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We study the stability of optical bistable elements against holding-field noise by considering the
specific case of a purely dispersive Kerr medium. For small devices, i.e., those for which the
round-trip time is small compared to the material-response time, we show that operation of an opti-
cal switch with a holding-field intensity a few percent away from the switching value will not be
subject to problems due to the noise in the holding laser. This is due to the extremely rapid increase
of the average time between noise-induced switching events as the distance, in intensity, from the
switching point increases. White noise or Ornstein-Uhlenbeck noise models are not sufficiently
smooth for a correct description of this problem, and so we use a more elaborate colored-noise
model to evaluate the diffusion constant in the Fokker-Planck equation for the nonlinear phase
shift. The time between switching events is then obtained by solving a first-passage-time problem.

I. INTRODUCTION

The proposed use of optical bistable elements (OBE's)
in photonic logic applications raises the question of sta-
bility against noise. We consider specifically an OBE
driven by a cw laser beam with an intensity slightly below
the critical value required for up-switching. The practical
utility of such a device clearly requires that the mean time
between noise-induced switching events should be large
compared to the time between switching instructions.
Thus we are interested in investigating the stability of
deterministic states of the device against small fluctua-
tions in frequency and amplitude of the holding beam.
For this purpose we first derive a Langevin equation for
the response of the OBE, in the small-cavity limit, to a
noisy laser field. In the vicinity of a given deterministic
solution, the equation is expanded up to second order in
the small fluctuations and the resulting approximate
model is treated by Fokker-Planck theory to estimate the
average time for noise-induced switching.

This paper is organized as follows. . In Sec. II we
develop a phenomenological model of dispersive bistabili-
ty in a ring resonator, including frequency and amplitude
fluctuations of the holding beam. We show that even for
a deterministic susceptibility X„I, frequency fluctuations
lead to stochastic dynamics for the nonlinear phase shift
experienced by the field. Section III specializes these re-
sults to the small-cavity limit and derives a Langevin-type
equation for the nonlinear phase shift. In Sec. IV we ex-
pand this equation up to second order in the small-noise
limit, and construct the corresponding Fokker-Planck
equation in Sec. V. The explicit noise model is defined in
Sec. VI, which shows that simple Weiner-Levy and
Ornstein-Uhlenbeck processes are insufficient to properly

analyze this problem. Section VII evaluates the time be-
tween noise-induced switching events by relating the prob-
lem at hand to the first-passage time for a particle escap-
ing from a potential well. Finally, Sec. VIII is a summary
and conclusion.
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FIG. I. Ring cavity of length 2(L + l), with the upper arm of
length L filled by a Kerr nonlinear medium of nonlinear suscep-
tibility P„l. The input and output mirror have intensity reflec-
tivity (transmission) coefficient R ( T), with R +T = 1. The oth-
er two mirrors have unit reflection.

II. FORMALISM

We consider a ring resonator whose upper arm is filled
by a purely dispersive Kerr-type medium, see Fig. 1. The.
total length of the resonator is 2(L +l), and the material
nonlinear ( nl) response is given in terms of a susceptibili-
ty X„I assumed to obey the Debye relaxation equation
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E(z, t) = ,'E—(z,t)e' ""+c.c. (2.2)

where E is the slowly varying envelope of the real intra-
cavity field E(z, t):

Xnr «no (2.13e)

we obtain readily the wave equation for the slowly varying
amplitude E(z,p):

r

The instantaneous frequency Q(z, t) of the intracavity
field is

BE(z,p)
Z

2miQ(p)
(2.14)
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For convenience, we choose the phase @(O,t) at the input
port of the resonator (z =0) to be equal to the phase of the
incident field E;(t):

Equations (2.1) and (2.14) compose the coupled Maxwell-
Debye equations. Since we neglect absorption in our
model of a bistable device, the amplitude of the fields is
conserved while propagating through the resonator. Thus
introducing

C (0, t) =4;(t),
where

E;(O,t)= —,'E;(t)e ' +c.c.

(2.4)

(2.5)

yields readily

2mno Q.(p )

az c +nl ~

(2.15)

(2.16)

P(z, t)= —,
' H(z, t)e' ""+c.c.

with

(2.6)

and the amplitude E;(t) is taken without loss of generality
to be real. As usual, we decompose the polarization ac-
cordingly as

which after integration gives

m2nQp(. p ) z
f(z,p)=g(O, p)+ f dz'X„i(z', p) . ' (2.17)

The electric field (2.15) becomes

%(z, t) =(Xp+X t )E(z t) (2.7) E(z,p, ) =E(O,p)exp[i/„i(z, p)], (2.18)

1 B 4m BP
c~ Bt2 c2 Bt2

(2.8)

which yields, with

n 0 ——1+4@go,
r
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(2.10)

As is often the case in propagation problems, it is con-
venient to introduce the retarded time

Here Xo is the linear part of the susceptibility. The wave
equation for E(z, t) is

where

2mn pQ(p)
dz'X„t(z', p)c

(2.19)

By„,
ap

2mno a f dz'X„t(z', p)c ap
2n.noQ i BX„i(z',p)+ dz

0 Bp

is the nonlinear phase shift experienced by the field inside
the resonator. The Debye relaxation equation (2.1) for the
nonlinear susceptibility X„l can be used to obtain an equa-
tion of motion for P„t. Differentiating (2.19) with respect
to p yields

p = t' —npz/c (2.1 1)

1aE 0
E az

(2.13a)

In the variables (p,z), the dynamics of the field is per-
formed in a frame following it, and the instantaneous fre-
quency Q(z, t) is a function of p only:

Q(z, t)=Q(p) . (2.12)

With the slowly varying amplitude and phase approxima-
tion

or finally

Bknt z~ij ~ 1 BQ(p)
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(2.13b)

(21.3c)

(2.13d)

2~non
PzIEI (p). (2.20)

This equation has the same structure as the Debye equa-
tion (2.1), except for the appearance of a supplementary
stochastic relaxation term finding its origin in the field
frequency fluctuations. This shows that in general, the
dynamics of the nonlinear phase shift is governed by a
stochastic equation, even for a deterministic X„l. In the
original (z, t) variables. Equation (2.20) becomes simply



1174 FILIPO%'ICZ, GARRISON, MEYSTRE, AND WRIGHT 35
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The leading term of Eq. (2.25) becomes then

where we have dropped the unambiguous z =0 argument
for clarity. The solution of Eq. (3.5) is

A complete description of the system still requires the
use of the standard boundary condition E(t+nt&) =A"E(t)+ ~TE;(t),1 —A"

1 —A
(3.6)

E(O, t) =v T E;(O, t)+RE(L, t b—t), (2.22) where

E(O, t)=v TE;(t)
i [4(t t)t —noL/c) ——4(t)]

(2.23)

Introducing the cavity round-trip time

tR bt+npL——/c
and (2.18) finally gives

E(O, t+tt()=v TE, (t+t~)
i [4&, (t) tt, {t. +t„-) +.p„((t)]

(2.24)

(2.25)

where R is the reflection coefficient of the mirrors at the
input and output poits (the other two mirrors are taken to
have unity reflection coefficients), T = 1 —R, and
b,t=(2l+L)/c. With Eqs. (2.2), (2.4), and (2.5), this
yields

i [(co+5co)t~ +p„((t)]A=Re (3.7)

nI +(I"+51 )p„,dt

L co(l +5ct)/co)=2mnp L
C

Since
~

A
~

=R = 1 —T & 1, the adiabatic solution con-
verges to its asymptotic value

~TE, (t)
(3.8)

1 —Re xp[i [(cp+5cp)tlat +Nnl(t)] I

after X round trips, where X=—30 for R =0.9. By our as-
sumptions the total convergence time is small compared
to the material response time so that the asymptotic value
can be used in the equation of motion (2.21) for pnl, giv-
ing the approximate model

where we have also performed the transformation
t~t+tt(, and defined ([tnl(t) =pnl(L, t).

III. SMALL-CAVITY LIMIT where

~TE, (t)
X

1 Rex—pI i [(~+5~)t~+y„,(t)]] (3.9)

catt(+cp[r(—t + tt() —r(t)] . (3.1)

Here co is the nominal pump laser frequency in the ab-
sence of noise, and r(t) a stochastic function of zero aver-
age which is assumed, in accordance with our earlier re-
marks, to varying little in the time tz.' Hence, we can ex-
pand the square bracket in (3.1) as

(3.2)r( t + tl( )—r( t) = tg = tI( (5' /co ), —
dt

so that

Most potential applications of optical bistable elements
use micrometer-size semiconductor devices, for which
the round-trip time tz is on the order of picoseconds, a
short time compared to typical medium relaxation times
I . If, furthermore, the typical noise characteristic time
ttc (correlation time) is long compared to t~, then it is safe
to perform an adiabatic elimination of the field. This is,
for instance, the case for input lasers of bandwidths as
large as tens of gigahertz.

The linear part of the phase in the recurrence relation
(2.25) has the form

b.Ct; =C,(t) 4;(t +tl()—

(3.10)

Until now, we have considered pump-field frequency fluc-
tuations only, but intensity fluctuations are readily includ-
ed by the substitution

~
E;

~
~(I; )(1+a),

where (I; ) is the mean incident intensity and

(3.11)

(3.12)

5= ( Co c —CO ) tie (3.13)

where ~, is the frequency of the cavity mode closest to m.
Note that the phase (co+5co)tt( may be rewritten as

( Ct) + 5Ct) )tl( = —6+Ct)c tt( +5ct) tI( (3.14)

is a stochastic variable of zero mean describing the inten-
sity fluctuations. It is also convenierit at this point to in-
troduce explicitly the deterministic part 5 of the linear
cavity phase shift

cot~(1+5co/cp) .

Similarly, we expand the incident field as

dE;
E;(t+tt()=E;(t)+tIi + . . =E;(t) .

(3.3)

(3.4)

and that the second term on the right-hand side of this
equality is equal to 2Am (X integer) by definition of the
cavity modes. In order to cast Eq. (3.9), into its final, di-
mensionless form, we now introduce a dimensionless time
variable by t~I 't, i.e., from now in t is understood to
be measured in units of I '. Equation (3.9) becomes
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+( I+&y)P„(
B A

A2 ——

~4'ni e.i =to
(4.6)

G (1+5'/a) )(1+a)
(3.15)

P„((t)+6COtR —6
1 —R +4R sm

2

In order to proceed, we now make the following addition-
al assumptions.

(i) The relative frequency fluctuations

Here,

2mnoL, co PT(I; )
e I and amplitude fluctuations

(4.7)

Ip ' ——
n pea)

71pn2 T, (3.16b)
(4.8)

(3.17)

In defining the scale intensity Io in (3.16b), we have used

n = I+4mX=no(1+4+X„~/no) =no+n2I

and the steady-state from of Eq. (2.1). Thus the parame-
ter G is the laser intensity measured in units of the
characteristic intensity Ip.

IV. SMALL FLUCTUATIONS

To study the influence of noise on the bistable device,
we expand the equation of motion (3.15) for the nonlinear
phase shift P„~ about the noiseless stationary solution $0
corresponding to the constant input intensity (I; ) at the
nominal frequency ~. We proceed by introducing the new
variable

can be neglected compared to unity.
(ii) Products of u and f and u and a can be neglected.
(iii) The frequency and amplitude fluctuations f (r) and

a (t) are stationary random processes of zero mean, with
correlation functions that are sm.ooth enough to make all
following manipulations legal.

(iv) The stochastic processes f ( t) and a (t) are uncorre-
lated, and the frequency correlation time rf and ampli-
tude correlation time ~, are both short compared to the
deterministic relaxation time of the nonlinear phase shift

nl.
We substitute Eq. (4.1) into (3.15) and expand the

right-hand side to second order in u and to first order in
the fluctuations; the result is

/

BQ =F0(u)+Fi(u), (4.9)

4nl '(t'0+ '5~tR (4.1)
where

In the absence of noise, Eq. (3.15) has a stationary-state
solution defined by

i
Fp ——— + —,A2u

Tp
(4.10)

Po ——A (G,gp),

where the function

A(G, P„()=
„(—b.

(1—R) +4R sin
2

(4.2)

(4.3)

A(u) =P, +A &u+ —,
'

Azu

where

(4.4)

is the rhs of Eq. (3.15) in the absence of amplitude and
frequency fluctuations. To second order in u,

Fi =(PO+~tR )(f+f)+4m (4.11)

where the overdot means derivative with respect to the di-
mensionless time and

(4.12)

Note that since A
&
~1 as the system approaches the turn-

ing points, its effective deterministic response time Tp be-
comes very large in these regions. This is a signature of
critical slowing down. Equation (4.9) allows the study of
the interplay between the rapid noise fluctuations and this
sluggish deterministic response of the nonlinear phase P„~.

and

(4 5) V. FOKKER-PLANCK EQUATION

Following Van Kampen, the Fokker-Planck equation
associated with the Langevin-type equation (4.9) is

p(u, t) =
Bt '

Bu

BF)(u, t) dQ—Fo(u) — dr F)(u „t r)—
C)Q dQ

00 dQ+ f d(re(u, t) F&(u „t r) ) p (u,t)—
dQ

(5.1)

where
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u, =u (t —r),
and u (t) is defined as the solution of the deterministic equation

8Q

dt
=Fp(u) .

(5.2)

(5.3)

This equation defines a mapping u (0)~u (t), or more generally, u (t)~u (t+r), and the expression du/du, is the
Jacobian of the inverse of this mapping.

Under the assumption (iii) that products of u and f, a and f, respectively, can be neglected, BF&IBu =0. In other
words, we assume that noise corrections to the drift term of Eq. (5.1) are negligible, i.e., that the noise is additive. The
diffusion term B(u) is then

B(u)= f dr(Fi(u, t)Fi(u, t —r))
8Q

d~ o+~gg g g —~ + g g —~ + d~ o g gg
JQ

(5.4)

where we have used the explicit form (4.11) of F, and as-
sumption (iv), as well as the relation Bp =(Pp+tptg ) f dr( f(t)f (t —r) )

QQ
(5.7)

(f(t) )f(t2) ) = —(f(t2)f(t( ) ), (5.5) and

which is valid for stationary random processes, to obtain
the second equality.

In the expression (5.4) for B, the term depending on fre-
quency fluctuations is multiplied by the coefficient
(Pp+cotz ), while the amplitude fluctuation term is multi-
plied only by Pp. At optical frequencies, and for devices
of several tens of micrometers in size,

a) t~ ( =-10—1000)))Pp[ =O(1)];
therefore, frequency fluctuations will dominate over am-
plitude fluctuations unless the normalized amplitude fluc-
tuations are very much larger than the normalized fre-
quency fluctuations. We assume that this is not the case
so that it is permissible to neglect the contribution from
amplitude fluctuations in (5.4).

To evaluate the contribution from frequency fluctua-
tions to the diffusion coefficient (5.4), we decompose it as

Bi (Pp+a——)tg) f dr(f(t)f(t —r))
GQ

(5.8)

(5.9)

We will see later that 8~, which is given in terms of the
correlation function for the frequency derivative,

(Pp+cot~)f, is normally much larger than Bp. The Pp
part of B& can be traced to the 5y term in (3.15), i.e., to
the stochastic correction to the material-response time.
The cot+ part comes from the frequency fluctuation term
t+6tp in the denomiriator on the right-hand side of (3.15).
Since cot+ ))Pp, it is clear that the main physical effect of
the noise enters through the fluctuations of the frequency
in the Airy denominator. The correlation function in 8&
can be evaluated by using the identity

B =80+A),
where

(5.6)
which is valid for stationary processes.

For any function W(r), one has then

f dr W(r)(f(t)f(t —r)) = —f dr W(7) (f(0)f( —r))

= —W(0)&f(0)f(0))+ (f(0)f( —r)) —f « "
&f(0)f( —r)&

= —W(O)(f(0)f(0)) — (f(0)') —f, dr (f(O)f( —r)) . (5.10)

Here we have used the fact that (f(0)f( —r) )~0 for
z~oo. The first term in the last equality is equal to
W(0)(d /dr)(f(0)f( —r))

~ p, and is identically zero for
a stationary process. Furthermore, the integral can be cal-

culated by evaluating 8 W(r)Br at r=o, a procedure
valid provided that W(r) is slowly varying over the corre-
lation time of the noise. This yields, identifying W(r)
with du/du
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Bi ——

Bv'

a2

a7

(5.11)

('9(t)'9(t +&))= exp(
I
r

I «f )
N C01"f

(6.5)

this last relation being valid in the limit tp~ —ao. Simi-
larly;

All that remains to do in evaluating the diffusion coeffi-
cient B is to determine the Jacobian du/du, . This is
readily done by expanding u(t r) a—s a Taylor series
about u(t) and making use of Eq. (5.3). After dropping
terms of third order in v, this gives

=1— +.
2 +O(v )+O(u), (5.12)

dQ ~ Tp 270

(f(t)f(t+r)) = (1+ )r(/rf)
co 2covf

)& exp( —
~

~
~
/rf ) .

With the definition (5.13) of Dff, (6.6) gives

1 ~I
Dff — ——2rf (f(0)~ )

(6.6)

(6.7)

&o=(0o+~ttt ) Dff (5.13)

where the small size of u has also been used. Keeping
only the lowest-order terms in Eqs. (5.7) and (5.12) yields
finally

&o =— (4o+ tote )' (6.8)

and

The two contributions Bo and 8& to the diffusion coeffi-
cient become then

&i =(4'o+tottt )' (f(0)')
TP Tp

(5.14)
I

&& =&0
7f 0

1

TO
2 (6.9)

where

Dff f dr(f——(t)f (t —r)) .

VI. NOISE MODEL

(5.15)

In the next section we use these results to estimate the
average time between noise-induced switching events.

VII. AVERAGE TIME
FOR NOISE-INDUCED SWITCHING

So far the noise model has been limited only by the
reasonable assumptions (i)—(iv), but now we must be more
specific. The familiar white-noise model for frequency
fluctuations does not satisfy the smoothness part of as-
sumption (iii). This follows from the fact that 8& de-
pends on derivatives of the frequency correlation function
which do not exist for white noise. The same objection
applies to an Orenstein-Uhlenbeck process, therefore in
order to get a finite diffusion constant it is necessary to
use a more elaborate colored-noise model. (For the use of
colored-noise models in optical bistability, see, e.g., Ref.
6.) We have chosen to represent the frequency fluctua-
tions f ( t) by the following process:

By combining Eqs. (4.10), (5.13), and (5.14) the
Fokker-Planck equation (5.1) can be written in the form

Bp 8 BV ~ 8
Bt Bu Bu

(7.1a)

where

2

0
(7.1b)

Thus the phase diffusion problem is equivalent to the dif-
fusion of a particle trapped in the potential well V(u) and
subjected to stochastic forces characterized by the dif-

f(t) — f (t) /rf + q/rf

q(t) = q(t)/rf+ — ~A,g(t),2
N'Tf

where g(t) is a Gaussian stochastic process

(g(t)g'(t+r)) =&(r) .

(6.1)

(6.2)

(6.3)

(f —fp)/1 f+g(to)e (6.4)

The field correlation function for the laser can be evaluat-
ed by standard techniques which lead to the conclusion
that AI can be thought of as the laser linewidth.

Prom Eqs (6.2) and (6.3), we get readily

q(t)= I dt'g(t')e
. tp

p X

FIG. 2. Normalized potential V(x) = V(u)(2/A2Tp), where
x =ApTpu /2. The minimum of V(x} is at the holding point
a =u =0 and the maximum occurs at u =b =2/(A2Tp).
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fusion constant B .As shown in Fig. 2 the potential
minimum lies at u =0 and the maximum occurs at
u =b =2/(AqTo). At some finite time a particle initially
at u =0 will arrive at the potential maximum where it can
either fall back or escape. The average time required for
the particle to traverse the distance b.u =2/(A2To) be-
tween the maximum and minimum points of the potential
is a measure of the time required for escape from the po-
tential well. In order to relate this description to the orig-
inal problem we consider the solution of the deterministic
steady-state equation (4.2) in the vicinity of an up-
switching point, similar considerations hold for down-
switching. The conditions for up-switching are [see Eq.
(4.2)]

/=A(6, $), (7.2a)

aA
1

ay
=''

a
)0,

(7.2b)

(7.2c)

and they define the switching values (6„$,), as shown in
Fig. 3. The solutions of (4.2) in the vicinity of the switch-
ing point can be obtained by expanding A (P, G) in a Tay-
lor series through second order in P —P, and G —G, .
This yields the two roots

2$,56
4'o=0. —

2
(7.3a)

2$,56
A2

(7.3b)

where 5G =
t
G —6, i

is the distance, in intensity, to the
switching point in units of the scale intensity Io. To the
present order of accuracy, the constant A2, defined by
(4.6), can be evaluated at either of the points Po or P„but
the calculation of 3 &, defined by (4.5), involves first-order
corrections so it must be evaluated at Po. This yields

Substitution of these results into the expression given
above for hu, the distance between the minimum and
maximum points of the potential, shows that

2$,56
Au=2

A2
(7.6)

and comparison with (7.3) shows that this is exactly the
distance between stable and unstable branches in Fig. 3.

The calculation of the average escape time from the po-
tential well is an example of a "first-passage-time" calcu-
lation for which the general result is well known. In the
present case the average escape time T*, for a particle ini-
tially at u =0, is given by

T*=—I du exp f du exp
b V(u) u V(U)

B

(7.7)

where the boundary conditions include an absorbing bar-
rier at u =b, the location of the potential maximum, to
represent the escape of the particle. In terms of the origi-
nal problem, T* is the time required for a bistable system
originally operating at the stable point Pz to migrate to
the unstable point Pi. Since the system will then very rap-
idly either return to Po or switch up to the next stable
branch, T* is a suitable measure of the time for noise-
induced up-switching. Thus the particle escape time
serves as an estimate of the average time between noise-
induced switching events.

If the central maximum in the potential is large com-
pared to the diffusion constant, i.e., V(b) »B, then the
function exp[V(u)/B] is sharply peaked at u =b, and
(7.7) can be evaluated by the method of steepest descents
to yield the well-known Arrhenius formula from chemi-
cal reaction theory:

V(b) —V(0)
27T exp

W, =1—&2y, &,56, (7.4)

and by (4.12), the deterministic response time Tp ts given
by

a'v a'v
r)u b Bu p

1/2 (7.8)

1

+2/, A25G
(7.5) which becomes, after using (7.1b) for V(u),

T =2&Toexp
V(b)

(7.9)

!.33

1.32

«p l.3l
Ks (l1s)

(.30

1.29

2.9780 2.9785
G

2.9790

FIG. 3. Bistability curve in the vicinity of the up-switching
point (G„P,): a is the operating point and b the corresponding
point on the unstable branch. -They correspond to the'points a
and b in Fig. 2. To ——2. 1v'56 (7.10)

In order to check the applicability of this formula, we
take as a typical case a bistable device with dimensions
I.=I=-0.01 cm, and mirrors with R =-0.9. The nonlinear
material is taken to be InSb with no ——4, n2 ——3X10
cm /W, and I"=10 s '. This gives a round-trip time
tz -=2 ps. For the laser we take co=10' s ', noise corre-
lation time ~f ——1 ps, and linewidth hi ——1 GHz. The
scale intensity Io ——6.25 W/cm . Assuming a linear cavi-
ty phase shift b, = —m, the first up-switching point occurs
at $, =1.31 and 6, =2.98 (switching intensity I, =18.6
W/cm ). The curvature coefficient is given by
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V(b)=2. 1(56) i (7.11)

so the condition V(b) »B becomes 56 »2&& 10 . Thus
when the operating intensity is below the upswitching
point by a percent or so, the use of (7.9) is justified. For
the representative numbers used above (7.9) is

In all of these calculations it should be remembered that
times are measured in units of I '. Evaluation of (6.8)
and (6.9) gives Bo——4X10 and B|——4.2X10 V56;
therefore if 56 »10, Bi »Bo as stated in Sec. V. The
potential maximum is given by 0.01

0.02
0.03
0.04
0.05

0.000004
0.000467
0.0566
7.28

966.0

TABLE I. Average time for noise-induced switching for
representative values of 56 =

i I;—I, i
/Io.
T* (s)

T*= exp(50056) (ns),56
(7.12)

where we have restored conventional units. For permissi-
ble values of 56, this result shows that the average time
for noise-induced switching increases very rapidly as the
operating intensity I; departs from the critical switching
intensity I, . This behavior is illustrated in Table I for the
representative parameter values used in the numerical esti-
rnates.

VIII. SUMMARY AND CONCLUSIONS

We have studied the stability of QBE's against holding
field noise by considering the specific case of a purely
dispersive Kerr medium. For small devices, i.e., those for
which the round-trip time is small compared to the
material-response time, the intracavity field can be adia-
batically eliminated and this leads to a Langevin-type
equation for the nonlinear phase shift. This equation in-
volves the amplitude fluctuation 5I, the frequency flu-
ctuatio 5', and the time derivative of the frequency fluc-
tuation, d(5')ldt. This last feature makes the theory
quite sensitive to the details of the frequency-noise model.
This sensitivity became apparent after the exact Langevin
equation was expanded about a stable deterministic solu-
tion and the corresponding Fokker-Planck equation was
derived. The diffusion constant B in the Fokker-Planck
equation is dominated by the frequency-noise contribution
and furthermore, B becomes infinite if the frequency fluc-
tuations are described by either a white noise or an Orn-
stein, Uhlenbeck process. We were therefore compelled to
use a suitable colored-noise model to describe the frequen-
cy fluctuations.

The approximate Fokker-Planck treatment is valid in
the vicinity of any stable solution but the interesting case
from the standpoint of applications is when the solution is

near the switching point. In this region the phenomenon
of critical slowing down is the dominant feature. The
deterministic response time To diverges like I/V56 near
the switching point, and an uncritical use of (7.12) would
lead one to conclude that the noise-induced switching
time T becomes infinite at the switching point (56=0).
This is not the case, since the validity of (7.12) was seen to
impose a lower bound on 56. In fact, for solutions too
close to the switching point, it would be necessary to in-
clude terms which were neglected in the derivation of the
Fokker-Planck equation. This would lead to a qualitative
change in the effective potential shown in Fig. 2, and the
solution Po would no longer be stable. ' In other words,
our treatment is not valid when the intensity is too close
to the switching point. In practice this makes no differ-
ence since the laser intensity cannot be controlled with
sufficient precision to violate the lower bound on 56. For
permissable values of 56, Table I shows a spectacular in-
crease in T* as the operating point is moved away from
the switching point. We therefore conclude that operation
of an optical switch with a holding-field intensity a few
percent away from the switching value will not be subject
to problems due to the noise in the holding laser.

ACKNOWLEDGMENTS

This work was performed in part while the authors
were at the Max-Planck Institut fiir Quantenoptik, Garch-
ing, in the framework of an operation launched by the
Commission of the European Communities under the ex-
perimental phase of the European Stimulation Action. It
was also supported in part by the U.S. Department of En-
ergy by the Lawrence Livermore National Laboratory
under Contract No. W-7405-ENG-48. We are thankful to
Professor S. D. Smith for suggesting this problem and for
numerous fruitful discussions.

Optical Bistability, Dynamical Nonlinearity and Photonic Logic,
edited by B. S. Wherrett and S. D. Smith (The Royal Society
at the University Press, Cambridge, 1984).

L. A. Lugiato and R. J. Horowicz, J. Opt. Soc. Am. B 2, 971
(1985), and S. M. Moore, Phys. Rev. A 33, 1091 (1986), have
analyzed aspects of this problem using a mean-field model of
dispersive optical bistability. See also J. D. Cresser and P.
Meystre, in Optical Bistability, edited by C. M. Bowden, M.

Ciftan, and H. R. Robl (Plenum, New York, 1981), pp.
265—280. For a treatment of the steady-state properties of a
bistable device under the influence of additive noise, see R.
Graham and A. Schenzle, Phys. Rev. A 23, 1302 (1981).

P. Filipowicz, J. C. Garrison, P. Meystre, and E. M. Wright, in
Optical Bistability III, edited by H. M. Gibbs, P. Mandel, N.
Peygharnbarian, and S. D. Smith (Springer-Verlag, Berlin,
1986), pp. 206—208.



1180 FILIPOWICZ, GARRISON, MEYSTRE, AND WRIGHT

See H. M. Gibbs, Optical Bistability: Controling Light with

Light (Academic, New York, 1985).
~N. G. Van Kampen, Phys. Rep. 24, 171 {1976}.
L. A. Lugiato and R. J. Horowicz, J. Opt. Phys. Am, B 2, 971

{198S).
~M. Sargent III, M. O. Scully, and W. E. Lamb, Laser Physics

(Addison-Wesley, Reading, Mass. , 1974), cf. Chap. 7.
8C. W. Gardiner, Handbook of Stochastic Methods (Springer-

Verlag New York 1983) pp. J.40ff.
A. Miller, D. A. B. Miller, and S. D. Smith, Adv. Phys. 30, 697

(1981).
L. A. Lugiato, A. Colombo, G-. Broggi, and R. J. Horowicz, in
Optica/ Bistability III, edited by H. M. Gibbs, P. Mandel, N.
Peyghambarian, and S. D. Smith (Springer-Verlag, Berlin,
1986},pp. 202—205.


