time-dependent Hamiltonian. The transition probabili-
ty has thus been modified to include nonresonant nature
of particle-quasiparticle interaction. The proper treat-
ment of the transition process allows us to obtain the
semiclassical quasilinear equations which advocate conser-
vation of energy and momentum.

For a simple example, consider a plasma (Langmuir)
oscillation which is characterized by e=e, = 1 —co~/co,
where co& is an electron plasma oscillation. Conservation
of energy in an electron-plasmon system is, from Eq. (51),
given by

Bt 2&i~
N, (p)+g —,'XQkN, (ak) =0. (59)

Since plasmons carry electric field energy of
gk A'QkNi (A'k) /2 and oscillating particle energy of
gkRQkNk(A'k)/2, the total energy of the system should
be given by

E,
8~

Be„
i Ek
['

irtkNk(Ak) =Pk ——k

iriQkNi (iiik) = Wk —— toe„
Bco

(65)
CO Og 87T

4m e, Bf,
yk=g f d uk 5(Qk —k v),

m, k ( Be, /Bco )n„Bv
(66)

In the classical limit, Eq. (42) becomes

Bf,(u) Bf,(v)
D, (v).

Bt Bv
~ [A,(v)f, (v)], (68)

where

D, (v)= e,
2 dk kk

(2m. ) k

&& ~~Ek~'S(Qk —kv)

8w e, Ak
Sk ——g f d u f, ( )v5( Q—k k v) . (67)

k (Be„/Bco)n„

not by

N, (p)+g —,iriQkNk(irik),
2'

1+—P
(Qk —k v)

(69)
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8tres d k k 1
A, (v) = f &

5(Q~ —k.v) .
m, (2ir)s k2 Be„/Bco n„

(70)

Yk k ( )

where Wk, yk, and Sk are now given by Eqs. (64), (66),
and (67), respectively. Equations governing conservation
of energy and momentum given by Eqs. (51) and (58) be-
come

This is the classical equation governing the time evolution
of the particle-distribution function. ' Equation (43)
remains the same in its notation, or

BWg =2 8' +S

Bt g f d u m, vf, (v) =0, (73)
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