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A nonorthogonal configuration-interaction procedure has been used to calculate adiabatic energy
curves of ArH*. The basis functions are a mixture of typical molecular-orbital configurations and
typical valence-bond (Heitler-London) configurations. This gives an economical description of the
wave functions, allowing an easy tracing of various diabatic states through the adiabatic states and a
clear identification of the asymptotic states. The results are used to rationalize the unexpectedly
large production of Ar?* +H~ from collisions of H* with Ar.

INTRODUCTION

Experiments determining the two-electron charge-
transfer (2ECT) cross sections during collisions of protons
on rare-gas atoms show unexpectedly large values.!™3
The results from different laboratories agree well, and for
the particular case of HT + Ar the cross section for the
production of H™ + Ar** averages (2—3)x 10~ cm?
over the energy range of 2—50 keV. More recently, Van
Zyl, Rothwell, and Neumann,* studying collisions between
protons and Ar, have determined the cross sections for the
production of excited H atoms during charge transfer. To
interpret their data they consider it essential that the two-
electron charge-transfer process be included in the
analysis of the various coupled states during the reaction.
Experiments involving collisions of H* with other rare-
gas atoms show similar effects.’

This article describes calculations of some of the low-
lying molecular energy curves of ArH* to help under-
stand 2ECT during the collisions. A nonorthogonal
configuration-interaction (NCI) method is used. A key

feature of this procedure is the mixing of molecular-

orbital configurations with valence-bond (Heitler-London)
configurations in the basis.® This provides an economical
representation of a large number of the energy states of
the molecule and a clear picture of the asymptotic charac-
ter of the states at large nuclear separations. Although we
treat only ArH™ in this article, the calculations should
also provide a model of the interactions for the other
rare-gas atoms.

The first two ionization potentials (IP) of Ar are 15.755
and 27.62 eV, the IP of H is 13.605 eV, and the electron
affinity of H is 0.75 eV. Thus the state Ar2(!D)+H™ is

15.00 eV above the onset of the one-electron continuum,

Art(?P)+H*+e~, and a calculation with discrete basis
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functions clearly cannot duplicate the infinite number of
Rydberg states and portions of the continuum occurring
in this energy range. Nevertheless, the valence-bond con-
figurations present in the basis give a good account of the
corresponding asymptotic states, and other basis functions
combine to give eigenfunctions that are representative of
Rydberg or continuum states in the same energy region.
This provides information for arguments we make about
the interaction of the Ar** +H™ state with Rydberg and
continuum states.

In its simplest terms one may formulate the
configuration-interaction (CI) problem using Slater deter-
minantal functions (SDF) for the n-electron basis. If the
spin orbitals used in the SDF are all orthonormal, the CI
is said to be orthogonal. This general scheme for electron-
ic structure calculations of molecules has been efficiently
implemented during the past few years.””® Nevertheless,
the constraints implicit and explicit in the orthonormal
set of spin orbitals required to produce an orthogonal CI
make it an awkward method for describing some sorts of
physical situations. A particularly troublesome example
is the kind of situation we treat here where we wish to dis-
cuss excited states of a dissociating system.

For dissociating systems, a basis that goes naturally
over into simple representations of the asymptotic states is
conceptually the most useful. This leads to generaliza-
tions of the Heitler-London or valence-bond method and
necessarily involves spin orbitals that are nonorthogonal
and a NCI procedure. Of course, once one implements a
method that abandons the orthonormality constraint on
the orbitals or spin orbitals, one has complete freedom
thereafter to mix orbitals in any way so that the physical
content of the wave function best describes the actual sys-
tem. Later, we indicate how this freedom allows an
economical description of the wave functions for ArH.

1 ©1987 The American Physical Society
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In this paper we first give a detailed description of our
NCI procedure. For a different method see Raimondi
et al.’ The outline of the method is followed by an ac-
count of the specific details of this calculation and we end
with a discussion of the formation and probable fate of
the Ar>* +H™ state during the collision.

NONORTHOGONAL
CONFIGURATION-INTERACTION CALCULATIONS

L5wdin'® gave the first discussion of a general method
for evaluating the matrix elements of the Hamiltonian be-
tween nonorthogonal functions. We write the nonrela-
tivistic Hamiltonian in the standard form

H=E, +F+G, (1)
where
Enuc= 2 ZaZB/ruﬁ ’
a,B
(alpha < B)
F=3fi=3—3Vi+ X Za/Tai >
i i i,a
G = 2 l/rij .
ij
(i <j)

Lowdin showed that the matrix element of the Hamil-
tonian (1) between two SDF’s of nonorthogonal spin orbi-
tals can be written in terms of first- and second-order
cofactors of the determinant of the matrix of overlaps be-
tween the spin orbitals. Thus if we have

V=N, |ujus" " uy,| @)
and
D=N, |v1vy " v, | 3)

as the two SDF’s, we define the matrix of the overlaps be-
tween the two sets of spin orbitals as

(Suv ),~j=(u,- | Uj) . (4)

The formula for the matrix element (W | H | ®) may now
be written as

(Y |H |<I>)
=N,N, |Enuc | Suv | + 2 (u; | f] Uj>[suv]ij

ij
+ X

Kugu; | 1/7 |vgvp)
ikl

(i <j, k<D
—Cuguy | 1/r | oo D[S 174

(5)
where the one- and two-electron integrals have their con-
ventional meanings, | S,, | is the determinant of the over-
laps, [S,, 17 is the cofactor (signed minor) of the ij ele-
ment of |S,, |, and [S,,]%* is the cofactor of the ij-kl
(i <j, k <I)2X2 minor of | S, |.

The direct evaluation of the cofactors, by Cramer’s rule,
for example, is very time consuming and precludes using

such a scheme in (5) for a practical calculation of any size.
An essential contribution made by Lowdin was his obser-
vation that if |S,, |50 the cofactors in (5) may be ob-
tained much more economically by first calculating S’
and using the formulas!!

[Suv]ij= ,Suv l(Su_ul)ji s (6)

[Sw1PM =S, | {(Sa Sy — (S a(Smhu) . (D

In these times when computers are used for extensive
calculations, it is customary to characterize algorithms as
requiring polynomial or exponential times. Furthermore,
if we have a polynomial time algorithm, it will have a cer-
tain degree, n*, indicating how rapidly the time for a cal-
culation increases as the number of items (in this case the
number of electrons) dealt with increases.

It is important to appreciate why the use of (6) and (7)
represents such a savings in effort over the direct evalua-
tion of determinants in (5). We note that Gaussian elim-
ination used either for evaluating determinants or for ma-
trix inversion is an n’ algorithm. The most time-
consuming portion of (5) to calculate is the last summa-
tion, which involves n%(n —1)?/4 terms and hence re-
quires, at best, an n* algorithm for evaluation. If the
method of Gaussian elimination is applied separately to
obtain each [S,,]7%, the total time to evaluate the two-
electron part of the matrix element is proportional to n’.
The time savings obtained using (6) and (7) arise because
S! needs to be calculated only once for each matrix ele-
ment, and then each cofactor may be obtained from the
elements of S;;' in a time independent of .

As a result of this analysis, we see that, unless some
method is devised for simplifying the last summation in
(5), the best we can do in evaluating the matrix elements
of nonorthogonal SDF’s is an n* algorithm. Of course, if
the rank of the matrix S, is less than n —2, the deter-
minant and all of the cofactors in (5) are zero. If this con-
dition occurs often enough to be important, an n 3 (or fas-
ter) method for detecting it can speed up computations.

The formulas (6) and (7) break down if S,, is a singular
matrix, and the progress made in'dealing with nonorthog-
onal configurations since Lowdin’s original contributions
has been in dealing with such cases. As pointed out in the
last paragraph, one need treat singular cases only if the
rank(S,,)=(n —1) or (n—2). King et al.'? give a
method for calculating the cofactors that first requires a
diagonalization of the matrix S,,. Later, Prosser and
Hagstrom!3 show how cofactors can be calculated from a
purely finite algebraic biorthogonalization procedure.
This latter method is an n> algorithm. More recently
Norbeck and Gallup!# gave another n* algorithm for ob-
taining the necessary cofactors. This method is dis-
tinguished from the others in that, when |S,, | =0, the
matrix is modified to be nonsingular. Therefore, the
Gaussian elimination method may still be used to evaluate
the inverse in a form such that the cofactors may be ex-
tracted from it in times independent of n. The method of
Ref. 14 has been simplified since 1973, and the presently
used version is given by Gallup et al.'®

It should be understood from the previous discussion
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that the methods available for evaluating the cofactors in
(5) do not add to the exponent of »n in the polynomial time
of the total algorithm for obtaining the matrix element.'®
If it must be calculated at all, it requires an n* algorithm.

Actually, the ease of evaluation of matrix elements be-
tween two SDF’s is only part of the problem. To make
calculations more efficient and more practical it is desir-
able to use functions in a CI calculation that have specific
spin and spatial symmetry properties. We take up the
problem of the spin properties first.

It is well known that single SDF’s are not eigenfunc-
tions of the total spin operator unless all of the unpaired
electrons are described by spin orbitals with the same m;
value. Otherwise, linear combinations of SDF’s involving
permuted spin functions among the orbitals are required.
If we have a set of SDF’s with g unpaired electrons and
differing only in the arrangements of the spin functions
among the orbitals, the number of linearly independent
functions, ns, with a projection quantum number M; is
the binomial coefficient

q9
ot ®

nf=

An eigenfunction of the spin with total spin quantum
number S> |Mg| is a linear combination of these n,
SDF’s, and there are ng linearly independent eigenfunc-
tions belonging to S, where

ng=(25 +1)

g .
/2—S /(q/2——S+1). 9
One particular set of linear combinations that form
eigenfunctions of S? can be constructed using the spin
projection operators originally devised by Léwdin,!”

Vs=0sN, [ujuz " u,| . (10)

Pauncz!® has given a complete discussion of the construc-
tion of spin eigenfunctions. Gallup'® has shown that the
type of functions generated in (10) form a basis for the
Young’s natural representation of the symmetric groups.?°
Using the theory of representation of the symmetric
groups, a somewhat lengthy argument,?! which we do not
repeat here, then allows one to recast the matrix elements
(Vs |H | ®g) in terms of determinantal functions dif-
ferent in type from SDF’s. The savings here is that, in
most cases, considerably fewer than n; terms are required
to generate matrix elements for pure spin states.

Constructing states of pure spatial symmetry can also
result in a savings of effort in evaluating the matrix of the
Hamiltonian, if not all symmetries of states are to be
treated. In our procedure we accomplish this by project-
ing out the desired states before the matrix diagonaliza-
tions.? This is taken care of automatically by the pro-
grams used in this study, and we do not discuss this fur-
ther at this time. ‘

DETAILS OF CALCULATION

Some years ago Vance and Gallup®® devised a basis, in-
cluding Rydberg orbitals on Ar and H, for a theoretical
study of the quenching of excited Ar atoms by collisions

TABLE I. Comparison of selected energy differences (in eV).

SCF NCI Expt.
D, 2.96 eV 3.34 eV 2.6—4.16* eV
Asymptotic energies
Ar*+t('D)+H~ 33.75 30.76
Ar(4s?P)+H* 11.84 11.70
Art +H 2.66 2.15
Ar +HY 0.00 0.00

“Considerable variance exists among various experimental and
theoretical determinations of D,. See K. P. Huber and G.
Herzberg, Constants of Diatomic Molecules (Van Nostrand
Reinhold, New York, 1979), and P. Rosmus, Theor. Chim. Acta
51, 359 (1979), and references therein.

with H atoms. The same basis was used for the present
studies on Ar 4+ H™*, and the reader is referred to the ear-
lier paper for the details.

The molecular configuration of ArHT,
(10)%(20)%(30)X(40)X(50)*(1m)*(27)*, is the same at all in-
ternuclear distances, and the self-consistent-field (SCF)
wave function smoothly dissociates in the ground state.
Table I shows the SCF value of D, along with a number
of other quantities from the present calculation.

As was pointed out above, we use orbitals from both
the molecular SCF calculation and the original atomic
SCF calculations in constructing the n-electron functions
for this NCI calculation. All of the configurations had
the “core” electrons, 1o, 20, 30 and 1w, doubly occupied
in every case. The list of orbitals used appears in Table II.
The H orbital designated 1s’ is the only one that is not
self-explanatory. It is a five-Gaussian approximation to a
1s H orbital with the effective charge set to 0.3. This is
very close to the optimum value in a “split orbital” calcu-
lation of the H™ ion.?* As we shall see later, its presence
in the basis allows a flexible description of H™ as the in-
ternuclear separation changes.

The configurations selected were chosen by criteria
based in part on the physical nature of the states to be
described and in part on convenience. They fall into four
classes.

(1) The principal configuration (core) (40)%(50)*(21)*.

(2) All single excitations from the four active orbitals
into all of the other available orbitals.

TABLE II. Orbitals used in NCI calculation.

Molecule Ar H
102 4s 1s
20* 4p 1s’
30* 3d 2s
172 2p
40 :

27
S0

"These orbitals were kept doubly occupied in all n-electron
functions.
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(3) All double excitations from the active orbitals into
the Ar atomic orbitals.

(4) All double excitations from the active orbitals into
the H atomic orbitals.

The above discussion of evaluating matrix elements be-
tween nonorthogonal functions was couched in terms of
SDF’s. The four types of configurations shown here give
rise to 445 different SDF’s, and these would need to be
dealt with individually if the simplest version of the
theory were used. After applying all the simplifications
arising out of the theory of the symmetric groups and the
projection of the I3+ state, we obtain a 97X 97 NCI ma-
trix. Figure 1 shows the lowest 15 eigenvalues of the
Hamiltonian matrix plotted as a function of the internu-
clear distance. The value of D, from the NCI and the
values of some of the asymptotic energies are shown in
Table I.

The rank of the matrix of overlaps among the orbitals
in a particular Hamiltonian matrix element was another
important consideration for evaluating matrix elements.
We have only recently modified our program so that it
automatically collects statistics on ranks. For this calcu-
lation it was found that 53% of the matrices were non-
singular, 439% of the matrices had ranks of n —1 or
n —2, and 4% had rank less than n —2. For ArHY the
numbers are independent of the internuclear distance.
Having a method for calculating the cofactors of singular
matrices is therefore essential.

Since the great difficulty of NCI calculations is so fre-
quently commented upon,”® we note finally that the
present results were all obtained with a Stride Micro 440
(Ref. 26) computer (Reno, Nevada) with 512k memory,
15-Mbyte disk, and a floating-point processor. The calcu-
lations averaged about two hours of real time per point.
It is clear that immense computer resources are not neces-

sary.
DISCUSSION

The entrance channel for the scattering experiments
that produce Ar’* +H™ corresponds to the lowest adia-
batic state in Fig. 1. This is typical of the potential ener-
gy curve for two atoms that form a chemical bond.
ArH™ is isoelectronic with HCI, and we expect very simi-
lar bonding characteristics in the two cases. The D, from
the NCI is shown in Table 1. .

The most straightforward method of determining the
cross section for 2ECT would involve solving the semi-
classical, time-dependent Schrodinger equation for the
states shown in Fig. 1. We have so many real states miss-
ing from our treatment, however, that a more qualitative
discussion seems better justified. This will not give any
quantitative confirmation of the experimental results but
can give a rationale for the production of H™.

We base our discussion upon an analysis of the wave
functions for the various states. The basis functions in
the above fourth group of configurations all may be
described as having the 2ECT pattern, Ar’*+H™, at
least for the larger internuclear separations. The 2ECT
functions span a linear subspace in the whole space of the
basis. If this subspace were orthogonal to the subspace of

(3.u.)

Energy

-5252

-5270

Ar —H Disrance (a.u.)

FIG. 1. First 15 adiabatic states for ArH* from the NCI cal-
culation described in text.

the remainder of the basis, then an “occupancy” in any of
the eigenvectors of the whole Hamiltonian would be given
by an easy calculation and, furthermore, would be a mea-
sure of the importance of this physical asymptotic state in
the molecular state. In a NCI calculation, of course, this
orthogonality is just what is abandoned, and some other
method must be devised. There does not seem to be a
unique way to define such occupancies, but two methods
are given below. As will be argued, these are reasonably
expected to bracket the “true physical situation” and,
therefore, give bounds useful in qualitative thinking about
the superposition of these nonorthogonal states.

Let the nonorthogonal n-electron basis of our NCI be
symbolized by the functions, ¢;, i =1,2,...,N, and let
¢, be a subset of these that represent some physical
characteristic we wish to investigate. In this case we have
interest in basis functions describing some type of 2ECT.
We also let ¢, represent the remainder of the basis func-
tions, i.e., those not having the selected characteristic. If
| #) represents a row ket of the whole space then the over-
lap matrix of the basis is
Suu  Suw

Suu *va > (11)

(|¢)=8=

where the matrix is shown in partitioned form in the
second equality. The determinant |S | must be nonzero,
of course, for the NCI treatment to possess any solution.
Therefore, S is nonsingular in its entirety, and clearly, S,,
and S,, must also be nonsingular. As is easily seen, the
projection operator associated with the ¢, subspace is

F,=Fl=|¢,)S7 .| , (12)

and its orthogonal complement is I —F,. Similarly, the
projection operator for the ¢, subspace is

Fv=F1)2=,¢v>§v;1<¢v| ’ (13)

and its orthogonal complement is I —F,. We note that, in
general, F,s=I —F,. These would be equal only if the
submatrix S,, =S, =0.
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Since S is nonsingular, S~! exists, and it may also be

written in a partitioned form similar to (11),
(S™Nuu (87
(*S_l)uu (S—l)vv

It will be useful to have explicit expressions for the sub-
matrices of S—! in terms of those of S. The formulas we
want are

S—1= . (14)

(S—l)uuz(‘suu ""‘-Suv‘-s-z;l‘svu )—1 ’ (15)
(5‘1)0u=_§z;1§vu(§hl)uu s - (16)
(.S—])vv:(‘svu _'_S:vuS;tl'Suu)—l > (17)

and a corresponding expression for the other submatrix of
each case. That these are correct is easily seen by direct
multiplication of S and S~ ’

Consider now one of the eigenfunctions of the NCI
problem |¥),

|W)=|¢)C=|¢,)C,+ |6,)C, , (18)

where C is the corresponding eigenvector of the Hamil-
tonian. The eigenvector, too, has been partitioned to
match the division of the whole space into subspaces. We
may rewrite (18) in two ways as the sum of functions in a
subspace and its orthogonal complement,

lw)=(I—Fv)[¢u>Cu+(Fv’¢u>cu+I¢U)Cv)’ (193)
and

Because of the normalization requirement for |¥) we
have

I:CJ(LS_’uuCu +§uvcv)+cz;r(§uucu +8wCy) - (20)

In light of the two forms of (19), we now modify (20) in
two ways to obtain expressions of the form

1=P,+P,, (21)
and we have

P,u=Ci{¢,|I—F,|4,)C,

=Cll(S Ha17'Cy, (22a)
Py=1-P, , (23a)
or
Py=1—P, , (22b)
Py=CJ{($,|I—F,|$,)C,
=C(S ]G, . (23b)

We may now contrast these two occupation expressions.
P,, is calculated from the functions (I —F,)| ¢, ), which
we describe as those portions of the ¢, functions that are
unique to the subspace of F, and not duplicated in the
subspace of F,. In our case, these contain the essence of
the physical situation we attribute to the 2ECT states. In
any wave function the corresponding P,, quantity can
therefore be viewed as a minimal measure of the amount

of this physical attribute contained in the wave function.

By way of contrast, P,, is formed from the whole por-
tion of the 2ECT space, not only the functions that nomi-
nally have this characteristic. In other words, P,;, may be
thought of as collecting from the whole space the 2ECT
attribute and gives its occupation in |¥). Under most
circumstances one expects P,, > P,,, but this is not an ab-
solute mathematical requirement of the definitions.

Figure 2 shows the range of P,;, to P,, as a function of
internuclear distance for the ground state, the energy
curve leading asymptotically to Ar[(3p)°4p,2P]+H™, and
the energy curve leading asymptotically to
Ar’*('D)4+H~. The second of these is typical of Ar
Rydberg states and the third is typical of the 2ECT states.
The important point to note is the fairly large 2ECT com-
ponent in the ground state. This is expected from the
conventional Heitler-London picture of bond formation,
since for ArH™ the 2ECT term is the “ionic” as contrast-
ed to the “covalent” contribution to the bond function.
Of course, the terms ionic and covalent must be used
metaphorically for ArH* because the overall system is
not electrically neutral.

Alternatively, one may rationalize the mixture of these
different basis functions in terms of electron correlation.
The Heitler-London covalent function overcorrelates the
electron motion in the bond and the two ionic terms com-
bine in the total wave functions to reduce this to a more
nearly optimal level.

We summarize the sequence of events using a semiclas-
sical, straight-line trajectory description of the collision
process. In the entrance channel, as the atom and the ion
approach one another at impact parameters less than ~2
A, a typical chemical bond is temporarily formed between
the atoms. Through the action of electron correlation, the
bond formation induces into the total wave function a sig-
nificant contribution from the basis functions of the
2ECT type. Then as the atoms separate after the coi-
lision, this state retains its identity in the diabatic sense,

=0
T

A ,

0 9 18
Ar—H Disrance (a.u.)

Popularions
NG

FIG. 2. Range of occupancies of 2ECT subspace for three
selected states of calculation. A4, ground state; B, state leading
asymptotically to Ar[(3p)°4p,2P]+H™; and C, state leading
asymptotically to Ar’>*+('D)+H~. '
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and some of the total probability appears asymptotically
as Ar’* and H™.

The ground configuration of Ar** is p* leading to L-S
coupling states of P, 'D, and 'S. The 3P state cannot,
without a spin flip due to spin-orbit coupling or similar
effect, be part of an exit channel with a stable H™. There-
fore, two different 2ECT diabatic states, asymptotically
connected with Ar2*(1D) and Ar?*(1S), thread their way
through the adiabatic states as the internuclear distance
changes. They show up in the 2ECT occupancy curve
[Fig. 2(c)] at two different internuclear separations. The
energy for the 'S state is higher and appears first (moving
outward) at internuclear distances between 5 and 10 bohrs.
The lower one appears suddenly around 18 bohrs.

These transitions at larger distances occur very rapidly
with changing internuclear distance. At the 2—50-keV
energy range of typical experiments, a conventional
analysis using the Landau-Zener theory?’ would therefore
be expected to show a low probability for systems remain-
ing on an adiabatic curve as they pass through one of
these avoided crossing regions. If the crossings of the
2ECT states with the actual Rydberg and continuum
states in this energy range behave in the same way as they
do with these discrete CI states, then we expect that the
2ECT diabatic states, once formed, will have a significant
probability of existing through the outgoing portion of the
trajectory. Those that make it will result in H™ ions.

The occupancy curves for the ground state show that
the possibility of significant 2ECT state formation occurs
inside 4 bohrs, which corresponds to a geometric cross
section ~1.4% 10715 cm? From the experimental results
we see that, out of 100 collisions with impact parameters
<4 bohrs, 1 or 2 result in 2ECT. Therefore, in only a rel-
atively few of the systems need the 2ECT diabatic states
survive the trip outward, and the occupancy results from
our NCI calculations suggest the trip to be relatively easy.

In the wave functions describing the 2ECT diabatic
state the way the H™ portion of the system is represented
shows a change with internuclear distance. As was dis-
cussed above, the orbitals used include both a 1s and 1s’
atomic orbital centered at the proton. Asymptotically, the
H™ ion is described principally by the Hylleras-Eckart,
split-orbital function, although angular correlation is pro-
vided in the basis. Among the CI functions we have both
the (15)? and (1s)(1s’) configurations represented,?® and
the relative amounts of these two basis functions in the
2ECT state depend on the internuclear distance. Figure 3
shows a graph of the relative amounts of these basis func-
tions with distance. We see that the (1s)? configuration is

117

0.7¢

0.3r

Popularions

-0 . , N . . . . ,
0 6 12 18 24
Ar—H Disrance (a.u)

FIG. 3. The relative amounts of the configurations (1s)? and
(1s)(1s’) describing the H™ ion as a function of distance are
shown in the curves 4 and B, respectively.

more important in the bonding region and the (1s)(1s’)
function becomes more important at long distances. This
effect is due principally to the positive charge on the Ar*™*
ion; as the H™ gets closer to it, the lower energy together
with the deeper potential well require the orbitals to have
a shorter range. The relatively slow change in the descrip-
tion of the H™ portion of the 2ECT states is expected to
help in preserving their integrity as the system makes its
way outward after the closest approach and to contribute
to the H™ ion production.

SUMMARY

We have presented the calculations of some of the low-
lying energy curves for the ArH™ system using a NCI
procedure described here. This has a novel feature in that
basis functions representing both molecular-orbital and
valence-bond (Heitler-London) types are included. This
provides a compact representation of the wave functions
that allows the molecular-orbital configurations to contri-
bute at short distances where they work best and valence-
bond configurations to contribute asymptotically where
they predominate. The wave functions produced are
analyzed for the contribution of 2ECT states and the
unexpectedly large production of H™ during proton on ar-
gon collisions is easily rationalized.
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