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A model of fluid-argon —solid-CO2 interface is investigated by means of density-functional {DF)
-theory and modified-hypernetted-chain (MHNC) calculations. Both theoretical approaches predict
complete wetting of the CO2 wall from the bulk Ar vapor when this approaches the coexistence re-
gion. At a bulk vapor density n~o. =0.08 and for an assigned wall-fluid coupling strength, the DF
and MHNC estimates of the temperature for which complete wetting occurs are very close to each
other (T =1.16), and to the coexistence temperature of the homogeneous bulk phase obtained
through independent DF and MHNC calculations. The DF results also show the existence of a
prewetting transition, very close to the coexistence line, and of a "surface spinodal line, "that is a set
of points near and inside the coexistence region, at which transverse correlations in the fluid near the
wall diverge, while the adsorption or coverage remains finite. The MHNC does not have convergent
solutions in regions too close to coexistence so that it is hard to detect the very short prewetting line;
however, the extrapolated behavior of the transverse correlations -and coverage, which both show a
diverging trend on approaching a well-defined temperature, and of the density profile whose
features, far from the wall, faster and faster herald in the approach to coexistence, all point to the
occurrence of complete wetting. Moreover, in agreement with DF results, transverse correlations
also show a diverging trend inside the coexistence region while the coverage remains finite, thus con-
firming the existence of a surface spinodal line.

I. INTRODUCTION

The occurrence of complete wetting at a model fluid-
argon —solid-CO2 interface has been much debated in the
recent literature on inhomogeneous fluids. ' " The con-
troversy stems essentially from the fact that density-
functional theories predict complete wetting for the
above system, whereas approximate integral equations for
the pair-correlation function, ' and also specific comput-
er simulation, do not.

However, the capability of certain integral equations to
predict wetting has been questioned recently, ' and
lattice-gas calculations, ' as well as other computer-
simulation results' and direct experimental evidence, '

are available for systems very similar to the Ar-CO2 inter-
face, where complete wetting is seen to occur.

One line of investigation of this problem, different from
those hitherto cited, is constituted by modified-
hypernetted-chain (MHNC) calculations, ' ' which we
have preliminarily reported in a recent paper, ' together
with some new density-functional (DF) -theory results.
We found that the occurrence of wetting transitions at the
Ar-CO2 interface is coherently indicated by the behavior
of different physical quantities, and supported by a close
agreement between the two different sets of calculations.

It is the purpose of this paper to give a full account of
the results previously reported and of their physical impli-
cations in the context of a detailed discussion of both the

MHNC and the density-functional approach, as applied to
the present system.

One basic point of our preceding work was the use of
the concept of "nonlocality" in the procedure which
models the properties of an inhomogeneous fluid in terms
of those of a locally homogeneous one. The idea of nonlo-
cality is not a new one in the context of the literature on
inhomogeneous Auids. Various authors have in the past
used a nonlocal ansatz for the one-particle density, '

and recently this kind of approach has been given a more
rigorous foundation. In particular, it has been shown that
some of the previous approximations' in the application of
the density-functional formalism actually correspond to
keeping the lowest-order terms in a density-functional ex-
pansion of the Helmholtz free energy. '

The density-functional results we report here hinge on
these last developments in that they are obtained by keep-
ing higher-order terms of that expansion than previously
done.

As far as the MHNC is concerned, the inhomogeneous
bridge function E(r, r') is constructed from its homogene-
ous counterpart, by using a nonlocal ansatz for n, (r) (Ref.
19). We are not aware of other similar calculations for
E(r,r'). Moreover, it is a distinctive feature of these
MHNC calculations to be very extensive, in the sense that
we perform an exploration of the dependence of the re-
sults on the truncation and discretization procedure of the
direct and reciprocal space variables. It appears that this
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last aspect can become crucial in order for the onset of the
wetting transition to be observable or not.

The MHNC and the density-functional theory are ex-
pected to yield complementary physical information. In
fact, the density-functional approach permits a detailed
investigation of the thermodynamic region where the wet-
ting transition is expected to occur. By contrast, the
MHNC has no convergent solution when one appoaches
too closely the transition region, due to the onset of long-
range correlations in the fluid, but it embodies, e.g., direct
information on the inhomogeneous two-particle distribu-
tion functions, which are not trivially obtainable within
the density-functional-theory framework.

The comparison between the two theories is built up by
first ensuring that they describe the bulk homogeneous
fiuid on a comparable level of accuracy. To this aim we
specifically investigate the phase diagram of bulk Ar,
modeled as a Lennard-Jones (LJ) 12-6 fiuid, by the two
methods.

This paper is arranged as follows. In Sec. II we cast the
basic MHNC equations and describe the solution pro-
cedure; Sec. III reports the MHNC results; Sec. IV de-
scribes the density-functional approach, whose results are
presented in Sec. V; a concluding discussion is given in
Sec. VI.

II. MHNC BASIC EQUATIONS AND SOLUTION
PROCEDURE

We consider a fluid consisting of molecules which in-
teract through the I.J 12-6 potential

12 6

PLg(r) =4e 0 O
(la)

T

with the parameters c. and o. appropriate to represent Ar
(e/kz ——119.73 K and a =3.405 A), and a substrate
which is assumed to be a flat impenetrable wall of infinite
extent in the x and y directions, and generating the (in-
tegrated) LJ 9-3 potential

T 3'9
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and the Ornstein-Zernike equation

h(r, r') —c(r, r') = f dr"h(r, r")n (r")c(r",r'), (3)

z being the distance from the wall. In (lb) a is an adjust-
able parameter which allows one to vary the strength of
the substrate-fluid interaction. The other parameters are
chosen in such a way to represent a solid CO2 wall:

/kz ——153 K, o =3.77 A, and n o =0.988.
The procedure of solution of the MHNC we follow has

been described in detail elsewhere' ' ' and we discuss
below only the manner in which the bridge function
E(r, r') is modeled in terms of the hard-sphere bridge
function.

We start from the first Born-Green-Yvon (BGY) equa-
tion for the inhomogeneous one-particle density n (r),

V[lnn (r)+/3V, „,(r)]= f dr'c(r, r')Vn(r'), (2)

E(r, r') =EHs
~

r —r' ~;n,
r+r'

2
(5)

where

n, (r)= f dr"n (r+r") . (6)

We have so defined a coarse-grained local density ob-
tained by averaging over a sphere which, according to (5),
is centered halfway in between point r and r', with a
temperature-dependent diameter d. This last turns out
to be almost equal to the LJ 12-6 diameter o. In what fol-
lows o will be taken as unit length. We report here for
comparison the previously used prescription for E(r, r )

(Refs. 17,18, and 23)

E(r, r') =EHs(
~

r —r' ~;n = —,
'

[n (r)+n (r')]) . (7)

Nonlocality effects are embodied in (6) through the
determination of the effective density in
EHs(

~

r —r' ~;n, [(r+r')/2]) through which we approxi-
mate E(r, r ). The ansatz (6) is in the spirit of previous
nonlocal calculations within the density-functional ap-
proach ' ' and allows avoiding the feature that n, (r) can
assume, near the wall, values higher than the maximum
possible packing density.

Equations (2)—(6) have been solved simultaneously by
iteration. Some input functions n (r) and y(r, r')
=h(r, r') —c(r, r') are necessary in order to initialize the
procedure. Then an isothermal or isochore path is ex-
plored, by slowly varying the density or the temperature,
respectively, in order to get closer and closer to the coex-
istence line [known from independent bulk calculation (see
below)]. The density profiles and the y(r, r') generated at
each step are used as input for the next thermodynamic
state.

Various meshes for the space variable z and R and for
the wave vector Q, associated with the two-dimensional
Fourier transform of the correlation functions with
respect to R, are used. ' These meshes have spacings
M, b.R, b,Q. The distance from the wall z,„marks the
boundary of the inhomogeneous fluid; beyond this point
we impose the condition that the density of the fluid
equals that of the bulk. 30—100 iterations are necessary

where h(r, r') and c(r, r') are the total and direct inhomo-
geneous two-particle correlation functions, respectively.
Note that, because of the planar symmetry of our sys-
tem, one has n(r)~n(z), c(r,r')~c(z, z', R), h(r, 'r')
~h(z, z', R), where R =[(x —x') +(y —y') ]'

Equations (2) and (3) contain the three unknown func-
tions n(r), h(r, r'), and c(r, r') and a closure can be ob-
tained through the equation

h(r, r') —c(r,r') = ln[1+h(r, r') j+PP„J( ~
r —r'

~
)

—E(r,r'),
which is an extension to the inhomogeneous case of a
well-known result for homogeneous fiuids obtained
through cluster-expansion techniques.

A functional form must be assumed for the unknown
bridge function E(r, r'). We set
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TABLE I. MHNC calculations at n~ ——0.06, T*=k&T/c, =1.17 (c, is the minimum of the LJ potential well for Ar), a=1 and dif-
ferent truncations for z, R, and Q and spacings M, hR, and b,Q, under the use of the nonlocal ansatz (6). The used meshes are iden-
tified through the number in the first column. hl and h2 are the heights of the first and second maximum in the density profile,
respectively. All the quantities are in dimensionless units. Grid 5 is the same employed in Ref. 18.

I
2
3
4
5
6
7
8
9

10
11

0.1

0.2
0.1

0.1

0.1
0.2
0.2
0.149
0.2
0.2
0.2

+max

3.9
5.8
3.9
2.9
3.9
5.8
5.8
5.81
7.8
5.8
5.8

0.11
0.15
0.15
0.11
0.11
0.11
0.15
0.15
0.15
0.15
0.15

ZIQBX

5.83
5.85
5.85
5.83
4.29
5.83
5.85
5.85
5.85
5.85
7.95

0.375
0.2
0.375
0.375
0.375
0.2
0.2
0.2
0.2
0.149
0.3

Qmax

13.625
5.8

13.625
10.875
13.625
5.8
7.8
S.8
5.8
5.81
8.7

0.692
0.732
0.794
0.700
0.598
0.698
0.751
0.719
0.733
0.732
0.831

h2

0.222
0.198
0.221
0.205
0.159
0.201
0.205
0.193
0.198
0.198
0.239

0.436
0.396
0.457
0.396
0.278
0.384
0.412
0.389
0.397
0.396
0.504

Hmax

4.77
3.75
4.61
3.88
3.01
3.88
4.00
3.67
3.78
3.75
4.74

in order to get convergence, this last becoming slower the
more closely the transition region is approached.

III. MHNC RESULTS

The quantities studied are the adsorption or coverage

I = f dz[n (z) —n~], (8)

where ns n(z —=—oo ) is the bulk number density of parti-
cles of the fluid, and the transverse structure factor

H(z, Q)=1+ f dz'n(z') f dRe'~' h(z, z', R) .

In what follows we shall focus our attention on the
maximum of H(z, g) at z=3 and Q =0. This maximum,
first associated with the growth of a new layer of adsor-
bate at the corresponding distance from the wall, has been
shown by Evans and Tarazona ' to be a signature of the
approach to complete wetting of the system.

We report in Table I results for both I and H,„. As
immediately appears, I and H,„depend on z „,and
actually increase, in a substantial manner, .when z,„ is in-
creased. Note, in particular, the increase with respect to a
grid equal to that already employed by Hillebrand and
Nieminen. '

The effect of varying the grid spacings is a minor one.
The same can be said for the effect of the nonlocal ansatz
for the bridge function (as can be seen from Table II)
with, however, the new feature, -with respect to local cal-
culations, that the convergence of the iterative procedure
is more stable and faster when (6), instead of (7), is used;
this will obviously be important when- one is approaching
wetting transition conditions (see below).

Despite the fact that we cannot exhibit results for I
and H,„ in a situation very close to complete wetting be-
cause, as discussed above, we fail to obtain solutions in
that case, the available results can be fitted onto an inter-
pretative framework which indicates that the wetting
transition has to occur.

We start observing that, in the approach to complete
wetting at constant temperature, one should have
I —

~ p —p„,„~ ', p„,„being the chemical potential at
coexistence for the saturated bulk vapor, and p, some crit-
ical index. Now it has been shown that a surface
compressibility sum rule holds for such a system, '

dz n zH z, =0 —n~KT ——

Bp

ET being the isothermal compressibility. It follows—P —1
that Hmax

l
O' pcoex I

We now follow a different thermodynamical path by
keeping the density fixed and reducing the temperature by
starting with T & Tcpcx we are thus approaching the coex-
istence line along an isochore from above. In this case one

has I - IT T. . l

' an—d H ..- IT T:,I—
These results can be easily proved starting from the iso-
thermal expression for I and H,„,before reported, and
by using standard thermodynamic derivation techniques.

In our calculations we use finite meshes so that we ac-
tually reduce the range of action of the potential; now, as
it has been shown in Ref. 4, for a short range potential

p, ='0, and therefore we obtain I —ln
~

T T„,„~ and-
Hmax

I

T Tcoex I

Rather than selecting different isochores we study the

TABLE II. MHNC calculations for the same thermodynamical point as in Table I, with hA =0.2,
R,„=5.8, and M =0.15. L stands for the local ansatz (7) and NL for our nonlocal calculation with

the ansatz (6).

L
NL
L
NL

Zmsx

7.95
7.95
5.85
5.85

0.3
0.3
0.2
0.2

Qmax

8.7
8.7
5.8
5.8

hl

0.907
0.831
0.758
0.732

h2

0.249
0.239
0.200
0.198

0.545
0.504
0.407
0.396

4.44
4.74
3.S7
3.73
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FIG. 1. I" and H,„as a function of T at n~ ——0.08, from
MHNC. Mesh 2 (see Table I) is used here. Labels on the curves
are a values. Solid circles correspond to computed points, solid
lines to the fit law (see text). The arrows mark T „obtained
from an independent MHNC bulk calculation.

~ ~ I ~ ~
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/ ~
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QlV
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FIG. 2. Td;„as a function of a, for n& ——0.08. Solid circles
and triangles indicate, respectively, MHNC and density-
functional results. Arrow: same source as Fig. 1. AB is the
surface spinodal line, BC the prewetting line, and CD the com-
plete wetting line, which is the straight line T=T„,„, from
density-functional calculations.

behavior of Hm, „at fixed bulk density and as a function
of a and temperature. Results for I and H, „according
to this procedure are reported in Fig. 1.

At high a's H,„clearly shows a diverging trend, less
visible in I, as could be expected on the basis of the above
discussion. H,„ is specifically calculated in a set of
discrete points; in agreement with the discussion given
above, these points can be fitted rather accurately with
curves CI+C2

~

T —Td;„~, C~, C2, and Td;„being pa-
rameters of the fit. The extrapolated divergence tempera-
ture so obtained, Td;„la) is reported in Fig. 2.

It clearly appears that for a&0.72, Td;„—1.15; this
temperature, quite remarkably, coincides with the MHNC
coexistence temperature for the homogeneous bulk phase
independently calculated, by using the same meshes as the
inhomogeneous case. The bulk-phase diagram was calcu-
lated by using a method proposed by Ebner, Saam, and
Stroud. We show in Fig. 3 the bulk-phase diagram of

0.3 Q6
FIG. 3. Phase diagram for bulk Ar. In (a) the crosses are

Monte Carlo, results (Ref. 24); circles, Percus-Yevick calcula-
tions (Ref. 26}; triangles, MHNC with a mesh of 1024 points;
dashed line, MHNC with 64 points; solid line, MHNC with 32
points; dotted line, spinodal line with 64 points. In (b) the coex-
istence curve from a MHNC calculation with 32 points (solid
line) is compared with the van der Waals one from Eqs. (13}and
(14) (dashed line).

Ar according to different discretization procedures and
truncations. The agreement with the phase diagram ob-
tained by other authors is good and could be improved
quite significantly through the use of more extended and
finer grids. A calculation for the inhomogeneous system
at this level of accurateness would, however, imply prohi-
bitively large computing times and memory allocations, so
that a reasonable compromise has to be found, on the
basis of Fig. 3, between opposing necessities.

We now examine the functional dependence of I" and
H,„on the truncation with respect to z. Previous
MHNC calculations performed by Hillebrand and Niem-
inen' seemed to exclude the possibility of finding com-
plete wetting within the MHNC approach. We plot a set
of isothermal calculations in Fig. 4; it appears that, when

z,„ is great enoughthe , coverage, instead of saturating in
the approach to the coexistence line, tends to diverge.
This behavior is even more clearly illustrated in Fig. 5
where we report, at fixed bulk density, various density
profiles at different a's and temperatures. In this case in-
creasing a corresponds to a decrease of the wetting tem-
perature T; this explains the two different regimes for
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Q25-

gences in H~» occur now for T ~ T„,„, and therefore it
is plausible that they have a different physical origin from
those described above and associated with the occurrence
of complete wetting. As we show in the following sec-
tions a close inspection of the results leads to the identifi-
cation of a "surface spinodal line" whose physical features
are consistent with the concept of "surface spinodal
decomposition, " previously introduced by Nakanishi and
Pincus within the framework of a Landau model of a
fluid-wall interface.

IV. FREE-ENERGY DENSITY MODEL

QQ2 Q.QB Q.'I
Within the density-functional formalism, the density

distribution n (r) of a fluid in presence of an external po-
tential V,„,(r) may be obtained by minimizing the grand
potential energy

FIG. 4. I vs n~ at o.=1, along the isotherm T*=1.17. La-
bels identify the meshes employed (see Table I). The arrow
marks n~ at coexistence for the vapor. Note that, in curve 5

{the same choice of mesh as Ref. 18), I tends to saturate with
increasing n~.

n (z) shown in the figure. At high a's small variations in
the temperature toward the coexistence line result in a
strong enhancement of the height of the second peak;
however, the boundary condition n (z) =n~ for z & 6 evi-
dently frustrates the possible growth of a plateau after the
second peak.

The analysis of the three sets of results for I, H,„,
and n(z) indicates that the system approaches complete
wetting as T*~1.15, although the theory is able to
describe this phenomenon only up to its preliminaries.

As it appears from Fig. 1 divergences can occur in
H,„also for low a' s. This seems apparently to contrast
with the possibility of identifying in a unique manner the
temperature at which wetting occurs. However, one must
observe that even if H,„ is divergent, I is not and actu-
ally is almost independent from T. Moreover, the diver-

Q cD \

O[n (r)] =w [n (r)]+ f dr[ V,„,(r) —p]n(r), (9)

where p is the chemical potential and M [n (r)] the intrin-
sic free-energy density functional, which will depend on
the internal interactions in the fluid. Here we consider
~ [n (r)] divided into two terms,

W [n (r)] =W Hs[n (r)]

+ —,
' f dr f dr'n(r)n(r')P„, (

~

r —r'
~
), (10)

where the first part gives the contribution to the free ener-

gy of the core repulsions, taken as hard-sphere interac-
tions, and P,«(r) is defined below. a Hs[n (r)] has some-
times been taken in the local-density approximation to
study the wetting transition, but here we include the
nonlocal dependence, which produces the layering of the
fluid near the wall, by taking

~ Hs[n (r)] =a;d[n (r)]+ f dr n (r)bc/iHs(n(r)), (11)

where ~;d[n (r)] is the exact free energy of an ideal gas,
b, fHs(n) is the excess over ideal gas of the free energy per
particle at homogeneous density n, obtained from the
Carnahan-Starling (CS) equation of state, and

n(r)= f drn(r')w(
~

r —r' ~;n(r))

Q.2-

0.1-

Q. I2.

n+tz)

QQB-

= Q.5

is an averaged density at which b.gHs is evaluated n(r).
has a nonlocal dependence on n (r), through the density-
dependent weight function w(r, n). This weight function
is fixed to reproduce the first term in the virial expansion
for the direct correlation function. It is interesting to
note that the zeroth-order term of this expansion turns
out to be a step-function weight, very similar to the one
used in Eq. (6) to obtain the density n, at which the
bridge function is evaluated in the MHNC calculation.

The second term in (10) is the contribution to the free
energy coming from the attractive interactions in a
mean-field approximation, so that P,«(r) has to be con-
sidered as an effective potential between the LJ particles.

For a homogeneous system, (10) gives the generalized
van der Waals equation of state

FIG. 5. Density profiles in the region z & 1.5 (in o. units) for
two cases of Fig. 1. Labels identify the temperatures. P =PHs+ 2 fpn
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p =pHs+4on (14)

and

kg Tc= —0.0901$o/d Hs (15)

n„=0.249/dHs,

dHs being the hard-sphere diameter.
In order to compare the density-functional results with

those of the MHNC calculation one would like to have
the bulk-phase diagram of both calculations as similar as
possible. On the other hand, for the wetting properties of
the model it is important to keep the exact long-range
behavior of the attractive tail, that is

P,t,(r) =Qt J(r) = 4E(o/r—) for r~ oo . (16)

In previous works, ' P,«(r) has been taken as the nega-
tive part of the full LJ potential. However the critical
temperature obtained from (15), with this choice for
P,«(r), is far too low compared with the integral-equation
calculations and with Monte Carlo simulations. The
reason is that P,«(r) in (10) should represent the real in-
teraction, Pz J(r), weighted by the pair correlation function
g(r), which has the strong first peak just about the
minimum of Pt J(r), enhancing in this way the role'of the
attractive interactions over what could be the result of a
pure mean-field model, when g (r) is assumed to be 1 for
all r. In order to consider this effect, without losing the
requirement (16) for the long-range behavior, we have
here taken

I

cb,«(r) =4E , r&x'~'0-

=0, r&a'~'0- (17)

where c, and o are the LJ parameters in (1) and A, is a free
new parameter which modifies the short-range repulsion.
For A, =1, (17) gives the negative part of the LJ potential,
but if k is less than 1, P«, (r) has a lower minimum. We
have fixed k in order to obtain exactly the same critical
temperature as in the MHNC calculation, that is,
T =1.307, which implies A, =0.5926, with a minimum
for P,«(r) of —1.68e which corresponds to an enhance-
ment of about 70go over the original LJ. This is reason-
able in order to describe the effect of the peak in g(r) at
intermediate density. The hard-sphere diameter is fixed
to be o.. The bulk diagram obtained is compared in Fig. 3
with the results of the bulk MHNC. There is a reasonable
overall agreement, between the two phase diagrams, which
is better at gas densities than at liquid densities, and par-

where pHs and pHs are the pressure and the chemical po-
tential in the CS equation of state, and

ko—= f «4.«(r)

is the volume integral of the effective attractive interac-
tions. The critical temperature and density predicted by
Eqs. (13) and (14) are

ticularly good for reduced temperatures between 1.1 and
1.2, precisely in the range extensively explored in the
MHNC calculations.

Once the functional model for M [n (r)] is specified, we
carry on the calculations by solving the Euler-Lagrange
integral equation obtained by the functional derivative of
(9), with the external potential (lb). The procedure to ob-
tain the solutions near the wetting transition has been ex-
plained in detail elsewhere. First the liquid-vapor and
the wall-liquid density profiles are obtained and used to
generate the initial guess for the wall-vapor interface, with
a given thickness for the wetting film. After a few itera-
tions of the integral equation, n (z) goes to the line of con-
strained minima of the grand potential energy at fixed
coverage, near the complete wetting regime and, along
this line of constrained minima, Q[n (r)] is a very smooth
function of the wetting-layer thickness. It follows that
the iterative procedure becomes very inefficient to move
n(z) towards the absolute minimum of the functional.
However, by starting with initial guesses with different
wetting-layer thickness, one may obtain the function
y(I ), giving the surface tension (or grand potential sur-
face excess) along the line of constrained minima. The
equilibrium state corresponds to the absolute minimum of
y(1 ), but one also gets information on metastable states
(relative minima) and a good estimate of the surface spi-
nodal line as corresponding to the saddle points in y(l ).
This allows us not only to locate the wetting and prewet-
ting transitions, but also to associate the divergences in
the transverse structure factor, obtained in the MHNC,
with a surface spinodal line.

V. RESULTS FROM THE DENSITY-FUNCTIONAL
CALCULATION

In order to compare with the MHNC results reported
in Sec. III we have done calculations at fixed temperature
and bulk density, with variable strength for the wall po-
tential. This allows us to compare the wetting behavior of
the system with exactly the same bulk variables, but in
contact with different walls. The calculations presented
here always correspond to a fixed vapor density
nz ——nzcr =0.08 which, according to (13) and (14) is at
coexistence with a liquid of density nz" ——0.4878, at
T*=1.1618. This temperature is sli.ghtly higher than the
coexistence value for the same vapor density obtained in
the MHNC calculation, which was T*= 1.15.

In Fig. 6(a) we present the results for the surface ten-
sion of the wall-vapor interface at bulk coexistence, along
the fixed coverage constrained minima line, for several
values of the wall-strength parameter a. For a=0.7 there
is a well-defined minimum at about I *= I o =0.4
separated by a barrier from a metastable state at I ~ oo,
which corresponds to a macroscopic wetting film (notice
that the figure actually represents the difference of the
surface tension with the perfect wetting state). The curve
y(I ) describes, for this value of a, a partial wetting situa-
tion. This is still the same for a=0.72, but now the
difference between the surface tensions of the thin film
and the macroscopic wetting layer is reduced. For about
+=0.74 both states have the same surface tension, but
they are still separated by a barrier, so that this corre-



1216 E. BRUNO, C. CACCAMO, AND P. TARAZONA 35

O.
0. &B

0. '72.
0.7S

I I J

j p

I I I

1.A
O

(c)

FIG. 6. The surface tension y (plotted in units of c/a &(10 ) vs the adsorption I, from density-functional calculation, at
n~ ——0.08 for different temperatures. Labels identify u values. (a) T =1.1616, the coexistence temperature; (b) T*=1.163; (c)
T*=1.15.

sponds to the value of a at which the wetting transition
occurs at T' = l. 1618. For a =0.75 the thin film is still a
local minimum, but now represents a metastable state
against the true equilibrium profile given by I —woo. At
a=0.76 the local minimum is taken over the intermediate
maximum, becoming a saddle point which represents the
surface spinodal for the thin film, at this temperature.

The surface spinodal marks, in the context of a mean-
field calculation, the point at which the thin wetting layer
becomes unstable, inside the coexrstence region, with
respect to growth; this situation will produce unbounded
transverse correlations for a finite thickness of the wetting
layer, as opposite to the approach to complete wetting,
which last implies the divergence of the coverage and of
the transverse correlations at the same point, i.e., at coex-
istence, for any T & T~, but with different powers.

Figure 6(b) shows the curves y(I') for T*=1.163, just
0.1% above the bulk coexistence, at fixed nz ——0.08, so
that the liquid is not quite at coexistence with the bulk va-
por. This changes the flat behavior of y(I') to a linear in-
crease, proportional to the undersaturation of the bulk
with respect to the coexisting vapor; the minimum at
I ~00 is then moved toward a finite 1" and the value of

y(I ) is increased, so that for a =0.76 the absolute
minimum is still a thin film of about I =0.75. At
a =0.7663 one finds two equivalent minima which corre-
spond to the prewetting phase transition where a thin and
a thick film coexist. Figure 7 shows the two coexisting
profiles.

At larger a's the thick film is stable and just above
a=0.77 the thin one disappears with a surface spinodal
point similar to that already described at bulk coexistence.
At even larger temperatures the surface spinodal line will
meet the prewetting line in the prewetting critical point.

Finally we present in Fig. 6(c) the results for T*= 1.15,
below the coexisting temperature, so that the bulk vapor is
metastable against the bulk liquid. y(I ) has a negative
slope at large I and the equilibrium configuration will al-
ways be the wall-liquid interface, rather than the wall-
vapor interface. Moreover, for low a there is still a local
minirnurn about I *=0.5, which corresponds to the meta-
stable wall-vapor interface, with a small adsorbed layer.
As a is increased this layer increases until the local
minimum disappears for a 0.71; this marks the position
of the surface spinodal line inside the bulk coexistence
curve.
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n~ ——0.08, T*=1.163, and a=0.7663.
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VI. DISCUSSION

The main results of our calculation are shown in the

nsverse correla-re resent the temperature at which the transverse corre a-

u. As we already commented in Sec. III, there are two re-
ions characterized by a different behavior of the trans-

H(z Q =0) occurs at a fixed temperature T = l.
w ich is the bulk coexistence temperature, at the fixed
value for the density of the bulk vapor, as obtained from
an independent ub lk MHNC calculation. This behavior
may be associate wi

'
ted with the growth of the wetting layer as

the system approaches coexistence above the wetting tem-
r a 0.75 the MHNC predicts the divergenceperature. For a& . e

lower tern erature,of the transverse correlations at a lower empe
ide the bulk coexistence curve. More-

over, the divergence of H (z, Q =0) is not o owe y a
of the coverage. All these features are ex-

f the transverseplained by interpreting the divergence o. the
correlation for a &0.75 as a signature of the approach to

The density-functional calculation does not give infor-
mation on the surface correlations, but, it gives the surface
tension ~or e gr( th grand potential surface excess o t e sys-

~ ~ ~ ~t, in . ah Th t makes it easier to identify the sur-
f h e transitions and even the surface spinoda s. eace p ase
wetting an ed th prewetting transitions an th

hspinodal, as o taine yb
'

d b the density-functional approac,
are presented in Fig. 2.

andT e agreemenh t between the results of the MHNC an
density-functional theories is remarkable, letting asi e e
sli ht difference between the bulk-coexistence temperature
obtamed in the two cases ( 4 cpex goex

sig i e

=1.1618, respectively) that shifts the fiat region of the
curves from eac o er.f h th . The wetting values of a obtained

h h ) are substantially the same (a=0.
A T di-and even the slope of the surface spinodal in the (a, i-

agram is quite similar.
The prewetting transition, visible in

' '
1 in the density-

close to the wetting and coexistence temperatures, is c ear-
ly very hard to detect in the context of the MHNC theory,

1

FIG. 8. Density profiles from MHNC (HNC (solid line) and
density-functional (dashed line) calculation for n& ——0.08,
T =1.21, and a=1 (a) and 0.5 (b).

in which one has convergence problems when the correla-
tion range ecomes oob t large. Figure 7 illustrates more
clearly the thin-thick film equilibrium and one can under-
stand from the figure that, in order to see a simi ar pat-
tern within the MHNC approach one should have very
large values or z,„an1 f and the calculation would become
prohibitively long and expensive.

fHowever, in order to get a feeling for the agreement o
the two theories, we have performed calculations in two

t t close to the coexistence region. We
have chosen T*=1.21, and a=1 and 0.5, respective y,
and the same value for z,„. The resu ts or e en

'

pro i e are s ownf'1 hown in Fig. 8. As it is possible to see, there
a ood overall agreement, particularly for the first pea

height. At larger distances from the wall the age a reement is
not so good, mainly because the DF approach does not
contain, at variance o ef th BGY equation, the condition of
smooth joining o of b th the density and its derivative to

~ ~ ~

the bulk values. In fact a jump would be visible in
re chosen too small.densit -functional results if z,„were c osen

The agreement of the predictions of the wetting proper-
ties, obtaine rom ed f th study of the surface correlations in
one case, an rom sud f rface thermodynamics in the other,
accor ing o wod' to two completely different theories as t e
MHNC and the density-functional model are, s rong y
supports the overall interpretation given here.
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