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A recently developed nonlinear complex eikonal approximation which was previously employed to
the study of dispersively nonlinear resonators is applied to absorptively nonlinear resonator configu-
rations. The nonlinear absorption is introduced phenomenologically, encompassing a large variety
of intensity-dependent absorption mechanisms. Conditions for obtaining optical bistability are de-
rived. Dynamically increasing absorption was not considered, and optical bistability in free propa-

gation was not obtained.

I. INTRODUCTION

A nonlinearly absorbing medium in an optical resonator
was the first configuration for which the existence of opti-
cal bistability was theoretically predicted by Szoke et al.!
and by Siedel.?

Although difficult to implement experimentally, ab-
sorptive bistability has been a major subject of theoretical
research involving the elucidation of the mechanisms and
the characterization of the relevant microscopic phenome-
na. The main part of this theoretical work, initiated by
Bonifacio and Lugiato,3 was carried out for a nonlinear
medium consisting of an ensemble of two-level systems,
thus exhibiting saturation of resonant absorption. In this
context, analysis of the steady-state and temporal behavior
and of the stability conditions were carried out,*—¢ using,
for the most part, the mean-field approximation, which
ignores propagation effects. Recent efforts concentrated
on media exhibiting dynamically increasing absorption.’

In the present paper we analyze the steady-state charac-
teristics of absorptive bistability from a phenomenological
point of view rather than assuming particular microscopic
models for the optical nonlinearity. The main analytical
tool is the complex nonlinear eikonal approximation.® In
this approximation, we follow the accumulation of the
phase of light propagating in a nonlinear medium. The
medium, in turn, is stratified due to the variation of the
intensity-induced complex refractive index. The first-
order coupling term between the phase accumulation and
the intensity-induced stratification, is the nonlinear com-
plex eikonal equation.’

The application of the eikonal approximation was
demonstrated for dispersively nonlinear media® and was
utilized for the analysis of dispersively coupled configura-
tions.!%?

The generality of the eikonal model and its simplicity
made it applicable to a very large family of phenomeno-
logical nonlinearities, both absorptive and dispersive, and
to a very large class of optical configurations. Dynami-
cally increasing absorption is not treated in the present ar-
ticle.

Some of the questions to be addressed in the present pa-
per are as follows: What types of nonlinearity give rise to
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optically bistable response? Can a ‘“well-behaved” non-
linearity be the source of optical bistability in free propa-
gation? How can specific switching patterns be produced?

In order to study propagation in absorptive media the
eikonal approximation is generalized in the present paper
to include imaginary phase accumulation.. In Sec. II we
present this generalization and derive intraresonator inten-
sity terms for several simple resonators. We also consider
noncoherent light propagation in nonlinear optical resona-
tors. In Secs. III and IV we analyze the light propagation
in media exhibiting intensity-dependent decreasing and in-
creasing absorption, respectively. In Sec. V we demon-
strate the case of light propagation in coupled, dispersive-
ly and absorptively nonlinear media. In all these cases the
generality, the straightforward applicability, and the total
equivalence of the treatment with respect to real and
imaginary phases are emphasized.

II. PROPAGATION EFFECTS IN ABSORBING
MEDIA

The nonlinear complex eikonal approximation is a pro-
cedure for the treatment of light propagation in media
characterized by a nonlinear refractive index
n(I)=np(I)+iny(I). As indicated, in general both the
dispersive and the absorptive parts of the refractive index
depend on the local intensity I(x). The eikonal approxi-
mation is expressed in terms of the phase accumulated
upon propagation through a distance x in the medium,

$(0)=27/20) [ n(I(x")dx" . 5

The local intensity depends on the local accumulated
phase; it also depends, as a consequence of the boundary
conditions, on the phase ¢(L) accumulated along the
medium length L. This procedure results in the integral

equation®1?
(x)=(2m/Ao) [ n(I(x",$(x),4)dx" , @
where

d(x)=¢dp(x)+(i/2)p 4(x) ,
d=¢p+(i/2)p4=¢(L),
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and A is the vacuum wavelength. ¢p(x) and ¢4(x)

denote the dispersive and absorptive contributions to ¢(x),
respectively. The factor + is introduced to follow com-
mon conventions.

It will be convenient to express the absorptive part of
the refractive index in terms of the absorption coefficient
a(l),

n4(I)=MAoa(I)/(4m) . (3)

The procedure for obtaining the transmission charac-
teristics I, versus I, of a particular optical configura-
tion consists of the following steps:*!° (a) specifying the
appropriate form for the nonlinear index of refraction
n(I), and the boundary conditions. The latter, in turn,
determine the form of I(x,$(x),¢(L)); (b) solving the in-
tegral equation (2) for ¢(x) or alternatively using its dif-
ferential form

do(x)/n(I(x,d(x),$))=(2m/Ay)dx

which is solved by separation of variables and integration;
(c) obtaining ¢(L) by imposing self-consistency; (d) calcu-
lating I, versus I;,.

In many situations either the absorptive or the disper-
sive nonlinearity can be ignored. For a purely dispersive
nonlinearity, which was studied in detail in Refs. 8 and
10, the following equation is obtained:

dép(x)/np(I(x,pp(x),¢p))=02m/Ap)dx ,
whereas in the purely absorptive case
do 4 (x)/all(x,¢4(x),d4))=dx . (6)

When the medium is homogeneous in the limit of low
light intensity, the explicit dependence of I on x arises
]

(4)

(5)

E(x)=E*(x)+E~(x)=Eexp[i¢p(x)|(1+r,exp{2i [¢ —d(x)]})[1—rirexp(2i¢)]~" .

Thus, the local intensity is

I(x)=(c/4m)ny | E(x) |2
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from the formation of standing waves. Therefore, in the
systems we discuss, it only occurs when the radiation
source is coherent and the configuration involves counter-
propagation. In the actual treatment of these systems we
average out over this explicit x dependence. This ac-
counts in part for the various mechanisms, such as
thermal diffusion, resulting in suppression of the high-
frequency spatial modulation, which are not explicitly
taken care of in the present study. The boundary condi-
tions, which determine the functional dependence of I on
x, depend on the coherence properties of the light source.
We shall only investigate in detail the two limiting
cases—totally coherent and totally incoherent source. In
the former case the steady-state condition is expressed in
terms of the complex electric field amplitude, and in the
latter, in terms of the field intensity. We now demon-
strate these two limiting cases.

A. Absorptive Fabry-Perot resonator (FPR),
with coherent incident illumination

The FPR configuration together with the propagating
(E*) and counterpropagating (E ~) field amplitudes is
shown in Fig. 1(a). The expressions for E* and E ~ are

E*(x)=E; t,explid(x)]+E ~riexp[2¢(x)], (7a)
E~(x)=E*(x)ryexp{2i[¢—¢(x)]} , (7b)

where E;, is the incident field amplitude, r;(¢;) (j=1,2)
are the forward amplitude reflectivities (transmitivities) of
the mirror M;, and r;j(¢;) are the corresponding backward
values.

Solving Egs. (7) for E* and E ~ in terms of E;, we ob-
tain the total local-field amplitude in the form

(8)

=TI, (T /no)expl — @ 4 (x)](1+2rrexpl —d 4 + 4(x)1cos{2[¢p —dp(x)]} +riexp{ —2[d 4 —d4(x)]}) /G, ,
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FIG. 1. Optical resonators containing nonlinear media. M, and M, are the front and the back mirror, respectively. (a) Fabry-

Perot resonator. (b) Ring resonator.
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where I,,=(c/Am)noE% and T, is the intensity transmi-
tivity of mirror 1, given by

Ty =(ng/nu)ti .
ng is th¢ low-intensity limit of »n (I) and
G=1—rir,exp(—¢ )cos(2¢p)
+(riry)exp(—2¢4) . (10)

Equation (8) was obtained previously'® for the particular
case of propagation through a Kerr medium for which
¢ A =0 (a=0).

B. Absorptive FPR with incoherent incident illumination

When the incident light is totally incoherent the mutual
coherence of the interfering waves is zero, thus self-
consistency at steady state is maintained for light intensi-
ties, rather than amplitudes. The dispersion contribution
vanishes, and we obtain :

IT(x)=U;n, Ty /ng)exp[ — ¢ 4(x)]
+I~(x)Rjexp[ —2¢4(x)], (11a)
I~ (x)=I*+(x)R,exp{ —2[¢4— 4(x)]} . (11b)
Solving Egs. (11) we obtain the local intensity
I(x)=I"(x)+I"(x)
=iy T1/nolexp[ —¢ 4(x)]
X(1+Rexp{ —2[¢—04(x)]})/G,, (11c)
where
G,=1—RR,exp(—2¢,) . (12)

The reason for considering incoherent illumination in
connection with absorptive bistability is that the feedback
necessary for maintaining this type of bistability is an in-
tensity feedback.

The same general procedure can be applied to many
other resonators. In the present paper we consider the
FPR, the ring resonator (RR) (Fig. 1), and free propaga-

tion (F,). In all these cases I (x) is written in the form
I(x)=K;I,exp[ —¢((x)], (13)

where K; is given in Table I. i is an index denoting the
various configurations, as defined in the table.

In the case of dispersive optical bistability the intensity
dependence of the refractive index, i.e.,, the intensity
dependence of the optical length, combined with the reso-
nator feedback, results in a self-matching tendency of the
resonator. Using the eikonal method, in which dispersive
and absorptive phases are treated on the same footing, the
interpretation of bistability in terms of self-matching
holds for absorptive bistability as well. We now demon-
strate this interpretation for a ring resonator, using a
matching criterion in terms of the integrated intensity in
the resonator.

For a purely dispersive linear coherently pumped RR
(CRR) the integrated intensity is given by

¢ (L)
Si= [)7 Igpx)dgp(x)
=27I;,(1—R)L /Ao[1=2r1r,cos(2wLny /Ay)

+(rir)?] . (14)
In Fig. 2(a), S is depicted as a function of the medium
length. For each local maximum of S, where matching
of the resonator is satisfied, a bistable loop can be formed
if the linear medium is replaced by a nonlinear one.
For a purely linear absorptive CRR, the integrated in-
tensity is given by

¢
So= [ 1($4(x)d 4(x)
:IinKl[l——exp(—d)A )] . (15)

S, is depicted in Fig. 2(b) as a function of the medium
length, keeping the resonator dispersively matched. S,
has one maximum which corresponds to absorptive
matching. Note that if the resonator is dispersively un-
matched so that 7/2 <¢p <3m/2, there is no absorptive
matching (no maximum). Upon replacing the linear ab-
sorptive medium by a nonlinear one, the absorptive length

TABLE 1. Functional forms of K; for various resonator-excitation source configurations. In the text
we will frequently use the following notations: CRR for i=1, IRR for i=2, CFPR for i=4, and IFPR

for i=5.
i Configuration Source K;
1 RR? cd (1—R)/no[1—2rrs(cosdplexp(—¢ 4 /2)+(rir;)exp( —¢ 4)]
2 RR Ie (1—=R)/no[1—(riry)%exp(—¢4)]
3 F,® lo¥ § 1
4 FPR® C (1—R)(1—=2rycos{2[¢p —dp(x)]}expl —d4+¢4(x)]
+ riexp[ —2¢ 4 +2¢.4(x)])/G1no
5 FPR 1 (1—R){1+r3expl —2¢ 4 +20 4(x)1} /Gany

2RR, ring resonator.

°F,, free propagation.

‘FPR, Fabry-Perot resonator.
4C, coherent.

€I, incoherent.
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FIG. 2. Matching of a linear ring resonator via integrated intraresonator intensity. The reflectivity of both mirror M, and M, is
0.8 and the input intensity is I;,=1. (a) Integrated intensity of a purely dispersive medium. The dashed lines are the envelope, corre-
sponding to a matched resonator (upper line) and to a totally mismatched resonator (lower line). (b) Integrated intensity of a purely
absorptive medium. Solid circles denote maxima. (The curves are asymptotically approaching 1 — R=0.2.) (c) Integrated intensity in
a medium which is both dispersive and absorptive. The dashed lines are the envelope. An enlarged section is depicted in the central

frame.

becomes intensity dependent, giving rise to a self-
absorptive-matching tendency, which is a necessary condi-
tion for the formation of bistability. S, is the first-order
integrated intensity. If the nonlinear absorbed has a
higher-order intensity dependence, higher-order intensity
integrals have to be considered, in order to properly

describe the absorptive matching.

The case of a medium which is both linearly dispersive
and linearly absorptive in a CRR is depicted in Fig. 2(c).
The integrated intensity has a global maximum due to ab-
sorptive matching and local maxima due to dispersive
matching. This case will be discussed in further detail, in
Sec. V, in connection with coupling of absorptive and

dispersive nonlinear media.
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III. PROPAGATION THROUGH MEDIA
WHOSE ABSORPTION DECREASES WITH INTENSITY

In this section we analyze several examples of light
propagation through a medium for which a(I) is a de-
creasing intensity-dependent function. The procedure for
solving the eikonal equation, which was discussed in con-
nection with Eq. (4), involves the graphical solution of the
equation for the self-consistent phase. This equation can
in general be written as

da=P+N(d4),

where P is the linear part and N is the nonlinear part.

In the case of decreasing absorption the solutions of Eq.
(16) are the intersections of either a monotonically de-
creasing N or an N with a single minimum (which corre-
sponds to maximal absorptive matching of the resonator)
with a line with a unit slope (Fig. 3). It is obvious that the
threshold for bistability is obtained by requiring the max-
imum of the first derivative to be equal to 1. This condi-
tion determines both the minimal input intensity and the
minimal medium length. For any bistable loop, the up-
and down-switching thresholds are determined by requir-
ing the first derivative of the N to become equal to 1 for
the self-consistent phase [Fig. 3(b)]:

aN/a¢A IQSAswitchzl ?

(16)

(17)
¢A switch=P +N(¢A switch) .

The following phenomenological functional forms for
a(I) are examined.
(a) Polynomial intensity dependence

a()=ag[1—p],

where p(I) is a monotonically increasing polynomial in 7,
satisfying 0 <p (I) < 1.

(18a)
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(b) General saturable absorption

al)=ay/[1+pU/I,)] . (18b)

Here I is a characteristic saturation intensity and p(x) is
a monotonically increasing positive polynomial. The
common case of saturable absorption is associated with
p=I1/1,.

For each one of the forms (a) and (b) we now investi-
gate the case involving a linear polynomial. This is fol-
lowed by an investigation of the case involving a quadra-
tic polynomial.

A. Linearly intensity-dependent decreasing absorption

The simplest example of Eq. (18a) is the linearly
intensity-dependent decreasing absorption coefficient

a=ayl—al), I<1/a;. (19)

This phenomenological expression for a is obtained in
many particular cases, such as third-order perturbation
treatment of saturable absorption in a two-level system,“
or for a photochemically reactive disappearing absorber.'?

For cases 1, 2, and 3 of Table I, for which K; is in-
dependent of x, the solution of Eq. (6) with a(I) given by
Eq. (19) is the transcendental equation

¢4=aol —In{[1—oI;,K;exp(—¢)]/(1 —a[i,K;)}
=Fi(¢4) . )

Equation (20) can be solved graphically for ¢ 4. The
output intensity of the resonator is

1oy :I(L)TZ =I;,K; TZCXP( _¢A ),

(20

21

where use has been made of Eq. (13).
For the case of free propagation (i=3) there is obvious-
ly only one solution for the self-consistent phase, since

(a)

P+N (g

(b)

A

FIG. 3. Schematic representations of the solutions for the self-consistent phase in a medium exhibiting intensity-dependent de-
creasing absorption. (a) The case of a bistability threshold, i.e., self-consistency of the phase for which the maximum of the first
derivative of the N equals one. (b) Up- and down-switching intensities for a typical bistability loop (solid circles).
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FIG. 4. Free propagation in a medium exhibiting linearly
intensity-dependent decreasing absorption. (a) Solutions for the
self-consistent phase (open circles). (b) Output vs input intensi-
ty. The upper dashed line is for a totally bleached absorber
(a=0) and the lower dashed line is for a=a.

F3(¢ ) is a monotonically decreasing function of L.

The solutions for ¢4 and for I, versus I, in this case
are shown in Figs. 4(a) and 4(b), respectively.

For a coherent RR configuration F,(¢,) exhibits a
minimum (Fig. 5). In the present case the minimum of
Fi(¢4) is too shallow to generate bistability. The reason
is that such a model for nonlinear absorption cannot sup-
port intensities greater than (or even equal to) twice the
saturation intensity [I; is defined by a(I,)=(7)ao].

1.4
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FIG. 5. Solutions for the self-consistent phase in a ring reso-
nator containing a medium which exhibits linearly dependent
decreasing absorption (open circles), for several medium lengths.
Solid circles denote the minima of F,(¢4) corresponding to
maximal absorptive matching.

Thus, the lower absorbance branch of a bistable solution,

~ which represents, at least for x=0, a local intensity

greater than 21, is not formed. A higher-order intensity
dependence is required in order to maintain bistability.
Yet the minimum in F, separates the solutions into two
families. Denoting by ¢%™" the value of ¢, at which
Fy(¢4) obtains its minimal value, we observe that solu-
tions of Eq. (20) for which ¢4 <¢%"™ form a saturation
branch of the resonator, for which the effective absorption
coefficient is smaller than that corresponding to the low-
intensity absorption coefficient. The more interesting
branch, corresponding to ¢, >¢5™", exhibits differential
reverse saturation, i.e., for finite intensities the absorption
increases with L more steeply than in the low-intensity
limit (Fig. 6).

For the same medium in a coherent FPR the intrareso-
nator intensity depends explicitly on x, because of the for-
mation of standing waves. Invoking the averaging dis-
cussed in connection with Egs. (5) and (6) we obtain

d¢ 4(x)/(1—oI;n Ty {exp] — 4 (x)1+r5exp] —26 4 +¢ 4(x)]} /(G 1ng)) =apdx . (22)

Integration and rearrangement give

¢a=aoL +(1/D)In([A4 exp(—¢ 4)+1—DJ(A +1+D)/{[A exp(—d4)+1+D) (4 +1—D)}) 4+, , (23)

where
D = { 1—4[a11inT1rzexp( '—'¢A )/Gln()]z} 172

and

[
A= —ZaIIi“Tl /Glno .

The solution of Eq. (23) gives similar results to those ob-
tained for the CRR.
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FIG. 6. Single-pass absorbance (¢ ) as a function of medium
length for a medium exhibiting linearly intensity-dependent de-
creasing absorption in a ring resonator. The branching point is
denoted by a solid circle. The dashed line with unit slope em-
phasizes the difference between the two branches with respect to
their differential absorption.
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B. Quadratically decreasing absorption

We now add a quadratic intensity term to a(I) of Eq.
(19),

a(D=ay(1—ail +a?). ‘ (24)

To ensure that a(]) is a positive, monotonically decreasing
function of the intensity, with a positive curvature, we set
a0t —4a,>0 and restrict I to the range
0<I <(a;—A)2a,, where A=(a?—4a,)'”2. The case of
negative curvature was found to be similar to the linearly
decreasing absorption. In particular, it exhibits no bista-
bility.

The eikonal equation for this a(I), for the cases denoted
by i=1,2,3 in Table I, becomes

dé 4 (x)/[1—ad (x)+ad(x)]=audx , (25)

where I(x) is given by Eq. (13). Integration and rear-
rangement yield

b4=aoL —(3)In{[a exp(—2¢4)—b exp(—¢ 4)+1]/(a —b +1)}
+ (a1 /2A)In([2a exp(—¢ 4)—b —A](2a —b +A)/{[2a exp(—¢ 4)—b +A](2a —b —A)})

=Wi(dy,) (26)
|
where . .
oI K ) transmission curve are shown in Figs. 7(a) and 7(b),
@ = lini respectively. In this case a triple solution is obtained re-
and : sulting in a typical bistable (hysteresislike) 7, versus I;,.
b=al,K; . Bistability due to quadratic intensity dependent non-

The graphical solution of Eq. (26) and the resulting

linear absorption is restricted to a very limited domain of
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FIG. 7. Bistability in a ring resonator, containing a medium exhibiting quadratically intensity-dependent decreasing absorption. (a)
The solution for the self-consistent phase (open circles). (b) Single-pass absorbance and output intensity vs input intensity. For
Iy > 2.326 the model has no physical meaning for this particular absorptive nonlinearity.
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parameters ([;,,R,a;,a,,a0) since this nonlinearity can
support only up to 3.4 times the saturation intensity, and
only by a very fine adjustment of the parameters can one
reach bistability where internal local intensity in the lower
absorbance branch does not exceed this limit.

C. Saturable absorber

The most common nonlinear absorber discussed in opti-
cal bistability studies is the simple saturable absorber.

For the cases i=1,2,3 the eikonal equation (6) for gen-
eral saturation is

do(x){1+pIKiexpl —¢ ((x)1/L)} =adx , (27)

which yields the following transcendental equation for

da:

exp(—¢ ,)
$pa=aol + [, dEp(InK /I)E)/E . (28)
For a simple saturation behavior, p =1 /I, we obtain
¢A =a0L +(ImK,/Is)[eXp(—¢A)—1]ES,(¢A) . (29)

For a CRR (i =1) this equation, which is equivalent to
that obtained by Bonifacio et al.,® results in bistability.
Using the condition for bistability in this case
(081 /0¢ 4 )max=1 we obtain, for a-dispersively matched
resonator, the threshold intensity and the minimal medi-

um length as functions of the resonator mirror reflectivity
R,

aOLﬁlin:‘ﬁA min— (1 ~_R)(Iin,min/Isno)[exp( —d4 )—1]/[1—R exp( —d4 min/z)]2 s
Tin,min=Isno[1—R exp(— @ 4 1min/2)]/{(1—=R)[R exp(— 4 min/2) —€XP( — 4 min)1} (30)

G 4min=—2In{[R*~1+(R*—~R24+1)'?]/R} .

The minimal medium length (apL ;) as a function of R,
compared to the results of the mean-field limit,> are de-
picted in Fig. 8.

We now consider switching of the saturable absorber
CRR by changing the absorptive medium length (a,L),
the dispersive length (¢ ), or both.

We first change the absorber length continuously, keep-
ing the resonator dispersively matched. For intensities
smaller than the threshold, we obtain the formation of a
saturation and of a reverse saturation branch, which were
discussed for a linearly decreasing absorption (Fig. 9).
Here the absorbance at the branch separation
[minS;(¢ )] is determined only by the resonator mirror
reflectivity (¢ 4 = —21InR for a dispersively matched reso-
nator) in contrast to the former nonlinearities where

2
80 L \\
£ N
€ N
;i, s N
. 60F
€
-
(-]
s
40 %68 055
R
201
N ; . N
(o}] 03 0.5 o7 09
R

FIG. 8. Minimal medium length as a function of mirror re-
flectivity for a saturable absorber in a matched ring resonator
with reflectivities R;=R,=R. The dashed line is the mean-
field limit (oL —0, R — 1), apL /(1 —R)=const.

branching is dependent also on the parameters of the
medium. For intensities above the threshold we obtain an
absorbance hysteresis cycle as a function of medium
length (Fig. 9). Output intensities in these cases are de-
picted in Fig. 10. Changing the dispersive length (chang-
ing mirror separation, for example) changes the resonator
matching. If aol and I;, are set to provide a bistable
solution in a matched resonator, changing the dispersive
length can cause only up-switching of the absorbance (Fig.
11). If ayL and I, are set to maintain the matched reso-
nator in a low-absorbance solution, a full hysteresis cycle
can be formed while changing the dispersive length.
Changing both the dispersive and the absorptive length

4+
R=09

o
L0
1
o
2
K]

« 2
<

1+

Tin/1s=0, 1n /152 Iin/1s=5
i

FIG. 9. Single-pass absorbance (¢ 4) for a matched ring reso-
nator (R;=R,=0.9) containing a simple saturable absorber, as
a function of the medium length. Absorbance at the branching
points (solid circles) does not depend on either the medium pa-.
rameters or the input intensity. An absorbance hysteresis cycle
exists for certain values of the input intensity.
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FIG. 10. Output intensity of a ring resonator containing a
simple saturable absorber, as a function of the medium length,
for several values of the input intensity.

(for example, changing the medium length without com-
pensation for the resonator dispersive mismatch) we ob-
tain the following (Fig. 12): For small values of ayL we
obtain continuous oscillations between lower and higher
absorbance as a function of medium length due to a
dispersive cycle of mismatching. For values of ay,L close
to (but smaller than) the down-switching threshold of Fig.
9, these oscillations become bistable. At exactly the down
threshold of Fig. 9, where the upper absorbance branch is
just formed in a dispersively matched resonator, the bi-
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FIG. 11. Switching of a ring resonator containing a simple
saturable absorber by changing the dispersive matching of the
resonator. The dashed line represents the case where bistability
exists in the matched resonator; the solid line represents the case
where the resonator is in its low-absorbance branch for a
matched resonator.

stable oscillations precipitate to this branch and from this
medium length onward there exist only continuous oscil-
lations between the upper absorbance branch and a higher
branch corresponding to a totally mismatched resonator.

For a CFPR, using the averaging procedure over I, we
get the following eikonal equation:

d 4(x){1+I;n(1—R)(exp[ — 4(x)]+rexp[ — 26 4 Jexp[¢ 4(x)1) /noI,G 1} =aodx . (31)

Integrating and rearranging we obtain
$a=aoL —Iin(1—R)/noL,G)[1+(r] —exp(—¢ 4)
—riexp(—24,)], (32)

which gives similar results to the CRR configuration, but
with smaller threshold intensities.

1. Quadratically saturable absorber

Adding a quadratic term in the intensity
p=I/I,+a(I/I;)? substituting and integrating the
eikonal equation (for cases 1—3), we obtain the following
equation for the phase:

¢pa=aol +UinK; /I)exp(—¢4)—1]
+la T, K; /1,2 /2] [exp( —2¢ 4)—1] . (33)

This equation does not yield bistability in free propagation
but yields bistability in a CRR configuration. The most
interesting result is that this nonlinearity induces bistabili-
ty in incoherent configurations. This cannot happen for
any of the formerly discussed nonlinearities. The explana-
tion of this observation is that the integrated intensity of
an incoherent RR (IRR) has no maximum and thus has
no absorptive matching condition for first-order satura-
tion. However, the integrated squared intensity of the
IRR has a maximum. Therefore, quadratic nonlinearities
such as the one presently discussed can give rise to an ab-
sorptive self-matching tendency and thus yield bistability
in this configuration. This result has a practical impor-
tance, since the matching of coherent resonators is a diffi-
cult task.

The threshold conditions for a purely quadratically
saturable absorber [p =(I/I;)?] in an IRR are derived us-
ing the procedure formerly discussed, yielding
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FIG. 12. Switching of a ring resonator containing a simple saturable absorber by changing both the dispersive and the absorptive
matching of the resonator. The dashed line is the envelope of the single-pass absorbance as a function of medium-length. The left
frame is an enlargement of the length scale near apL =1, where continuous oscillations between high and low absorbance exist. The
right frame is an enlargement of the length scale near apLy,. Bistable loops exist up to the threshold length (aoLy, ), where the solu-

tions precipitate to the higher absorbance branch.

oL min =0 4 min—[(1 =RV L % /2105 1[€XP( — 2 min) — 11/[1 — R %exp(— ¢ 4 min) 1 ,
Imin =Isn0[ 1 “RZCXP( "'¢A min)]3/2] { (1 —R)[R 2exp( _¢A min)_exp( _‘2¢a min)]} 172 ) (34)

Amin=—In{[R*~1+(R*—R*+1)"2]/R?} .
¢

Threshold intensities and medium lengths are depicted in
Fig. 13. Note that in contrast to a simple saturable ab-
sorber in a CRR, we have here a finite threshold intensity
even for R —1.

IV. PROPAGATION THROUGH MEDIA
WHOSE ABSORPTION INCREASES
WITH INTENSITY

In this section we analyze several examples of light
propagation through a medium for which a(I) is an in-
creasing intensity-dependent function. Note that we do
not mean by “increasing absorption” the self- or dynami-
cally increasing absorption discussed in Ref. 7.

The phenomenological functional forms of a(l) are
chosen to model several realistic absorption coefficients.
We examine the following.

(i) Polynomial intensity dependence

a=ag[1+p(I)], (35a)

where p (I) is a monotonically increasing polynomial in 1.
(ii) Bounded increasing absorption

a(=aefI)/g), (35b)

100+

Qol
In/ls

a0t

20

FIG. 13. Threshold intensity and minimal medium length for
a ring resonator containing a quadratically intensity-dependent
saturable absorber. The resonator is illuminated by a totally in-
coherent light source. Both mirror reflectivities are R.
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where a(I) is a monotonically increasing rational function
of I, so the f(I) and g(I) have the same degree.
(iii) Absorption going through a maximum

a(l)=ay/(1—al +bI?), a,b >0; a®><4b . (35¢)

In most of these cases the graphical solution for the
self-consistent phase is the intersection of either a mono-
tonically increasing function (with a monotonically de-
creasing first derivative) or of a function with a single
maximum, with a line with unit slope (Fig. 14). There-
fore, it is obvious that in these cases the existence of bista-
bility is prohibited. The physical reason is that feedback
in resonators enhances the branches of high-energy con-
tent. Here, however, the absorption coefficient increases
with the intensity, which in turn reduces the feedback in-
tensity, so that the feedback loop is broken.

A. Linearly increasing absorption

This case is the simplest approximation for common
physical models of increasing absorption. a(I) is written
as

alD=ay1+al) . ‘ (36)

Solving the eikonal equation in this case (cases 1, 2, and
3 of Table I) yields

¢ 4=aoL —In{[1+a,[;K;exp(— 4)1/(1+a,l;,K;)}
=Qi(d4) . 37

For free propagation (i=3), we obtain the expected re-
sults: superexponential intensity decrease as a function of
medium length. For a CRR, we obtain two families of
solutions. For solutions of Eq. (37) satisfying
¢4 <max[Q;(d,)], we obtain an inverse saturation
branch (differential absorbance greater than 1), which is
the normally expected branch. For solutions greater than
- %™ we obtain a second saturation branch induced by the
|

p—— i

P+N ()
N

$a

FIG. 14. Schematic representation of solutions for the self-
consistent phase in a medium exhibiting intensity-dependent in-
creasing absorption. The solutions are denoted by circles. The
solid curve is for configurations where absorptive matching is
possible, thus the curve exhibits a maximum. The dashed line is
for configurations which do not give rise to absorptive match-
ing.

resonator (Fig. 15). No bistability is obtainable in this
configuration. For a IRR (i=2) configuration, the solu-
tion is very similar to the free-propagation case (no
branching). The solutions for a FPR are similar.

B. Quadratically increasing absorption

For a quadratic nonlinearity a(l)=ag(1+al +a,l?),
where a(I) is monotonically increasing, we obtain the fol-
lowing solution to the eikonal equation:

b4=aol —(+)In{[a exp(—2¢ 4)+bexp(—¢ 4)+1]/(a +b +1)}
+(b/2d)In{[2a exp(—¢ 4)+b —d}(2a +b +d)/[2a exp(—¢ 4)+b +d](2a +-b —d)} , (38)

where

a =a2(IinK,~ )2 ’
b=aI,K; ,
d =IinK,~(a%—4a2)1/2 .

For F, and for a CRR, the results are similar to those
obtained in the linearly increasing case. For an IRR con-
figuration, however, the quadratic nonlinearity induces
branching of the solutions, similarly to the formerly dis-
cussed case. The branching is due to the formation of ab-
sorptive matching of the incoherent resonator, which can
be realized from the maximum of Eq. (38), when substi-
tuting K, from Table 1.

C. Bounded increasing absorption

This form of nonlinearity is the counterpart of satura-
tion in decreasing absorption. It arises in several absorb-
ing media, such as in a three-level system with consecu-
tive two-photon absorption.!?

In this case a(I) is written as

a=ay(l1+al)/(1+1), where a;>1. (39)

For cases 1—3 of Table I, the solution of the eikonal equa-

tion yields

1 +a I, Kiexp(—¢ 4)
1+al;,K;

da=aol —[(1—a;)/a;]In

(40)
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FIG. 15. Single-pass absorbance (¢4) as a function of medi-
um length for a medium exhibiting linearly intensity increasing
absorption in a ring resonator. The branching point is denoted
by a full circle. The dashed line with the unit slope emphasizes
the difference between the two branches with respect to théir
differential absorption.

The solutions are similar to those obtained for a linearly
increasing absorption.

D. Absorption going through a maximum

This nonlinearity characterizes a medium whose in-
creasing absorption saturates. a(7) is thus written as

a(=ay/(1—al +bI?), (41)
where

a,b >0, a’<4b .

Note that a(I) obtains a maximum at I,,,, =a /(2b).
Solving the eikonal equation in this case we obtain for
i=1,2,3 of Table I :

$4=aoLl —ali,K;[exp(—¢4)—1]
+0.5b (I,K; ) [exp( —2¢ 4)—1] . (42)

Note that for this type of nonlinearity there is an ab-
sorptive matching tendency even in free propagation
(i=3). Thus, the two families of solutions, corresponding
to the increasing (I <[l,,) and saturation (I >Ip,,)
parts of the absorption coefficient, are obtained for F, as
well. In contrast to the formerly discussed nonlinearity,
this branching has a threshold (I, >I,,,). The absorp-
tion coefficient and the absorbance as a function of the
propagation distance in the medium are depicted in Fig.
16 for various input intensities. Optical bistability is not
obtained.

For a CRR we obtain branching of the solution and the
existence of bistability. This is due to the fact that for
high intensities the absorption coefficient saturates, which
is enhanced by the resonator.

Bistability also exists for IRR but with much higher
threshold intensities. The threshold intensities can be de-
rived using the procedure presented in Sec. IIL.

For a FPR, using the averaging procedure for I (remov-
ing the explicit x dependence), and solving the eikonal
equation, we obtain

¢4=aoL —al'lexp(—¢,)—1]+al'r5[exp(—¢ 4)—exp(—2¢ 4 )]+ +bI"*[exp(—2¢ 4)—1]
—5bIr3[exp(—24 4 ) —exp(—4¢ )] —2bI'riexp(—2¢ )b 4 (43)

where I'=I,,T/(noG,) for CFPR and I'=I, T,/
(noG,) for IFPR. This solution yields bistability both for
a coherent and for an incoherent FPR.

V. RESONATORS WITH NONLINEARITIES
IN BOTH ABSORPTION AND DISPERSION

In order to analyze the coupling of absorptive and
dispersive nonlinear media in an optical resonator, we
have to solve the full-fledged complex eikonal equation.

In this section we examine “external” coupling—where
the absorptive and dispersive nonlinearities are not corre-
lated (different media)—and “internal” coupling—where
the absorptive and dispersive nonlinearities are in the
same medium and are caused by the same physical mech-
anism.

The complex eikonal equation can be written as

[
bax)= [ all(x',¢4(x"),6p(x"), 4,60 )dx" ,
(44)
y
o) =2 /Ao) [ npUI(',$4),bp(")bss6p))dy" .
When the media are locally coupled, i.e., the medium is

homogeneous with both absorptive and dispersive non-
linearities (x =y), we use

9¢p(x)/3x =[3¢p(x) /3¢ 4(x)][3¢ 4(x)/dx]
=[0¢p(x)/3¢ 4(x)]a(l) 45)
in order to obtain
do 4 (x)/a(l)=dx ,
dop(x)=Q2m/Ao)npI)/a(I)]lde 4 .

This form of the eikonal equation is convenient, since

(46)
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FIG. 16. Absorption coefficient and the total absorbance for
a free propagation of light in a medium exhibiting absorption
going through a maximum, for two input intensities. Here, in
contrast to all the formerly discussed absorptive nonlinearities,
the absorption coefficient is not monotonic. Branching point of
the absorbance (denoted by a solid circle) exists only for
Tin > Inax-

in all optical configurations which do not involve the for-
mation of standing waves [ is independent of ¢p(x), al-
though it still depends on ¢p=d¢p(L). In this case the
two coupled equations (46) can be integrated explicitly.
For configurations involving standing waves the explicit
dependence of the intensity in ¢p(x) can be removed us-
ing averaging over the standing waves, and then again we
can integrate the two equations explicitly.

A. External coupling of absorptive and dispersive
nonlinearities in a resonator

We consider the coupling of a low-intensity Kerr-like
medium [np=npo(l+n,I)] and a purely absorptive
saturable absorber in an optical resonator. These configu-
rations are discussed. The configurations and definition
of coordinates are specified in Figs. 17(a)—17(c).

For the configurations a,c the coupling is such that
each medium is controlling the input intensity to the other
by a partial attenuation of light intensity (the nonlinear
absorber) or by changing the matching between the input
and the feedback fields (the nonlinear Kerr medium). For
these configurations we can write the complex eikonal ap-
proximation as follows:

dé (X)) {1+ T H /I )expl — ¢ 4(x)]} =aedx ,
47)
dop(y)=02mny/Ao)1+nyI,H)dy ,

where

A e
I
Lin 2l o) Q) Tout
I ht ~
1 1
(a)
M .-‘..I M2
]
linae I f\
@ - Tou

(b
M, 4-!-' Y- Mo
NI AN
lin - ) 1\2‘/—} Tout
! : AN
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FIG. 17. Configurations of coupled nonlinear media in a ring
resonator. Medium 1 is a saturable absorber and 2 is a Kerr-like
medium. In all cases the resonator is dispersively matched for
low input intensity, and has mirror reflectivities (R;=R,=R).
(a) The absorber is closer to the input port. (b) The absorber and
the nonlinear Kerr-like medium are in the same location. (c)
The nonlinear Kerr-like medium is closer to the input port.

H=(1—R)/no[1-2R cos(¢p)lexp(—d 4/2)
+RZexp(—d )] (48)

and ¢ 4 =¢ 4(L);dp=¢p(L,) and

I,=Iexp(—¢4)
in configuration (a), (49)
12 =Iin

in configuration (c).
Integrating we get

da=0col+ T H /I ) exp(—d4)—1],
¢D=(27rnDoL2/}»0)(l+n212H) .

(50a)
(50b)

¢p can be written explicitly from Eq. (50a) as a function
of ¢ 4, thus we obtain a single transcendental equation for

¢Ay
da=aol+[IinH(d4,¢6p)/I;[exp(—¢,)—1], (51)

where
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¢D=(21TI1D()L2/7£0){ 1+(n21312/1in)(¢,1 "'CZQL])/[CXP(—(#A )'—'1]} . (52)

In configuration (b) [Fig. 17(b)], the coupling of the absorptive and dispersive nonlinearities is locally external, i.e., the
medium is homogeneous with both absorptive and dispersive nonlinearities but the nonlinearities are not correlated.

Thus, Eq. (46) becomes

do (x){1+ I, H/I)expl — b 4(x)]} =apdx , (53a)

dop(x)=2mnpo/Aoao){ 1+nIi  H exp[ — ¢ 4(x)1} {1+ T H /I )expl — ¢ 4(x)]}d ¢ 4(x) . (53b)
Integrating Eq. (53a) we obtain the same equation as (51a). Integrating Eq. (53b) we obtain

bp=2mnpo/Ao0t0) (¢4 +TinH (ny+1/I)[1—exp( —d )1+ (n I 5H?/2I)[1 —exp(24 4)]} , (54)

where L1 =L,=L.

¢p can be written explicitly in terms of ¢4 from Eq. (51a), thus using Eq. (54) we obtain a single transcendental equa-

tion for ¢ 4,
da=aol +[IinH(dp,d4) /I [exp(—d4)—1],

where

(55)

¢D =(27TnDo/7\.0a0){ "nzIsgbA +(ny I+ l)a()L + ‘;‘nzIs((ﬁA —agL )2[CXP( "'¢A )+ 1]/[ 1 —-eXp( —¢A )]}

=V(d4) .

We describe the coupling between the nonlinear ab-
sorber and the nonlinear dispersive medium as follows:
We fix the parameters of the absorber (ag;I;), and exam-
ine the coupling for different values of n,. Note that the
dispersive phase accumulation (¢p) is a decreasing func-
tion of the absorptive phase (¢,) (Fig. 18). For low
values of n,, dispersive bistability occurs only in the lower
absorbance branch and for very high intensities. For pa-
rameters in which absorptive bistability exists for the pure
absorber (n,=0), rather low values of n, are sufficient to
destroy this bistability as a consequence of the resonator
mismatching (Fig. 19). For higher n,, the density of bi-
stable loops in the lower absorbance branch increases and
their up-switching threshold intensities decrease. For very
high values of n, dispersive bistability loops occuft in the
upper absorbance branch as well. In this case we obtain a
bistability threshold lower than the thresholds obtained
for a purely absorptive nonlinearity (n,=0). For high
enough values of n, and for intensities higher than the
purely absorptive up-switching threshold, the loops are
continuously going from the lower to the upper absor-
bance range. For intensities within the purely absorptive
bistable region there is a separation between the two fami-
lies of dispersive bistable loops (Figs. 18 and 20). The
down-switching thresholds of the dispersive bistability
loops follow closely the intensity curve obtained for the
purely absorptive case in a dispersively matched resona-
tor. The up-switching thresholds are limited by the inten-
sity curve for the purely absorptive case in a dispersively
totally mismatched resonator. This switching pattern is
depicted schematically in Fig. 21. Note that within the
eikonal approximation the results are the same for both a
positive and a negative Kerr medium.

There is no fundamental difference between cases a, b,
and c of Fig. 16, except for the coupling strength. In case
c the intensity in the Kerr medium is maximal, thus the
nonlinear part of ¢p is the largest. For solutions in the

(56)

f

high-absorbance branch the difference between the three
cases is appreciable, while in the low-absorbance branch,
in which the absorber is almost bleached, the difference is
minimal. Thus, for the same n, the bistable loops are
denser, i.e., closest in output intensity for case a, in which
they are higher in output intensity since a higher degree of
bleaching of the absorber is required.

B. Internal coupling of dispersive and absorptive media

In the case of internal coupling the same mechanism is
the driving force for both the absorptive and the disper-
sive nonlinearities. Thus, in general there is a functional
dependence of the type F(np(I),a(l))=0. In this section
we discuss the case of a homogeneously broadened two-
level medium while the other functional dependences such
as nD=nD1N1(I)+nD2N2(I); a=a1N1(I)+a2N2(I),
where N,N, are intensity-dependent populations of two
species, will be discussed elsewhere!? in connection with a
molecular absorber.

1. Two-level medium

For a two-level medium, the steady-state nonlinear re-
fractive index can be written as

np=[1+Aay/(1+1/I,)]"/*,
a=ay/(1+1/I,),

(57)

where the detuning parameter A is expressed in terms of
the resonance frequency w, and the transverse relaxation
rate y,, by!!

A=(w4—w) /0y, .

For a CRR with the medium specified by Eq. (57) the
eikonal equation (46) yields the two coupled equations

do(x){1+1(¢4(x))/I} =apdx , (58a)
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FIG. 18. Graphical solution for the self-consistent phase in
case (c) of Fig. 17. The dashed lines are the envelope of V. The
oscillation of V for small ¢4 (in the region denoted by - - - ) are
too dense to draw.
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FIG. 19. Output intensity vs input intensity in the case of
coupling between a saturable absorber and a Kerr-like medium
with a small nonlinear coefficient n,. The dashed curve is the
output intensity for a pure saturable absorber.

dép(x)=Q2m/Aoap)

X {(1+Aag+1(¢4(x)) /1)

X(14+1(¢ 4(x))/I,)} 12, (58b)

where I(¢4(x)) is given by Eq. (13) for the case i=1 of
Table I. '
Equation (58a) is the same as the one obtained for sim-
ple saturation, as discussed in Sec. III.
Equation (58b) is integrated to yield

— n2=o
—n,lg=8x10"°
4
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FIG. 20. Output intensity vs input intensity in the case of
coupling between a saturable absorber and a Kerr-like medium,
with a large nonlinear coefficient n,. The dashed curve is the
output intensity for a pure saturable absorber. Each horizontal
line represents a bistable loop. The inset frame presents an en-
largement of the lower intensity branch.
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ép=2m/Aoao)(A(0)— A (¢ 4)+B*In{[2B +CD exp(—¢ 4)+2B'>4($ 4)1/[exp(— 4)(2B +DC +2B'/?)4(0)]}
+(C/2)In{[C 42D +24(0)]/[C +2Dexp( —¢ 1) +24 (6 )1}) , (59)

where

A(¢4)=[B +DC exp(—¢4)+D%exp(—2¢,4)1'?,
B=1 +Aa0 ,

C=2+Aa0 5

D =K I, /I,

(K is given in Table I). As in the previous case, ¢p is
written explicitly as a function of ¢ 4, yielding

da=aol +[I;,K (¢ 4,6p)/1]

X[exp(—d,4)—1]. (60) »

To obtain ¢, as an explicit function of ¢, we substitute
the expression

(Iin Ky /1) =(¢ 4 —aoL) /[exp(—¢ 4)—1] (61)

in Eq. (59). .

This solution is equivalent to the analytical solution ob-
tained by Gronchi and Lugiato!® using the slowly-
varying-envelope (SVE) approximation to the Maxwell
equation, since in the present case the SVE and eikonal
approximations can be shown to coincide.

In this case the nonlinear part of ¢, is an increasing

J

function of ¢4, in contrast to the former case of a Kerr
medium coupled to a saturable absorber. Thus, drastically
different results are obtained. A small dispersive non-
linearity (small A) can result in lower bistability threshold
intensities. Increasing the detuning, we obtain an in-
creased number of bistable loops (in the former case for
any finite N, the number of dispersive bistable loops was
unlimited). In the present case the dispersive bistability
loops are formed first in the higher absorbance branch of
the purely absorptive bistability, in contrast to the former
case. Appearance of bistability loops in the lower absor-
bance branch requires a larger detuning. Related results
were obtained by Gronchi and Lugialto,13 Bonifacio and
Lugiato,'* and Ikeda.!®

For a CFPR, we can use the average form of the inten-
sity to solve the eikonal equation. However, in the in-
teresting case of large detuning (A >>0), we can solve the
eikonal equation in closed form without any averaging.

Note that the treatment of the CFPR containing a Kerr
medium by Marburger and Felber!® is the only case in
which a fully analytical solution was obtained for a
standing-wave configuration. Using the eikonal method,
we have obtained the first-order approximation to this
analytical solution.®

The eikonal equation for propagation in a FPR contain-
ing a medium consisting of two-level systems in the large
detuning limit, is thus written as

dép(x)=02m/Ao){1+Aay/[1+1(x)/I;]1}%dx . (62)

Substituting I(x) from Eq. (9), taking ¢ 4,¢ 4(x)=0, we
obtain

dop(x)=2m/Ao) {1+ Aap/[1+I(1—R)142r,c08{2[dp —dp(x)]} +r%)b/n0G1]} —172gx

or, by rearrangement,

d®{[a +b cos(®)]/[c +d cos(®)]} > = — (47 /Ap)dx ,

where 63

a=14+(1—R);,(147r3)/n,G, ,
b,d =(1—R)I;,2r,/n0G, ,
c=a+Aq,

64=0,

=2[¢p—¢p(x)] .

|
Equation (63) can be integrated to yield a transcenden-

tal equation for ¢p, in terms of first- and third-order el-
liptic functions

(1/VBD ){[(B —A)/a(f*—1)]
X[ —BT(v;(1—B%);q) +F (v;q)]
+(B/a)F(v;q)} , (64)
where
A =14I;,(1—R)(1+7542r,)/noG, 1 ,

B=1+TI;,(1—R)(1+r}—2r,)/nyGi1, ,
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FIG. 21. Schematic drawing of the switching pattern in the
coupled configuration of a saturable absorber and a Kerr-like
medium in a ring resonator. The anomalous down switching,
i.e., direct switching from certain high-intensity bistable loop to
the lower output intensity, is the consequence of the following of
the down-switching threshold intensities after the output inten-
sity curve of the pure absorber, in the region of negative slope.

;

C=A4+Aa,

D=B+Aqay,

a*=A/B,

B=C/D ,

v=arctan[tan(ép)/B] ,

F(v;q)= fovdx/[l—qzsinl(x)]l/z ,

(v;n;q)= fovdx/[1+7]sin2(x)][1—qzsinz(x)]l/2 .

Equation (64) can be solved graphically for ¢, and the
output intensity is thus obtained by

Iy =I;y(1=R)*/G(¢p;b,=0) ,
exhibiting multistability.

VI. CONCLUSIONS

The nonlinear eikonal approximation has now been es-
tablished as a powerful tool in determining useful com-
binations of resonators and optical nonlinear media exhib-
iting optical bistability. We have demonstrated that non-
linear absorption can be incorporated in a variety of reso-
nators in order to achieve bistable behavior. Our main ob-
servations are as follows.

(i) For media characterized by an intensity-dependent
absorption exhibiting a maximum, optical bistability can
be obtained, using an appropriate resonator, for both
coherent and incoherent illumination.

(ii) For media characterized by intensity-dependent de-
creasing absorption, bistable behavior may be observed
only at high intensities where higher-order terms in the
absorption coefficient become important. For saturable
absorbers incorporated in a CRR and in a CFPR optical
bistability can be obtained. For incoherent illumination
optical bistability is achieved only for high-order intensity
dependence of the saturation.

(iii) Coupling between a Kerr-type dispersive nonlinear-
ity and a nonlinear saturable absorber in the same resona-
tor enables control of switching patterns of the optical bi-
stability depending on the interrelations of the particular
media parameters.

(iv) Of particular interest are situations in which optical
bistability is observed in free propagation. For a locally
multivalued absorption coefficient optical bistability in
free propagation may be obtained. However, we show
that it is not achieved in any of the nonlinear media dis-
cussed in the present paper. This is a general result which
is proved here for any absorption coefficient of the type

a=ayf (1), (65)

where f(I) is a well-behaved single-valued function.
Since in free propagation I (x)=1I;,exp[ —¢ 4(x)],

a=ayf(Iinexp[ —¢ 4(x)])=g(¢4(x)) . (66)
The eikonal equation thus becomes
do4(x)/8( 4(x))=audx . (67)

By integration we obtain

)

pa=aol + [ dElg(©)—11/g(E)=M($,). (68)
The necessary condition for obtaining optical bistability is

OM(¢,)/0¢,4=[g(d4)—11/8(d4)>1 (69)

which of course cannot be fulfilled. Thus, we do not ex-
pect to obtain bistability in free propagation for any pure
absorber. The cases in which optical bistability can be
achieved in free propagation require a particular form of
the absorption coefficient,!? as is the case in dynamically
increasing absorption.’
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