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We consider the effect of periodically modulated cavity losses on the bifurcation diagram of the
laser rate equations. The double limit of very slow atomic inversion relaxation and small modula-
tion amplitude is investigated. Our control parameter X is the ratio of the damped oscillation fre-
quency of the rate equations (at zero modulation amplitude) to the forcing frequency. We concen-
trate on the case of pure resonance (A, =1) and the first subharmonic resonance (A, = z ) because they

are most representative of the effects of the periodic control. We first reformulate the laser problem
as a weakly perturbed conservative system and construct harmonic and subharmonic large-
amplitude periodic solutions by a regular perturbation analysis. The conditions for the existence of
these solutions are analyzed and evaluated numerically. We show that harmonic and subharmonic
solutions may coexist. We then determine a small-amplitude periodic solution oscillating at the
forcing frequency. We show that perturbations of this basic state lead to slowly decaying quasi-
periodic oscillations except in the vicinity of the critical points A, = 2 arid I. In the first case,

subharmonic bifurcation may occur and the period of the oscillations suddenly doubles. In the
second case, bistability of periodic solutions is observed.

I. INTRODUCTION

Homogeneously broadened unidirectional tuned single-
mode ring lasers are described by a rather simple set of
three nonlinear ordinary differential equations. It was
realized by Haken' that these equations are equivalent to
the Lorenz equations and that this system was therefore
a good candidate to study deterministic chaos. The con-
flicting requirements imposed by the theory for the onset
of chaos (bad cavity but nevertheless high gain), however,
suggest that alternative possibili. ties be explored. The
guideline for these alternative schemes has been that a
necessary condition for the onset of chaos is the presence
of three degrees of freedom. Hence, Yamada and Gra-
ham suggested to perturb a good-cavit;y laser with an
external detuned field whose amplitude is periodically
modulated. Next, Scholz et al. suggested to have a
good-cavity laser perturbed by a cw external field and a
ti~e-periodic modulation of the population inversion. A
more accessible setup was studied theoretically by Ivanov
et al. They proposed to periodically modulate the cavity
losses of a Nd +: YAG laser (where YAG denotes yttrium
aluminum garnet). In such a laser the atomic time scales
are such that the atomic polarization can be adiabatically
eliminated. Hence the laser is described by the usual rate
equations for the field and the population inversion. The
m'odulation of the cavity losses then provides the addi-

tional degree of freedom required to access the chaotic
domain. Simultaneously and independently, Arecchi
et al. proposed the same scheme for a CO@ laser and
proved experimentally the soundness for these ideas. Al-
ternatively, the same lasers may develop chaos if the cavi-
ty length (and therefore the cavity frequency) is periodi-
cally modulated as shown by Midavaine et al. Finally,
the conjecture of Ivanov et a/. was verified experimental-
ly by Khandokhin and Khanin.

The requirement of three degrees of freedom is not only
a necessary condition for the occurrence of chaos. It is
also a necessary condition for the existence of a rich
variety of periodic states. Because the focus of the work
reported in Refs. 3—8 was deterministic chaos, rather lit-
tle attention was paid to the domain of stable periodic
solutions which pave the way to chaos, save for the work
of Matorin et al. which deals with numerical analyses.
This domain is of great interest in its own right. Indeed,
as soon as a loss modulation is introduced in the rate
equations, a complicated set of periodic solutions is ex-
pected to appear even though it need not necessarily lead
to a chaotic regime.

The purpose of this paper is to investigate analytically
the properties of these periodic solutions. We shall con-
centrate on the laser rate equations which are two ordi-
nary differential equations for E, the slowly varying real
amplitude of the electrical field and N, the population in-
version:
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E, = k—E+(g /yz)EN, cr +yAa+2Koy(A —1)=0, (2.S)

k(t')=kp[1+m cos(co't')], (1.2)

where m «1 and m' represents the frequency of the
periodic forcing.

The periodically perturbed laser problem (1.1) and (1.2)
is mathematically difficult because Eqs. (1.1) do not admit
any bifurcation other than the laser first-threshold steady
bifurcation. This contrasts with most analytic studies of
resonance phenomena which investigate the effect of a
small-. amplitude periodic forcing near a Hopf bifurcation
point (see, for example, Refs. 10—12). To determine the
response of the laser equations (1.1) subject to the periodic
perturbation (1.2), we shall develop a new asymptotic
method based on the fact that the ratio y=y~~/yz is
small. (For example, for a CO2 laser, yz —10 s

y~~
—10 s ', and thus y=10 .) If m =0 and y~O, we

shall note from Eqs. (1.1) that the non-zero steady-state
solutions correspond to double zero eigenvalues of the
linearized theory. Thus, each point of the branch of the
steady state becomes a degenerate Hopf bifuraction point
with zero frequency. This suggests that we analyze the
simultaneous limit m~O and y~O of Eqs. (1.1) and
(1.2).

II. FORMULATION

We first introduce the usual nondimensional variables
and parameters defined by

I—= (4g'/ygy)~)
~

E
~

', F=&/~—
A =g'&/koy—i y =y((/y j-
Ko =ko/yi f}—=~—'/yi

(2.1)

and rewrite'Eqs. (1.1) and (1.2) in terms of I, F, t, A, y,
Ko, and 0:

I, =2KoI ( —1+AF) 2IKom cos(Qt)—,

F, =y[1 F(1+I)] . — (2.2)

When m =0, Eqs. (2.2) admit the following steady-state
solutions.

(i) The zero-intensity solutions for all values of A

I =0, F=1 .

(ii) The nonzero-intensity solutions for A ) 1

J =Io =A —1 & 0, F=Fo= 1/A

(2 3)

(2 4)

From the linearized theory, we note that (2.3) is stable
(unstable) if A &1 (A & 1). On the other hand, the
characteristic equation describing the stability of (2.4) is

given by

(1.1)

where @~~X is the excitation rate and k, yz, 'and
y~~ are the

loss rates for the field, polarization, and population inver-
sion, respectively; g is the atom-field coupling constant.

As in Ref. 6, we shall control the cavity decay rate and
study the effects of small periodic modulations of its am-
plitude. Specifically, we consider

where o is the growth rate. If y~O, we find from (2.S)
that Re(0 &) &0 and Re(cr2) &0 for all A ~ 1 and therefore
(2.4) represents a stable steady-state solution. However, in
the limit y~O we have, from (2.S),

0 =R +lcd

rg)=[2K y(A —1)]" +0(y i ),
R =0(y) .

(2.6)

Hence, if y=O, 0~ ——o2 ——0 and the steady-state solutions
are marginally stable. The points (I, F, m, y )
=(A —1,1/A, O, O) are therefore degenerate bifurcation
points because they correspond to double zero eigenvalues
of the linearized theory. To analyze the perturbation pro-
duced by small values of m and y, it will be convenient to
introduce the deviations from the steady-state solutions
(2.4) defined by

x:(F Fo—)/a-,

y:—(I Ip)/Ip, —
where a is given by

a = (FpIpy /2Kp A )
'~

(2.7)

(2.8)

After inserting (2.7) and (2.8) into (2.2) and redefining our
reference time as

(2.9)

we obtain

xz ———Ay ebx[1+—3, (1+y)/a ],
yz ——M(1+y) —ec(1+y) cos(T) .

(2.10)

c =(2K my ')/(ny '~
) .

(2.11)

The small parameter e«1 and the control (or bifurca-
tion) parameter X=O(l) are given by

@=A,'~, A, =aIp ——a (A —1)'~ =co/0 . (2.12)

This shows that the control parameter A, has a very simple
physical meaning: it is the ratio of the damped-oscillation
frequency co given by (2.6) to the forcing frequency.

We shall investigate the laser equations (2.10) by fixing
the amplitude m =0(y) and the frequency Q=O(y' )

of the periodic variations of k (t) as suggested by the ex-
perimental work.

To analyze the perturbation of the double zero eigen-
value, we propose an asymptotic study of Eqs. (2.10) as
e~O. This paper is divided into four parts. In Sec. III,
we seek 0 (1) periodic solutions of (2.10) of the form

x(T,e)=xo(T)+ex, (T)+. . .

y (»&)=yo( T)+~y i (T)+
(2.13)

which are defined for all values of A, &0. The expansion

The parameters a, b, and c are fixed 0 (1) quantities de-
fined by

a =(2K )'~ /(Qy ' ),b =1/(Ay



35 SUBHARMONIC BIFURCATION AND BISTABILITY OF. . . 1167

(2.13) may, however, become singular if (xo,yc) is too
small in amplitude and is in the vicinity of particular
values of A, . To understand this problem in detail, we
determine in Sec. IV the small-amplitude solutions of
(2.10) of the form

x (T,A, ,E)='Ex i( TA )+t xz(T, A ) +
y(T, X,e) =ay, (T,X)+ezyz(T, X)+

(2.14)

We discuss the validity of this expansion and show that it
may become singular in the vicinity of critical values of A, .
Two singularities are investigated to complete our bifurca-
tion analysis.

III. HARMONIC AND SUBHARMONIC
0 (1) PERIODIC SOLUTIONS

In this section, we will treat e as a small parameter and
use the expansion (2.13) to determine the possible periodic
solution of (2.10). Setting a=0 in (2.10), we obtain the re-
duced equations

xy = —Ap

yr ——M(1+y) .
(3.1)

The system (3.1) is conservative with a first integral given
by

1=x +2y —2ln
~
1+y

~

(3.2)

The essential feature of these equations is described in the
phase plane (x,y) (see Fig. 1 of Ref. 13). The origin is
surrounded by periodic orbits with periods ranging con-
tinuously from 2m/A. near the origin to Do near the line

y = —1. Thus for a fixed value of A, , there exists among
the solutions of (3.1-) a set of periodic solutions
( x,y ) = (x„(T),y„(T) ) character'ized by their period
P=2n.n (n=. . . , —,', —,', 1,2, 3, . . . ) with n ~1/A, . As a
consequence, if we now consider @&0 but sufficiently
small, only these periodic solutions may be excited by the
2m-periodic forcing. Our goal is precisely to study the
possible resonances.

The two-dimensional system (3.1) has appeared in some
earlier work on the laser rate equations. If we define
s= ln

~
1+y

~

and use (3.1) to write a second-order dif-
ferential equation for s, we obtain sr&. +A, (e' —1)=0.
This equation was derived by Oppo and Politi' to find
the period of the damped laser oscillations. It is also in-
teresting to note that Eqs. (3.1) have been obtained recent-
ly in different singular Hopf bifurcation problems. '3'5

The mathematical approach we consider follows closely
the work by Schwartz and Smith' which is based on the
ideas developed by Chow, Hale, and Mallet-Paret. '

Specifically, we shall seek periodic solutions of Eq. (2.10)
of the form

turbation procedure. Introducing (3.3) into (2.10) and
equating to zero the coefficients of each power of e leads
to the following equations for Xi(T) and Y, (T):

Xiz+A, Yi = —»a[1+A, (1+y„)/a'],
Yir —~i(1+y„)—Ax„Yi ———c(1+y„)cos(T) .

(3.4)

Since the homogeneous linear problem for Xi and Yi ad-
mits a single-bounded periodic solution, namely
(Xi, Yi)=(x„z,y„r), the inhomogeneous equation must
satisfy a solvability condition. The procedure to obtain
this condition is described in detail in the Appendix of
Ref. 13, so that we only discuss the main results.

We have found the following solvability condition

(A, /a +1)bI, +c cos(y)Iz+c sin(y)I3 —0, (3.5)

where Ii(A, ,n), Iz(A, ,n), and I3(A, ,n) are the integrals de-
fined by

cos(g)y„(g)d g,
sin(g)y„(g)dg .

(3.6)

Equation (3.5) is the bifurcation equation for the undeter-
mined phase y: If Eq. (3.5) admits a solution for q& then
Eq. (2.10) has a 2mn-periodic solution given by

x = x„( T+y) +O(e),

y =y„(T+q )+O(e) .
(3.7)

0.5

In general, the integrals IJ(A,,n) must be evaluated numer-
ically. As an illustration, we have considered n = 1 and 2.
In Fig. 1, we present the domains in the (A, ,c) parameter
plane where a solution of the form (3.7) may exist. De-
pending on the value of n and the initital value of y„(T)
used to evaluate the integrals I2 and I3, we have found
that either Iz ——0 or I3 ——0. If Iz ——0, the boundaries of
the domain of possible solutions correspond to

~
q&

~
=sr/2

x ( T,e) =x„(T +y )+eX i ( T)+e Xz ( T)+
(3.3)

y(Te)=y„(T+y)+eYi(T)+e Yz(T)+

where (x„(T),y„(T)) represents a periodic solution of (3.1)
of period I' =2~n ( n =,—,', —,', 1,2, . . . ) 1/A, ) and y is
an arbitrary constant phase to be determined by the per-

40

FIG. 1. Domains in the (A, ,c) parameter plane of the subhar-
monic 4m-periodic solutions (k~ 2 ) and the harmonic 2m-

periodic solutions (A, & 1).
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and are defined by the two functions

(A, la +.1)bI~+cIz ——0. (3.8)

tegrals, in (3.5), (3.8), and (3.9) using the expansion (3.13).
The corresponding boundaries of existence are drawn as
dotted lines on Fig. 1.

On the other hand, if I3——0, the boundaries of the domain
of possible solutions correspond to y=0 or m and are de-
fined by the two functions

A. n =1

(A, la +1)bI&+cI3——0. (3.9)
As 5~0 (i.e., as A, —1~0 or co=0) we obtain from

(3.9)

x (Tln, 5) =5u ~(T/n)+5 u2(T/n)+

y(T/n, 5)=5u, (Tln)+5 u, (Tln)+ . (3.10)

The solid lines in Fig. 1 represent the functions defined ei-
ther by (3.8) or (3.9). Note, however, that this does not
imply the stability of the periodic solutions.

In order to obtain an analytic expression for the boun-
daries shown by the solid lines on Fig. 1, we analyze the
periodic solutions with period 2mn (n =1 or 2) in the vi-
cinity of A, = 1/n. We first determine a small-amplitude
2m n-periodic solution of Eq. (3.1) by the I.indstedt-
Poincare method. ' We seek a solution of the form

c-+2b (1/a + 1)V 6(A, —1)', A, & 1 (3.16)

x(T,5)=5(e' +~'+c.c.)+O(5 ) . (3.17)

Thus these values of (A, ,c) correspond to the case of pure
resonance.

B. n =2

which represents a parabola in the (A, ,c) parameter plane.
For the physically relevant values of A, & 0 and c & 0 locat-
ed inside this parabola, there exist periodic solutions of
the form

where 5 is a small parameter defined by

5= f x(T/n, 5)e ' ~"dT .
2m.n

(3.11)
c=+3b[1/(2a) +1], A, & —,

' (3.18)

As 5~0 (i.e., as A, ——,
' —+0 or 0=2co), we now find

from (3.8)

From the expression for x in (3.10), we note that the defi-
nition (3.11) implies that u

&
——e '" "+c.c., while u 2,

u3, . . . may only involve harmonics of e+—' " (i.e.,
e +—' " with m =2,3, . . . ). Thus 5 is simply defined as
the amplitude of the basic mode e' ". We also assume
the following expansion of A, :

A(5)= —(1+6,, +5 A,,+ . ) .1 2

n
(3.12)

Introducing (3.10) and (3.12) into (3.1) and equating to
zero the coefficients of each power of 5, we obtain a se-
quence of problems for (u&, u~), (u2, u2), . . . . Then solv-

ing each problem sequentially and using (3.11), we obtain
the following results:

x(T/n, 5)=5(e' ~"+c.c.)+5 ——e ' ~"+c.c.2i T/n

3

+5 ( ——'e ' "+c c )+O(5 ),

1
y(T/n, 5)= ——xT,

(3.13)

A(5)= —1+ +O(5 )
1 5'
n 6

(3.14)

Thus from (3.14), we can express the amplitude 5 as a
function of the deviation A. —1/n:

5=[6n (A.—1/n)]'~ +O(A. —1/n) . (3.15)

We now consider the cases n =1 and 2 evaluate the in-

where the O(5 ) term involves higher-order harmonics of
the form e —+' T~" (m =2, 3, . . . ). The unknown coeffi-
cients A, &, A,2, . . . appearing in (3.12) are determined from
the solvability conditions. We find that

which are vertical lines in the (A, ,c) plane. Inside the
domain bounded by these lines the parameter values are
associated with periodic solutions of the form

x(T,5)=5(e' +~'+c.c.)+O(5 ) . (3.19)

Thus this region corresponds to the subharmonic case of
order 2. From Fig. 1 we see that the vertical line (3.18) is
tangent to the numerically determined solution of (3.8).

A similar analysis of (3.5) or (3.8) and (3.9) is possible
for the next subharmonic cases ( n =3,4, 5. . . ) or har-
monic cases (n =1/m, m =2,3, . . . ) but will not be given
here because the two cases n = 1 and 2 already capture the
essential properties of the next cases.

In this way one can generate in the (A,,c) parameter
plane a succession of boundaries corresponding to the ex-
istence of subharmonic solutions (I'=2mri, n =1,2. . . )

and of harmonic solutions (I' =2~/n, n =1,2, . . . ). For
a fixed value of c and gradually increasing X from zero,
successive transitions to distinct subharmonic periodic
solutions are possible. This analysis, however, does not
determine if the transitions between these solutions occur
by successive bifurcations or if the different periodic re-
gimes belorig to coexisting branches of solutions. We em-
phasize the fact that the periodic so1utions constructed us-
ing (3.3) represent O(1) solutions. In general, the small-
amplitude limit of this expansion [see (3.10)—(3.19)] valid
near particular values of A, (A,=l/n) is singular, i.e., the
expansion (3.3) becomes nonuniforin near and at these
values of A, . Thus the small-amplitude analysis presented
at the end of this section can only be considered as indica-
tive and inner solutions valid near these critical values of
k have to be constructed. Uniform solutions may then be
proposed connecting these inner solutions to the general
(outer) solution described by (3.3). In order to clearly
understand the role of these singularities, we shall analyze
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in the next section the expansion (2.14) for O(e) periodic
solutions.

IV. HARMONIC AND SUBHARMONIC
O(6 ) PERIODIC SOLUTIONS A, —1 =E A2+EA3+ ' ' (4.6)

A. A,=1

Rosenblat and Cohen' have shown that the appropriate
expansion of the bifurcation parameter and the dependent
variables are given by

x =e'i X&( Tr) +ei X2(T,r)+
y =e'~ Y, (T,r)+e ~3'(T,r)+. . .

x (T,S,e) =eX, (T,S)+e X2(T,S)+ ~ . .

y(T S,e) =eY&(TS)+e Y2(T S)+
(4.1) where r is a new slow time defined by

In this section, we determine small-amplitude periodic
and quasiperiodic solutions of Eq. (2.10). To this end, we
first seek a solution of (2.10) of the form

which depends on two independent time variables: the
fast time T of the periodic forcing and a slow time given
by

max lx)
S =ET . (4.2)

Introducing (4.1) and (4.2) into (2.10) and equating to zero
the coefficients of each power of e, we obtain a sequence
of linear problems for (X&, Y& ), (X2, Y2), . . . . After ap-
plying the solvability conditions, we find the following
solution:

x =eI[a(S)e' +c.c.]+(p~e' +c.c. ) I+0(e ),
(4.3)

y =eI[ ia(S)e—' +c c ]I+(.q,.e' +c.c.)+O(e ),
where p~ and q& are two constants defined by

o.5

. c 1

(4.4)
~ax lx I

and the amplitude a(S) is given by

a(S) =a(0) exp ——(A. /a +1)S —&0 as S—+ac, (4.5)
2

where a(0) can be related to the initial conditions for x
and y. Thus, the solution (4.3) represents a quasiperiodic
solution involving two distinct frequencies o.= 1 and
o.=A, . However, as T~ao, the solution approaches a
2n-periodic regime. From (4.3) and (4.4), we note that the
solution becomes singular as

~

A, —1
~

~0 (the pure reso-
nance case). Moreover, the analysis of the O(e ) correc-
tions which involve harmonics of e —+' and e —+' and
their combinations show that other singularities may
develop at A, =l/n (the subharmonic cases) or A, =n (the
resonance cases). This is a general observation for period-
ically perturbed Hopf bifurcations. ' To resolve these
singularities, new (inner) expansions of the solutions valid
near the different singular points must be proposed. To
illustrate this phenomenon, we shall analyze one example
of resonance case ( n = 1) and one example ( n =2) of
subharmonic case. Since the successive perturbation stud-
ies are discussed in detail by Rosenblat and Cohen, ' we
only summarize the main results.

o.5

FIG. 2. Global bifurcation diagram of the periodic solutions
representing the maximum value of x as a function A, . The fig-
ure has been obtained by matching the expansions of the har-
monic and subharmonic solutions valid near A, =1 and A. = 2,
respectively. In (a) bifurcation to subharmonic solutions (near
A, =T) is possible because condition (4.23) is satisfied. If this
condition is not verified, the basic 2m-periodic solution remains
stable and bifurcation to subharmonic solutions does not occur
[see (b)]. Isolated branches of 0{1)subharmonic periodic solu-
tions may, however, exist but are not described by the local
analysis. Note that the separation between the two bifurcation
points near A, = 2 is O(e) in (a) while the deviation of the limit

point from A. = 1 is O(e ~ ).
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—E2/3T (4.8)

We substitute the series (4.6) and (4.7) into (2.10) and
equate to zero the coefficients of each power of e'~ . Us-

ing the solvability conditions, we find that
x =e' [a(S)e' +c.c.]+O(e),
y =e'~ [ i—a(S)e' ~ +c c .]+. O(e),

(4.16)

the three first orders, we find that x and y are in first ap-
proximation 4m-periodic functions of T and are given by

x =e [a(r)e' +c.c.]+0(e ),
y =e'~ [—ia(~)e'"+c.c.]+0(e ~'),

where the amplitude a satisfies

(4.9) where the 0 (e) correction terms involve contributions
from the forcing function of the form e +' .-From the
solvability condition of the O(e ~

) problem, we find that
a satisfies

EX~= l A, 2A — CX CK
l 2 g . C

6 4
(4.10) as=i~2a —a [1/(2a) +1]— a a*+—a" .

2 12 6
(4.17)

To analyze the solutions of (4.10), it will be convenient to
define a=r exp(i8) and consider the evolution equations
for r and 8:

By defining a =re', we obtain from (4.17)

rx ————[1/(2a) +1]r+ rcos(28)—,2 6

r, = ——sin(8),C

(4.11) re ——rA, 2
— r — rsin—(28) .1 3 C

12 6

(4.18)

r cr8,=A,2r ——c—os(8) .
6 4

The steady-state solutions of (4.11) are given by solution
(i),

0=0, and branch (ii),

(4.19)

Eliminating 8 from the steady-state equations, we find
two different branches of steady states: branch (i),

r c'2= +

and solution (ii),

0=m,

(4.12)
r+ ——6(2A,2+I' )

where

C2
I = b[1/(2a)—+1]2)0 .

9

(4.20)

(4.21)

r
A2—

6
C

4r

(4.13)
The solution (4.19) corresponds to the basic solution and
is given by

They are represented in Fig. 2. The linear stability of
(4.12) and (4.13) can be studied using (4.11). This leads to
positive eigenvalues for the middle branch which is there-
fore always unstable. For the two other branches, the
trace of the Jacobian matrix identically vanishes and
therefore the eigenvalues are purely imaginary. The first
contribution to the real part of the eigenvalues will there-
fore come from an analysis of the next order in the per-
turbation expansion. When this is done, it is found that
Rek, = —e(1+1/a )/2 & 0 (on the time scale T) and there-
fore the upper and lower branches are stable.

B. A,=2

x =e ——e' +c.c. +O(e ~ ),
3

y =e 2i—e' +c.c. +O(e ~2) .
3

(4.22)

&b [1/(2a) +1],
3

(4.23)

there exist two distinct branches of 4'-periodic solutions
of the form

It is stable when I"& 0. From the solution (4.20) and pro-
vided that I & 0 or equivalently

We now analyze the second subharmonic. The ap-
propriate expansion for the bifurcation parameter in this
case turns out to be

x+ e'~2(r+e'~~2+——c c.)+O(e), .

y+ e'~ ( ir+e' ——~ +—c c )+O(e) .. .
(4.24)

+El +1

2 2 (4.14)

We substitute (4.14) into (2.10) together with the series

x =e'i X, (T,S)+eX2(T,S)+

y =e' Y, (T,S)+eY2(T,S)+. . . (4.15)

where the slow time S is defined by (4.2). Equating coef-
ficients of like powers of e'~, we obtain a sequence of
linear problems for (X~, Y~), (X2, Y2), . . . . Analyzing

From a linear stability analysis of the steady states (4.20),
we have found that r+ (r ) corresponds to stable (unsta-
ble) solutions. In this case the solution (4.22) is stable ex-
cept in the domain —I' &2A,2&I'~. In Fig. 2(a), we
have represented the two bifurcations. In Fig. 2(b), there
exists no period-doubling bifurcation because condition
(4.23) is not satisfied. Figures 2 gives global bifurcation
diagrams connecting the 0 (1) periodic solutions found in
Sec. III and the small-amplitude periodic solutions
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analyzed in this section. In all cases, we have verified
analytically the matching of the different asymptotic ex-
pansions.

V. DISCUSSION

The problem we have studied in this paper is of an
unusual nature because in the absence of external modula-
tion the laser rate equations do not have any Hopf bifur-
cation (nor any other bifurcation) on the finite-intensity
branch. The clue to understanding the rich variety of
behaviors displayed by the solutions is the smallness of
the relaxation time and frequency. In the limit
y=y~~/yi ~0 (which corresponds to the domain investi-
gated experimentally) the laser will relax towards its stable
steady state through damped oscillations. The oscillation
frequency vanishes like y' whereas the damping van-
ishes ever more rapidly, being proportional to y. In a
way, a laser operating in this regime displays critical slow-
ing down for any value of the pump parameter consistent
with a finite intensity. We may therefore describe the re-
sulting evolution as the small disipative perturbation of a
conservative system. This conservative system has bound-
ed periodic solutions. As a result. of the smallness of the
damping rate, a small-amplitude external modulation may
disrupt the decay sufficiently and stabilize periodic solu-
tions.

With this picture in mind, we expect in general a
periodic response at the external modulation frequency.
However, anomalous behavior of the solutions may hap-
pen at resonances, i.e., when the oscillation frequency (to)
of the rate equations and the external modulation frequen-
cy (Q) are commensurate. We have analyzed the two
cases A, =to/Q=1 and —,'.

For the resonant forcing (to=Q) we have shown that a
domain of bistability may occur. The two stable solutions
(as well as the intermediate unstable solution) have the
same frequency of oscillation but different amplitudes.

A different situation occurs near the first subharmonic
resonance (Q=2ta). On both sides of A, = —,, bifurcation

points can appear whose existence and location depend on
the external modulation. Only the solution emerging
from the bifurcation point located below A, = —, is stable.
This again leads to a domain of bistability beyond the bi-
furcation point located above A. = —,. At the lower bifur-
cation point, we are dealing with a steady bifurcation of
the amplitudes. In terms of the complete solution (which
is an expansion in powers of e'~ ), the situation is quite
different. The vanishing of r means that the leading con-
tribution to the solution is proportional to e whereas when
r is finite, the leading contribution is proportional to e'
Therefore, the solution corresponding to r =0 has the fre-
quency Q whereas the bifurcating solution with r&0 has
the frequency Q/2. As a result the lower bifurcation
point is a period-doubling bifurcation. Needless to say,
the occurrence of bistability domains implies that dif-
ferent responses will be displayed when A, is progressively
increased or decreased. As a consequence, a complete ex-
perimental characterization of the bifurcation diagrams
requires that both variations of k be studied.

The choice of scaling for the modulation amplitude
which was made throughout this paper imply that the
external modulation is a smalI perturbation. This is essen-
tial for the derivation of the various solvability conditions
which have been discussed. Therefore we cannot infer
from the present. analysis the behavior of the solutions
when the modulation amplitude is large (compared to e).
This problem would require a totally different analysis
which is beyond the scope of the present paper.
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