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Double excitation in Li and Be by electron impact: A distorted-wave approach
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The distorted-wave approximation is used to calculate the double-electron-excitation cross section
of Li( S-"P) and Be('S- P) by electron impact. The distortion in the incident and exit channels in-

corporates the distortion effects of the static, polarization, and exchange potentials appropriately.
The results are compared with the Born-Oppenheimer approximation.

I. INTRODUCTION

Single-electron excitation in various atoms (ions) is well
studied. Atoms (ions) with two active electrons may
have two electrons excited. Such doubly excited states lie
in the continuum and have been known spectroscopically
for some time. ' These states are short lived and mostly
decay to the continuum. With the availability of sophisti-
cated experimental techniques it is now becomjng possible
to study such states in more detail and to explore their
utility in a broad sense. A few theoretical approximations
have been used to find the production cross section of
some doubly excited states in helium atoms. ' These
included the simple Born-Oppenheimer, close-
coupling, ' Glauber, " and distorted-wave (DW) approxi-
mation' methods. For helium, there has been even an ef-
fort' to measure the cross section for the 2p P excita-
tion state from its ground 1s 'S state. It has been
shown' that the DW approach is quite useful when ap-
plied to double excitation in helium. Similar conclusions
are also drawn in similar DW studies of single inner-
shell-electron excitations of aufoionizing levels in lithi-
um. In lithium, a few doubly excited autoionized states
have been observed in addition to the prevalent single
inner-shell excited autoionizing states. These doubly ex-
cited states in lithium are of fundamental importance be-
cause their excitation cross-section knowledge could be
used to understand electron capture by lithium (viz. , Li
studies). There is only one calculation for the S "Pdou--
ble excitation in Li using the simple Born-Oppenheimer
(BO) theory. This was done by Kulander and Dahler.
However, better approximations are now available to give
reliable estimates of the double-excitation cross sections.
Motivated by this fact, as well as by our experience with
the useful application of the DW theory, '" ' en-
couraged us to reexamine this problem using the DW
theory.

In this paper we cal'culate the Li( S P) excitation cro-ss
section and compare the results to the BO theory. In ad-
dition to calculating this cross section we extend our DW
method to the calculation of 'S- P double excitation in Be.
These cross sections are again compared with those of the
BO theory. Our choice of these doubly excited states in

Li and Be is based on two facts: (1) being parity-
unfavored transitions these are relatively longer-lived
states and are suitable to be treated as bound states, and
(2) the BO calculations are available for comparative
purposes.

II. THEORY

i(f) i(f) i(f)U.(f)=~.t.t + &...h+ &I,.&- (3)

In the above expression [Eq. (3)j on the right-hand side
the first term is the static potential of the target, and can
be written as

~stat ~Pi(f) l

~
I A(f) l .i(f)

If f (f) is written as a sin'gle determinant of spin orbitals

The T matrix in the distorted-wave (DW) approxima-
tion (with full allowance of exchange symmetries) for any
inelastic electron and an S-electron target-atom scattering
process is given by'

Tjf= (F (kf, 0)gf ( 1, . . . , N)
~

V(0, . . . , N)

U( {f)(0}
~

ttt; ( 1, . . . , N)F + ( k;,0 ) )
where

Z ~ 1

~0 '=~ ~r'0

V is the interaction potential between the target and the
projectile electron. The properly antisymmetrized initial
(final) atomic wave function is g;(gf ), the distorted-wave
function of electron in the incident (exit) channel is
F+(k;,ro) or F (kf IQ), and r;o is the distance between
the electron whose coordinate is r; and the free electron
having position vector ro. The superscript + ( —) refers
to the usual outgoing (ingoing) wave-boundary conditions.
Z is the target nuclear charge. k; and kf are chosen
respectively to be initial and final wave vectors of the pro-
jectile electron; U;(f) is defined to be initial (final) spheri-
cally averaged distorting potential for the projectile elec-
tron in the incident (exit) channel. (Atomic units will be
used throughout. ) For U;(f) the following choice was
made:
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(g((f) )~ then The boundary conditions are

1 1' 2 NQ'{f}= ~( det
I 0i(f){t'i(f) 0i (f)

and hence static potential [Eq. (4)] can be rewritten as
and

u, (k,r)„()——0

i{f) z I 4i(f) I

Vt(~( = —g ijrf ICTJ.
P'o (

. I" —I"o

o.j is the spin coordinate of the jth electron. The second
term [in Eq. (3)] is the nonlocal exchange potential which
takes into account the exchange of the projectile electron
with the bound electrons in the target. The third term [in
Eq. (3)] is the polarization potential which includes the
polarization effect of the target by the projectile electron.
The form and choice of these potentials for different
atoms will be mentioned later in the text when we consid-
er each transition separately. Expanding F(k, r) in partial
waves, we have (assuming k =k; or kf and U=U; or
Uf )

., +is, (k&) ui(k, r)F+—(k, r) = g (2l +1)i'e ' Pi(k.r),
k i=o

u, (k,r)„„=k-'"sin kr — +n, (k')
2

(10)

The equations are solved numerically using the procedure
adopted by McDowell et al. ,

' and Srivastava et al. '

The procedure consists of using the noniterative method
of Marriot' to obtain the solution of Eq. (8). The nor-
malization of the radial wave equation and evaluation of
the phase shift is done by matching the JWKB solution as
suggested by Burgess. Total cross sections are calculat-
ed from the T matrix [Eq. (1)] in the conventional manner
after selecting a specific transition for a particular target
atom. Appropriate atomic wave functions are used, and
the distorted waves are obtained from Eq. (8). In Sec. III
we describe our procedure for the evaluation of the T ma-
trix for specific cases. In each case we use atomic wave
functions which are chosen to be suitable combinations of
single-particle orthonormal wave functions. The I.S-
coupling scheme is assumed.

where 5i is the phase shift of the lth partial wave and
. ui(k, r) is the solution of the equation

l(l+1) —2U(r)+k ui(k, r) =0 .
p 2

III. APPLICATION TO SPECIFIC ATOMS

A. Lithium (1s22s 2S —+1s2p~4I'}

The ground-state ls 2s S function is written in the fol-
lowing form:

f;:—g(~(1,2, 3)= [R),(1)R (,(2)Rz, (3)Yoo(1)Yoo(2) Yoo(3)rl;(1,2, 3)+ ],
3

where the ellipse represents two cyclic permutations of electron labels [in Eq. (12) also). We used it)„i (r) =R„i(r)Fi (r)
where R„i and Fim(r) refer to the radial and spherical harmonic part of an orbital wave function. Here the spin function
1s

g;( 1,2, 3 ) = ( 1/v 2)(a)p3 —a+) )a3 .

The excited state (1s 2p "P) can be written as

where

C(1,1, l, m), m2, ML )[R3~(l)R2&(2)R},(3)Y) (1)Y) (2)Yoo(3)+ ]nf(1,2, 3),
m&, m2

(12)

1
Vlf ( 1,2, 3 )= (a)Pz+a+j)a3 ~

2

Here I.= 1, ML ——(0, +1), and the radial wave functions R &„R2„and R2~ for different orbitals as well as excitation
energy, (b,F=4.54 Ry) are taken to be the same as used by Kulander and Dahler. C(l(, l2, 13,m&, mz, m3) is the
Clebsch-Gordan coefficient. '

With these atomic wave functions used in the T matrix [Eq. (1)] and performing integration on the spin coordinates
we can write simply (the direct matrix as well as most of the other terms in the exchange matrix become zero due to
orthogonality of the atomic orbital wave functions)
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TY = g C(1, 1, 1, m, omoM o) (F (kf, O)Roo(()Roo(2)Ro, (3)Y(,(l)Yo (2)Yooi3)v'6

X F+(k;, 1 )R o(3)R o( O)R o( 2) Yoo(0) Yoo(2)Yoo(3))
I'pz

F ( kf 0 )R 2P ( 1 )R 2~ ( 3 )R 13( 2 ) Y1)23 ( 3 ) Y1Rl ( 1 ) Y()()( 2 )

F+(k, ,O)R „(2)R„(O)R„(3)Yoo(O)l'oo(2)l'oo(3)) (13)

Further,

ML
T,f = — —I1I2 (5M, 1+6M, —1)

with

i f~Ioi = ~I.i =— 8

1 —+br'e
27 i =1

(21)

The following form of the polarization potential is uti-
lized:

and

I] ——I kf, ORgp 2 Y)~ 2

1
R»(0)R2, (0)Yoo(0) Yoo(0)

I'oz

I2 ——(R2q(1) Y1()(1)
~

F+(k;, 1)), (16)

a is the dipole polarizability of lithium in the ground
state, and b s and a are known constants and are taken as
described in the literature.

The exchange potential is chosen to be that suggested
by Furness and McCarthy and used by several oth-

17326

V-.h(&) =([ 2
k' —Vll.l(&)]

and with the use of spherical harmonic expansions for
F—+(k, r), as given by equation, and for I/ro2, given by
the following:

I

2l+1 r~+'

o.=2 f Tf(M~ =1) dII .kf
ki 2~

(18)

The following potentials have been chosen to solve Eq. (8)
for the initial (final) distorted waves u)(k;(f) r,)

Z
V,'„,(r) = — +A1 dr

I'p r —rp

+~ f ' dr,r —ro

V„,„(r)=— +21 f drf Z
rp /r —ro/

r—rp

(19)

(20)

with A~ ——2, Az ——1 and 2& ——1, A& ——2.
The second term in Eq. (19) is not spherically sym-

metric in nature so we have used the conventionally
adopted spherically sym. metric part of it.

We can reduce both I& and Iz to the form of one-
dimensional comfortable integrals which are evaluated us-
ing Simpson's method. The total cross section (T is then
obtained using conventional integration over all scattering
angles in space to give

B. Berylljum atom (1s 2s 'S—1s 2p P)

In the Be atom there are two valence electrons (2s )

which lie outside a spherically symmetric core. The 1s
electrons are weakly coupled to the 2s electrons. We
therefore consider the 2s electrons to be the active elec-
trons which are excited by the projectile electron into the
2p orbital. We also find in 'S- I' excitation that these
two 2s electrons get excited to 2p orbital. It would there-
fore be adequate in the evaluation of the T matrix [Eq.
(1)) to consider only these two electrons to take part in the
collision dynamics. Thus, we treat the Be atom to behave
as a simple two-electron system represented by its valence
electrons in the evaluation of the r matrix. Define p1„
pz„and $2& to be the orthonormal wave functions of an
electron in the Be atom in 1s, 2s, and 2p orbitals. We
choose these to be the same as described by Becker and
Dahler. The wave function of the Be atom in the 1s
ground state and excited 3p state can be expressed as

)t);( 'S )
—=1)'j(m(1, 2)

=R2,( 1 )R2,(2)Yoo(1)Yoo(2)211(1,2), (23)

with the spin function g;(1,2) =( I/M2)(a)132 —aQ) ).
Similarly,

—
I [—,

'
k; —V'„„(r)]

+4~114).
I
'+4~21423

I
'] '")/2 .

Our choice in selecting the same exchange and polariza-
tion potentials in the incident and exit channel is not
unique. This has been done with success in previous
works' ' also.
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ef ( ~ ) = P1,MI ( 1

C(1, 1, 1,m„m2, ML )R2&(l)R2&(2)F~~ (1)F&~ (2)rjf(1,2),
m(, Nf2

(24)

with the spin function nf(1, 2) =(1/W2)(o, '&P2+a2P(). Substituting these wave functions into Eq. (1) for the transition
matrix and proceeding in a similar way as for Li we find after the spin coordinate integration:

Tf = —V 3C(1,1, (,m(, mp, Mp)IF (k ,f)0R(pp1)R (p2p) Fp(1)

Xl i (2) Rp (0)Rp (2)F(k;, ))Fp(p0) Fpp(2))
~or

(25)

Further simplification gives culations were performed using one of the standard
forms:

Tf = V3/2I )I—25~
2

where

(26)
(4~ AV., = — . 1 —exp-Po 2 4 Icg

'8

(29)

II = (&2p(1)&$IQ(1)
~

I'+(k' 1) )

I2 F kf y0 Rzp 2 Y&] 2

X Rp (D)Rp (2) F(pDp) ppF(2)l
I"02

(27)

(28)

Here a (=37.8) is the dielectric polarizability of the beryl-
lium atom and its experimentally measured value is taken
from the literature. r, (=1.33) is the position of the last
maximum of the absolute value of the outermost wave
function, and g is an energy-dependent parameter that is
taken to be unity.

IV. RESULTS AND DISCUSSION
I

&
and Iz are integrals which are evaluated similar to I j

and I2 [Eqs. (15) and (16)] and the expression given by
Eq. (18) is utilized to find the total cross section for Be.
The excitation threshold energy is taken to be DE=0.543
Ry, which is the same as used by Becker and Dahler.

In the present case for Be the same form of static and
exchange potentials are used. These are given by Eq. (19),
(20), and (22). However, the use of the following values
for the constants, as well as substituting wave function for
Bemustbe used: A~ ——2, A2 ——2, A& ——2, Az ——2.

In contrast to the H, He, and Lj atoms no suitable ex-
pression for the polarization potential in Be was available
in the literature. However, in order to see the effect of
adding a polarization potential in the distorted waves cal-

Total cross-section results are obtained in our DVV
model for 1s 2s' S—1s 2p I' excitation in lithium and
1s2252 1S 1s22+ 2 3P transjtjon jn beryllium Incjden
electron energies ranged from near threshold to the
asymptotic region. In order to assess the effect of the
static, exchange, and polarization potentials separately we
performed, for each atom, the following types of three
separate calculations.

(1) The initial distorted wave is obtained by using the
initial ground-state static potential while the final distort-
ed wave in the exit channel is generated by using the final
excited-state static potential. Results of this kind will be
referred to as IF.

(2) The preceding first choice for the static potential, in
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FIG. 1. Double excitation cross sections for S- P excitation
in lithium by electron impact. Q, present DW results (IF); 0,
present DW'results (IFE); Q, present DW results (IFEP); ~,
BO-theory results (taken from the figure shown in Ref. 9).
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FIG. 2. Double excitation cross section for 'S- P excitation in
beryllium by electron impact. Same as in Fig. 1 (except that
BO-theory results are taken from Ref. 7).
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TABLE I. Electron excitation of Li(1s) (2s) ' S
—Li(1s)'(2p) 4P in units of 10 mao.

TABLE II. Electron excitation of Be(1s) (2s) 'S
—Be(ls) (2p) P in units of mao.

E; (Ry) IF IFE IFEP E; (Ry) IF IFE IFEP

4.6
4.7
4.8
5.0
5.3
5.5
5.8
6.0
7.0
8.0

0.0389
0.202
0.331
0.335
0.250
0.206
0.188
0.133
0.0609
0.0302

0.191
0.207
0.339
0.342
0.255
0.211
0.192
0.136
0.0627
0.0312

0.266
0.309
0.322
0.313
0.266
0.231
0.214
0.155
0.0690
0.0326

addition to considering the exchange potential [Eq. (22)],
are used in obtaining the distorted waves for both the in-
cident and exit channels (IFE).

(3) The second choice for the static and exchange poten-
tials, in addition to the polarization potential [Eq. (21) for
Li or Eq. (29) for. Be], was included in obtaining the
incident- and exit-channel distorted wave (IFEP).

All three different calculations (viz. , IF, IFE, and
IFEP) for each Li and Be atom are compiled in Tables I
and II, respectively. These are also compared among
themselves as well as with those of the BO-theory re-
sults ' in Figs. 1 and 2 separately.

In Fig. 1 and Table I our three different distorted-wave
results for S- P excitation in Li are displayed. We find
from the figure that in the near-threshold region the IF
results are lowest while IFEP results are largest. The
cross sections are quite sensitive to the inclusion of ex-
change and polarization effects in distorted-wave theory.
Near the maxima IFE results are larger than the IFEP
and IF result values, but all three results are within 10%
variation among themselves. The position of the max-
imum is in each case nearly at the same energy. It is fur-
ther seen that at higher energies all the results approach
the same asymptotic limit as expected. Comparing our
various DW results with those of BO-theory results of
Kulander and Dahler is as shown in Fig. 1. It is seen
that the peak value of cross section in BO theory is about
the same in magnitude and location in terms of incident
energy. The BO-theory results were available up to only
6.0 Ry, and it is seen that the DW calculations appear to
approach asymptotic values much sooner than the BO
theory.

Figure 2 and Table II show our three different DW re-
sults for 1s 2s 'S—1s 2p P transition in beryllium.
First compare our IF and IFE results which are similar in
magnitude and nature to each other. We again find, simi-
lar to Li, that near the threshold region the cross sections

0.55
0.56
0.57
0.58
0.59
0.60
0.63
0.65
0.70
0.75
0.80
0.85
0.90
1.00

0.153
0.553
1.06
1.62
2.22
2.80
4.40
5.19
5.83
4.93
3.54
2.33
1.47
0.571

0.174
0.637
1.12
1.81
2.46
3.12
4.96
5.90
6.78
5.88
4.31
2.91
1.88
0.769

0.150
0.688
1.48
2.03
2.18
1.99
1.35
1.03
0.556
0.340
0.215
0.141
0.0945
0.0448

ACKNO%'LED GMENT

One of us (R.S.) would like to thank the Department of
Physics and Astronomy, The University of Toledo for the
hospitality received during the stay there.

are sensitive to the inclusion of the effect of exchange in
the distorted-wave theory. Furthermore, the IFE results
are, in general, higher than the IF results in almost the en-
tire energy region. Both cross sections approach the same
asymptote. Our IFEP results obtained using the approxi-
mate form of the polarization potential [Eq. (29)] gave re-
sults somewhat indifferently for Li. It is seen that the
IFEP results show a peak value much lower in magnitude
as compared to the IF and IFE results. The peak is also
shifted to lower incident electron energy. At high energy
the IFEP results approach the IF and IFE asymptotic
limit (off the graph). It appears that a further investiga-
tion of the form of the polarization potential [Eq. (29)] is
desirable before any definite conclusion regarding the po-
larization contribution to scattering can be made.

Finally, comparing our various DW results for Be with
BO-theory results (see Fig. 2) we see that BO-theory pre-
diction is a broad maximum as compared to all DW cal-
culations. The IF. and IFE results from threshold to ap-
proximately 0.8 Ry are approximately two to three times
larger than BO results. As the energy of the incident elec-
tron increases all curves approach each other. This
behavior is somewhat similar to the results seen for the
helium atom. Comparison of IFEP and BO results
shows that the magnitude of the maximum cross sections
in both is about the same, but the IFEP peak is at a lower
energy.
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