
PHYSICAL, REVIE% A VOLUME 34, NUMBER 2 AUGUST 1986

SO(2, 1) I.ie algebra and the Jacobi-matrix method for scattering

P. C. Ojha
Department of Chemistry, University of Chicago, Chicago, I11inois 60637

(Received 25 November 1985; revised manuscript received 31 March 1986)

Two apparently distinct instances of quantum-mechanical scattering where the prevailing long-

range potential permits application of the Jacobi-matrix method are unified by identifying the
underlying SO(2, 1) Lie algebra. The resulting three-term recursion is solved in its own right without

any reference to the coordinate representation of the scattering wave function but in a manner which

brings out the similarity between differential and difference equations. The normalized regular solu-

tion of the recursion is obtained, its asymptotic form is analyzed, and it is found to vary sinusoidal-

ly. The irregular solution is defined to have the same amplitude as the regular solution in the
asymptotic limit and to lead it in phase by m/2. It is argued that this method is particularly suitable
for computing the scattering wave function of the hydrogen atom in a magnetic field.

I. INTRODUCTION

XL„'+' (g r )I't (r) v=0, 1,2. . .ao, (1.1)

(ii) T(r) was also diagonalized in a basis of scaled hydro-
genic (or Sturmian) functions,

' 1/2
I (v+1)

I ( +21+2)
(2P)l+ ie gr—

The Jacobi-matrix method for analyzing quantum-
mechanical scattering by expanding the scattering func-
tion in a complete set of square-integrable functions was
introduced by HeHer and Yamani. ' The initial study of
scattering of zero-angular-momentum electrons in the ab-
sence of any potential was later extended to arbitrary an-
gular momenta and to allow for a long-range Coulomb po-
tential. 2 The method turns on the fact that under these
conditions there exist complete basis sets of square-
integrable functions in which the Hamiltonian is
represented by a symmetric, tridiagonal (Jacobi) matrix.
Moreover, this matrix can be diagonalized analytically,
i.e., one can obtain analytical, closed-form solutions of the
associated three-term recursion relation. Regular and ir-
regular solutions are constructed and form the base pair
of solutions for analyzing scattering from a short-range
potential V, (r) whose matrix representation is nonzero
only in a finite subspace of the full Hilbert space. Physi-
cal potentials are made tractable by truncating their
representative matrix and the approximation may be re-
fined systematically by increasing the dimension of the
truncated matrix.

Three cases were considered in the original articles: (i)
the kinetic-energy operator T(r) was diagonalized in a
basis of harmonic oscillator wave functions,

$,t (g;r)=, (gr)'+'exp( —g r /2)
2C I (v+1)
I'(v+ 1 +—', )

(iii) the Hamiltonian T(r)+Z/r was also diagonalized in
the Sturmian basis.

The second instance enumerated here is, of course, just
a special case of the third with the charge set to zero.
Thus there are two distinct cases, one arising from expan-
sion in a set of harmonic oscillator wave functions and
another from expansion in a set of scaled hydrogenic wave
functions.

The three-term recursion was solved by converting it to
a second-order differential equation and thus relating its
regular and irregular solutions to linear combinations of
independent solutions of the differential equation. In or-
der to specify the regular solution completely (including
its normalization) the authors had to refer to the coordi-
nate representation of the regular solution of the
Schrodinger equation. Correspondingly, to specify the ir-
regular solution of the rceursion they required knowledge
of the regular (at the origin) solution of the Schrodinger
equation with an inhomogeneity, which has the same
asymptotic behavior as the appropriate irregular solution
of the Schrodinger equation.

In this paper I refine the original work of Heller,
Yamani, and Fishman in two respects.

First, there is a unity underlying the two seemingly dis-
tinct cases considered by Heller, Yamani, and Fishman.
One of its expressions is that the bound spectrum of both
the harmonic oscillator and the hydrogen atom is generat-
ed by an SO(2, 1) Lie algebra which is characterized by the
commutation relations

[Tli T2] tT3i [T2iT3] tTli [T3i Ti ]=i T3 ~ (1 3)

The basis sets enumerated in Eqs. (1.1) and (1.2) constitute
infinite-dimensional, unitary, irreducible representations
of different realizations (harmonic oscillator and hydro-
genic) of the same SO(2, 1) Lie algebra. The functions
themselves are eigenfunctions of the compact generator
T3. Combinations of the noncompact generators,

T+ =Tl +I,T2

XL '„+"(2gr)Ft~(f) v=0, 1,2. . .ao, (1.2) act as ladder operators in the basis set. In both cases, the
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ao&0 h (1'ri)ai(ri)+g(0'2)) =0 .

It is natural to normalize it so that

(1.6)

(9I)a (92) @91 92)

in analogy with the 5-function normalization of the regu-
lar solution of the Schrodinger equation. The asymptotic
(large-v) behavior of the solution is analyzed and it is
found to vary sinusoidally. Its phase has a logarithmic
singularity, much as the asymptotic phase of the wave
function g(r}, and depends correctly on the nuclear charge
and the angular momentum.

The irregular solution of the recursion is then specified
by the initial condition

ao&0, h (1;rt)a i (ii)+g (0;2))&0

and the asymptotic condition that its phase lead the phase
of the regular solution by m/2. It is normalized so that
asymptotically its amplitude matches the amplitude of the
regular solution.

The rest of this paper is organized as follows. In Sec.
II, I summarize the relevant properties of the SO(2, 1) Lie
algebra and the specific realization of its generators for
the harmonic oscillator and the hydrogen atom. The re-
cursion relation is set up for the Coulomb potential and
solved in Sec. III. In Sec. IV, the kinetic-energy operator
is diagonalized in a harmonic oscillator basis by taking
appropriate hmits. of the results derived in Sec. III. Next,

Hamiltonian T(r)+ V(r) can be written as a linear com-
bination of Ti and Ti. The problem of finding the eigen-
functions of the continuous spectrum is thus related to the
algebraic problem of diagonalizing a linear combination
of the compact and noncompact generators of the algebra
in a basis in which the compact generator is diagonal.
This has been studied previously in the mathematical
physics literature.

A three-term recursion relation for the expansion coef-
ficients of the wave function in the basis functions follows
from the commutation relations of the algebra. In both
cases it arises from the same generators T, and Ti (al-
though in different linear combinations) and its form is
the same. The more general recursion for the Coulomb
potential is solved first. The solutions of the other recur-
sion are then obtained by taking appropriate limits.

The second refinement concerns the solution of the re-
cursion. I solve it in its own right without any further
reference to the Schrodinger equation or its solutions.
The regular and irregular solutions of the recursion are
specified in a manner which completely parallels the con-
ventional specification of the corresponding solutions of
the Schrodinger equation.

The recursion is of the form

f (v —1;ri}a„~(rt )+g (v;ri)a„(g)

+h (v+1;rt)a„+i(2)}=0, v=1,2,3, . . . , oo, (1.5}

where rt depends on energy. A.ll quantities may also de-
pend on the angular momentum. The regular solution of
the recursion is defined by the initial condition,

I argue that this method is ideal for studying the continu-
ous spectrum of the hydrogen atom in a strong magnetic
field. Finally, some possible future extensions of this
work are indicated.

II. HARMONIC OSCILLATOR AND HYDROGENIC
REALIZATIONS OF SO(2, 1) LIE ALGEBRA

SO(2, 1) Lie algebra, the algebra of Eq. (1.3) can be
equivalently represented by the following commutation re-
lations of the ladder operators T+ [Eq. (1.4)]:

[T„T+]=+T+, [T+,T ]=—2T, .

The eigenvalues of the Casimir invariant,

T T3 TJ T2 T3+T3 T+ T+2 2 2 2 2

(2.1)

(2.2)

characterize irreducible representations of the algebra, and
eigenvalues of Ti characterize basis functions within a
representation. Thus functions

I i
t q); t & —l,q =t+1,t+2, . . . , t+ oo I

so that

(2.3)

T'I tq&=«t+I}
I tq& Ti I

tq&=q
I
tq& (24a)

constitute an infinite-dimensional, unitary, irreducible
representation of the algebra denoted &+(t) This .is the
representation pertinent to the bound spectrum of both
the harmonic oscillator and the hydrogen atom and it is
also the representation relevant to the present application.
The action of the ladder operators T+ on the members of
the set (2.3) is determined by the commutation relations

T+
~
t q) =(q+t)'~2(q+t+ I )'~2

~

t q+1) . (2.4b)

For the harmonic oscillator (H = ,'p2+P—r2), the gen-

erators of the algebra are defined by

T=—(a a+ —) T = —a a T = —aa (25)

where a and at are annihilation and creation operators,

a= (g r+ip), at= (g r i p) . —1 2 . g l

2g 2g
(2.6)

The Casimir invariant is I. . Once again, the functions

Operator Ti is just the Hamiltonian to within an additive
constant and T~ are the ladder operators familiar from
elementary quantum mechanics. It is easily verified that
the Casimir invariant T = ,' (I. ,' ). ——

The functions in Eq. (1.1) are obviously eigenfunctions
of T2 with eigenvalue t(t+1), t = —,'/ ——,'. Being har-
monic oscillator bound states, these are also eigenfunc-
tions of Ti with eigenvalue (v+ —,'I+ —,') and the set
therefore constitutes a &+(—,

'
1 ——,

'
) representation of the

I.ie algebra.
The application of SO(2, 1) Lie algebra to determination

of the bound spectrum of hydrogen atom is also well do-
cumented. In this case one defines the generators as

r(p —g ) T2 rp i, Ti —— r—(p2+(2) . ——
2g

(2.7)
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defined in (1.2) are eigenfunctions of T with t =I and it
can be shown that they are also eigenfunctions of Ti with
eigenvalue {v+I+1). This set then constitutes a &+(I)
representation of the algebra.

III. JACOBI MATRIX FOR THE CONTINUOUS
SPECTRUM OF THE COULOMB POTENTIAL

A. Obtaining the recursion

In the rest of this paper I will use a special case ((=1)
of the SO(2, 1}generators defined in the preceding section.
The flexibility afforded by parameter g will be introduced
differently by means of an SO(2, 1) tilting transformation,

exp(i8T2)(Ti —Ti)exp{ i8T—z)=ee(T& —Ti), (3.1a)

exp(i 8T2)(Ti+ Ti )exp( i 8T2)=—e ( Ti+ Ti ), (3.1b)

in conformity with the usual practice in group-theoretical
applications. This amounts to scaling the radial coordi-
nate by ee and setting this factor equal to g amounts to
using basis set {1.2).

Consider the Schrodinger equation

(3.2)

Multiply the left-hand side by r and rewrite in terms of
SO(2, 1) generators,

[ ,'(T, +T, ) —E(T, T, )—Z] i
lt{—) =0—. (3.3)

Next make a tilting transformation and multiply by a
suitable constant to obtain

I (v+1)a„=i"
f'(v+2t +2)

' 1/2

(3.8)

so that

(v+2t+1)b„, +2i [rl,(v+t+1)—rl, ]b„
—(v+1)b„+i ——0, v=1,2, 3. . . . (3.9)

B. Solution of the recursion by the method of Laplace

The recursion (3.9) may be solved by the method of I.a-

place, "assuming a solution of the form

b„= I dzz"+'f(z}, (3.10)

where the contour C is to be spo:ified later. Insertion of
this form in (3.9) gives two conditions which must be sa-

tisfied. The first is a first-order differential equation for

f(z) which can be solved immediately to give

f ( )
f +1( z )

—f —i+lr(z z )
—f —1 —lr (3.11a)

substitute in (3.4), use Eqs. (2.4b) and (2.4c), and project
the result onto the members of the basis set. ' This gives
the following three-term recursion relation for the expan-
sion coefficients:

[v(v+ 2t +I)]'"~. i+2[iii(v+t +I)—rid]u.

+[(v+1)(v+2t+2)]'"a,+, —0, v=1,2,3, . . . , ~ .

(3.7)

In order to solve this equation rewrite it so that the func-
tions multiplying the expansion coefficients are linear in
v. To this end define

(T++T +2', T, —2rI, ) i 1{)=0,
where

(3.4)
where

z, =(1 ri, )'~ —+irii =exp[i(p —n/2)], (3.11b)

ri& ——(1 2Ee e)/(1+—2Ee e),

re 2Ze e/(1+——2Ee ),
(3.Sa)

(3.Sb)
zz ———(1—ri, )

' + iri i =—exP[ i (P+ n —/2) ], (3.11c)

y =q, /(1 q', )'"=Z/k . — (3.11d)

i y) =exp(i8T, )
i y) . (3.Sc)

Note that —1 (ri, ( 1 for 0 (E ( oo.
At this stage one may choose the tilting angle so that

g&
——0. However I will not make this choice because it is

too restrictive to permit a unified treatment of the two
cases. The solution of (3.4) is no more difficult for ri, &0
than it is for ii i

——0.
Now expand the wave function

i
f'i in the basis set

I it q),q=t+1, t+2, . . . , t+oo),
I (z)I (1—z) =n/sin(nz) (3.12a)

(Note that 0(/ &tr for —1 &pi &1.) The second condi-
tion restricts the contour; if C were to go from t=0 to
t=l just under the branch cut, circle infinitesimally
around t= 1, return to t=0 just above the cut, and close,
this condition is also met. The right-hand side of (3.10) is
then just the integral representation of the hypergeometric
function. ' ' By judicious use of the identities

thus obtaining

i y) = g a„ i
t, t+I+v), (3.6)

I( —z+n)
1
„1(z+1)

I ( —z) I (z n+1)—
it can be brought to the form

(3.12b)

b'„(y) =exp[iv{P—n./2)]exp[i 2(t +1)P]

X . . ,E,(t+1+iy,v+2t+2;v+t+2+iy;e' ) .I (v+2t+2) ~ . ~ . i'
I v+t+2+iy I t+1 iy— (3.13a}
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The recursion (3.9) being a second-order difference equation possesses another linearly independent solution. It is ob-
tained from b„(y) by simultaneously interchanging Z(~~Z2 (i.e., replacing (I( ~—P) and replacing y~ —y (this leaves
combinations rii ———cos4 and riz ——y sin((} unchanged):

b„"(y)=exp[ i—v(P+n/2)]exp[ —i 2(t +I)((()

X
I (v+2t+2} iFi(t+1 i—y, v+2t+2;v+t+2 iy—;e '

) .—2ig (3.13b)I' v+t+2 i—y I t+1+iy
The asymptotic forms of these functions may be obtained by first making a suitable linear transformation of the hy-

pergeometric function and then applying standard formulas for the asymptotic forms of the hypergeometric function
and ratios of I functions. Then, to leading order in (v+ t + 1), I find

~ y(P-m/2)
b'„(y)— (v+ t + 1)'exp I i y 1n—[2(v+ t + 1)sin(I(] I~ (2sing}'+'

~
I (t+1 iy)—

~

X exp[i argI (t + 1+iy )) exp[i (v+ t + 1)(4 —n'/2) ] exp[('n'( t + 1)] (3.14a)

and correspondingly,

~ y(Q —n/2)
b„'(y)— (v+t +1)'expIi y in[2(v+t + l)sing] I~ (2sin(I))'+'

~
I (t +1+iy)

~

Xexp[ —i argl (t +1+i y)] exp[ i (v+t —+1)(((}+n/2)] . (3.14b)

C. Regular solution of the recursion

The unnormalized regular solution of the recursion (3.9)
is defined by the irutial condition

s (y) ey(2(i —e)e —(vs/i

I (v+2t +2)
I (v+1)l (2t +2)

' ]/2

~'+'(p) (3.17)

so(y)%0 sl('Y) —i2[9((t + 1)—li]so(y)=0 .

In order to obtain this from a linear combination of b„(y )

and b'„'(y), note that

b"
i (y) =exp[ —i n(2t + 1)]b' i (y) .

Therefore,

s„(y)=exp[ i n(t +1)]b„'—(y )+exp[i n(t + 1)]b„"(y)

(3.16)

is a satisfactory linear combination. It is brought to a fi-
nite polynomial form by a linear transformation of the
hypergeometric function and application of the identity
(3.12b)

( ) r(& ~' [ gp /2)]
I v+t+1 —iy)

I'(v+1)l (t+ I —iy)

X iF((t + I+i y, —v; v t +iy;e ' ~)—. —

The corresponding solution A„(y) of the recursion (3.7) is
obtained by multiplying (3.17) by the factor in (3.8), and it
is normalized in the sense of a 5 function:

(3.18)

In comparison with the completeness relation for Pollac-
zek polynomials,

~.(y) =[II'"'(y;0))'"I".+'(y 0» (3.19)

where JYt'+'(y;P) is the weight for the Pollaczek polyno-
mials. The asymptotic form of 5 „(y) is obtained from
the asymptotic forms of b'„(y) and b'„'(y )

[(3.14a}—(3.16}]:

P'„(y)— 2 ( —1)"
v~m n' v v+t+1

L

X sin((v+t + 1)(n —(I})
In order to write it as exp[y(2$ —n )] times a polynomial
in y, make another linear transformation of the hyper-
geometric function and then apply the inversion formula
for finite hypergeometric series. ' This gives

+y in[2( v+ t + 1)sin(n —P) ]
—argl'(t+1+iy) nt/2I . —(3.20)

( ) „(2p ~) [. (~ 2))
I (v+2t+2}

I (v+ 1)I (2t +2)

X,E, ( v, t+1+iy;2t+2;1——e "(') .

Referring to the Appendix, this can be written in terms of
normalized Pollaczek polynomials:

In going from the coordinate representation
(Schrodinger equation) to the "discrete representation"
(3.8), we have replaced the continuous coordinate r by the
"discrete coordinate" (v+ t + 1). Asymptotically, the
phase of the wave function P'„(y) in the "discrete repre-
sentation" has a logarithmic singularity, the characteristic
Coulomb shift argl (t+1+iy), and the angular-
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momentum dependent shift nt/2. (For the Coulomb
Hamiltonian, t=1, from Sec. II}. Note the exact
correspondence with the asymptotic behavior of the coor-
dinate space wave function f(r).

D. Irregular solution of the recursion

The normalized irregular solution of the recursion (3.7}
is specified by the initial condition

40(y)+0,

&(2t+2)C, (y}+2[g,(t+1)—ri2]4,(y}~0 (3.21)

and the condition that asymptotically, its amplitude
matches the amplitude of 5 „(y}and its phase leads the
phase of A„(y) by n/2, i.e.,

' I/2

V„(y) — —
cosI (v+t +1)(n P)+—y in[2(v+t +1)sin(n —P)]—argI'(t + I+i y) n—t/2I .2 ( —1)"

v ~ m v'v+g+1

This is assured if we choose the following linear combination of b'„(y } and b'„'(y ):

(3.22)

e isv/2 I (v+1)
I (v+2t+2)

' 1/2

N(y)i [ —exp[ in(—t +1)]b'„(y)+exp[in(t +1)]b'„'(y)) .

Once again, by a suitable linear transformation of the hypergeometric function, it can be reduced to the form given by
Yamani and Fishman:

' 1/2
~ -y($-e/2)

4'„(y)+i&'„(y}=——,e "" +'+ xep[ i argl —(t+1+iy)]
(2 sing)'

[I (v+1)l (v+2t+2)]'/
X 2Ei(v+1, t i y;v+—t +—2 i y;e—' i') .r(v+t +2 iy )— (3.23)

Accounting for the fact that the basis functions used by
Yamani and Fishman were not normalized, my expres-
sions for W„(y} and V„(y} agree with theirs except for
the numerical prefactor of v'2/n.

The Wronskian of these two solutions,

W[P'(y), C(y)]=b„+i[A'„+i(y)C'„(y)

—~„(y)&„+i(y)],
where b„+i is the coefficient multiplying P„+, in the
symmetric recurrence (A3c), can be shown to be 1/n.

IU. JACOSI MATRIX FOR KINETIC ENERGY
FROM HARMONIC OSCILLATOR ALGEBRA

A. The recursion

Once again I will use the special case (/= 1} of the
SO(2, 1} generators defined in Sec. II. An SO(2,1} tilt by
angle 28 now corresponds to scaling the radial coordinate
by e —choosing this angle so that this factor is g,
amounts to using the basis set in (1.1).

The kinetic-energy operator can be written in terms of
SO(2, 1) generators from Eqs. (2.5) and (2.6). The
Schrodinger equation may be rewritten as

ri2 —— F./e—28 (4.2b)

We must set i}2 accordingly, and take the limit rii-+ —1

in the results of Sec. III.

(i) )= lim P'„(y) .
n~~ —i 2 sing

Correspondingly, the irregular solution of the recursion is
obtained from

B. Regular and irregular solutions

In the limit 2)~~ —1, the Pollaczek polynomial in Eq.
(3.22) goes to normalized Laguerre polynomial,
L „'+'(—2ri2) (see Appendix). 5-function normalization
of the regular solution is assured if

~HO( 2) [Wl+ i/2( 2)]1/2L I+ i/2( 2) (4.3)

where I have defined

ri2= — 2r=t22/Ee2s

to conform with the notation of Yamani and Fishman
and set t =—,

' I ——,
'

corresponding to the harmonic oscilla-
tor (HO) case. This result is obtained by taking the fol-
lowing limit of the hydrogenic regular solution:

T++ T —2T2+ e ~ g) =0 .
2E
e28

In comparison with Eq. (3.4), one obtains

and

(4.1)

(4.2a)

(vP)+i&„(g2)= lim
1

nt~ —1 v 2 sing

x[& (y)+t'P' (y)] .

This limit is taken by first making a linear transformation
of the hypergeometric function in Eq. (3.23) [Eq. (15.3.6)
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of Ref. 14]. One then notes that as rii~ —1, $~0, and
the following limits exist:

the vector potential A= ——,'rXB. In this gauge, the
Schrodinger equation may be written as

lim iEi(v+1, —t —iy; 2—t;1—e ' ~)
g) -+—1 —,p — +—PL, + —,'P r sin 8—E g(r)=0 (5.1)

—~2=e " iEi( v—2—t —1; 2t;r—t ),
lim iEi(t+1 iy—,v+2t+2;2t+2;1 —e ' &)

g) -+—1

2=e " iEi( v;2—t+2;ri ),

I (t +1—iy) (1,—2y)it+i, i+2i+i)(„i)2t+i
—i I'( —t —iy)

Finally, setting t = —,'I ——,
' for the harmonic oscillator

case,

g Ho(~2) e
—qi/2~-t —i/2 I'(v+ 1)

I (v+1+—', )
I (I+—,

'
)

x iEi( —v —I ——,; —I+ —,;ri ) .

)& sm 4g v+ —+—I 3
2 4

I~

—irl/2

(4.5a)

' —1/4' 1/2

(ri )—HO 2
v~ co 77

4q v+ —+—I 3

2 4
' '1/2

I 3
)& cos ~ 4g v+ —+—

2 4
—ml/2

(4.5b)

Note that the phase of the irregular solution now Ittgs
the phase of the regular solution by tr/2 in contrast to the
phase relation before the hmit is taken. This somewhat
surprising change arises from the change in sign of the
coefficients b„ in going from the symmetric recurrence
for Pollaczek polynomials to that for I.aguerre polynomi-
als. As a consequence the VAonskian

W[~" (q'), e" (q')]= —1/~

now has a different sign.

V. APPLICATION TO PHOTOIONIZATION
OF HYDROGEN ATOM IN A MAGNETIC FIELD

Consider a hydrogen atom placed in a uniform magnet-
ic field, B=Bx and choose the symmetric gauge so that

The asymptotic forms of P'„" (ri') and 4'„(ri~) are de-
rived from known asymptotic forms of ratios of y func-
tions [Eq. (6.1.46) of Ref. 14] and the asymptotic form of
the confluent hypergeometric function 6

' 1/2

~."'(q') — — [4q'(v+ -,
' I +-,' )]-'"

with P= —,
'

t0 =e8/2ntc and co is the cyclotron frequency.
Since L, is a constant of motion, the PL, term in the

Hamiltonian may be absorbed in the energy E and then
ignored. Near ionization threshold, the quadratic Zeeman
term, —,'P r sin 8, is comparable in importance to the
Coulomb potential even for weak laboratory strength
fields because the electron makes large excursions away
from the nucleus. The competition between electrostatic
and magnetic effects leads to characteristic regular struc-
tures in the photoabsorption spectrum which continue
smoothly across the ionization threshold. '7

A quantitative analysis of the wave function in this re-
gime is difficult because a large number of angular mo-
menta and principal quantum numbers are mixed by the
quadratic Zeeman term. (Since parity is a good quantum
number, one need consider only odd or even an~ular mo-
menta. ) However, the matrix element of ,'P r sin —8 be-

tween Sturmian basis functions is nonzero only if
~

b,n
~

(3 and dd =0, +2. The matrix element of the
Coulomb Hamiltonian and the overlap matrix are of
course nonzero only if lU =0,

~
4n

~
(1. Therefore, with

suitable ordering of the basis set into blocks labeled

by increasing angular-momentum quantum number
( I =lp Ip+2 Ip+4. . . ) and within each block by increas-
ing principal quantum number, the Schrodinger equation
(5.1) reduces to a generalized matrix eigenvalue problem

[H ES]$=0, —

with banded matrices H and S. This feature permits use
of a large basis set while keeping storage requirement
within reasonable limits and was crucial to a successful
calculation of the bound spectrum. '

The Jacobi-matrix method provides a natural extension
of this work to the continuous part of the spectrutn. In
the spirit of Heller, Yamani, and Fishman, one now ap-
proximates the quadratic Zeeman term by truncating its
(infinite-dimensional) matrix representation to a matrix of
finite, albeit large, dimension. This amounts to replacing
the infinitely thick barrier for electron motion perpendic-
ular to the magnetic field by a barrier of finite but large
thickness. For a sufficiently large representative matrix
of —,P r sin 8, the barrier is thick enough so that there is
little loss of flux in the p direction and the exact continu-
um wave function can be approximated sufficiently well.

The wave function itself may be obtained by multichan-
nel generalization of the Jacobi-matrix method, the num-
ber of channels being the same as the number of angular
momenta retained in the matrix representation of the
quadratic Zeeman term. The numerical problem reduces
to solving a matrix equation of the form

%here H is a banded matrix, the driving matrix b is
known, and a determines the wave function. Once again,
because of the banded nature of H, one can include a large
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number of basis functions in a practical calculation. I see
no difficulty in considering magnetic fields of laboratory
strength (-4.7 T), a range which so far has been inacces-
sible to numerical calculation.

VI. POSSIBLE FUTURE EXTENSIONS

In this paper I have restricted my attention to just two
potentials which admit an SO(2, 1} spectrum generating
algebra, corresponding to the cases considered by Heller,
Yamani, and Fishman. A simple extension is to add a po-
tential, —b/2r, to the Coulomb potential. The resulting
problem still admits an SO(2, 1) spectrum generating
algebra. ' As long as b & l (1 +1}+—,', one simply has to
set t in Sec. III so that t(t+1)=l(1+1)—b. [For
b & l(1+1)+—,', well-known problems due to the singu-

larity at r=0 arise. ] The zero-angular-momentum
states of a Morse oscillator also fall within this frame-
work but the parameter rt2 in (3.4) is now imaginary. A
somewhat exotic potential which arises in nuclear phys-
ics ' and whose bound spectrum also seems to be generat-
ed by an SO(2, 1) algebra should be amenable to similar
analysis. I am presently investigating both these prob-
lerns.

An interesting question is whether one can get a solv-
able Jacobi matrix for the a/r potent—ial, the remaining
exactly solvable potential of quantum mechanics which
has no known connection with SO(2, 1) Lie algebra. This
particular extension, if possible, would allow one to in-
clude the polarization of an electrically neutral target by

charged particles within the Jacobi-matrix formalism.
It is also possible to formulate quantum defect theory

in terms of transformations between alternative pairs of
solutions of the recursion. This development will exactly
parallel the conventional formulation in terms of transfor-
mations between alternative pairs of solutions of the
Schrodinger equation. It is unclear if this exercise
would give anything new but there may very well be some
differences due to the fact that the coordinate space wave
function reconstructed from the irregular solution of the
recursion is not the irregular solution of the Schrodinger
equation but the regular solution of an inhomogeneous
differential equation.

Finally, relatively little has been done to develop the
Jacobi-matrix method as a practical tool for numerical
calculation of scattering of electrons from neutral atoms,
molecules and ions. Considering that it is potentially
as powerful as the enormously successful R-matrix
method, much remains to be done.
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APPENDIX: NORMALIZED POLLACZEK AND LAGUERRE POLYNOMIALS

The unnormalized Pollaczek polynomials

are orthogonal over the interval —oo &x & ao with weight

~2, ( ~)
(2 sing)

exp[ —(m —2$)x] j I (A+ix) ~,

P„( xp)= '"e2Fi( v, A+—ix;2A, ;1—e '
) (A, &0, 0&/&m),I 2A, I v+1 (Al)

(A2)

Alternatively, the polynomials may be defined by the initial condition

0, Po~ ——&

and the recurrence

(v+1)P"„+,(x;P)—2[(v+1)cos4+x sing]P"„(x;P)+(v—1+2k)P„ i(x;P)=0, v=0, 1,2, . . . .

Since this recurrence is not symmetric, i.e., it is not of the form

b„+,P„+,(x)+a+„(x)+bQ„,(x)=xP„(x),
so that the associated Jacobi matrix is not symmetric, the polynomials are not normalized. However, let us define

', 1/2

Pi( ~)
I (v+1)1 (2A) pi( ~)I (v+2K, )

so that
P', (x;y) =0, P,"( yx)=1.

Then the recurrence relation

(A3a)

(A3b)

(A3c)

(A4)

(A5a}

( + 1)il2( +2g)1/ 2

P„+i(x;P)—(v+A)cotPP„(x;P)+ . P„ i(x;P)=xP„(x;P), v=0, 1,2, . . . ,
[v(v+2K, —1)]'~

2 sing 2 sing
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is symmetric; hence, the polynomials P„"(x;P) are ortho-
normal over the interval —Oc &x & ao, that is,

x 8'p x; P„x; I'„x;
with weight

Wt (x;P)= Wt (x;P) f dx Wt (x;(()) . (A6b)

The integral in the denominator is evaluated by noting
that it is analytic in the angle u=sr —2$. This is proved
by showing that for complex u, real and imaginary parts
of the integral satisfy the Cauchy-Riemann conditions.
The integral is then evaluated for imaginary values of u,
either by contour integration using known residues of I
functions at their poles, or by introducing integral repre-
sentations of I functions and changing the order of in-
tegration. When continued analytically to real values of
u, the result is I"(2A.)/sing. Then from Eqs. (A2) and
(A6b), one finds

Wt (x;(())= exp[ —(sr —Q)x]
~

I (A+i ,x)~
(2sin4) "

~ 2

2srI" (2A, )

(A6c)

Completeness of the polynomials is expressed by the
following relations:

W,'(x;P) g [P'„(x;y)]'P„'(x',y) =Wx —x') . (A7)

Similarly, the unnormalized I.aguerre polynomials

The normalized Laguerre polynomials are defined by
1 j2

L „(x),I (v+ 1 )I (u+ 1)
I (v+u+ 1)

L„(x)=

so that

, (x)=0, Lo(x)=1, (A12a)

WL (x)=e 'x /I (u+ 1) .

The limiting case of Pollaczek polynomials

lim P„(x/e;etta)=L„" '( —2/x),

(A13)

which is derived from the limiting form of the hyper-
geometric function in (Al), is used in Sec. IV. The corre-
sponding limit of the normalization integral

I„,„,(e)=5„,„,= f d(x/e)W~(x/e;eP)

X [P„",(x /e;eP)]'P„, (x/e; eP)

is taken by demonstrating that

(A15)

~ith symmetric recurrence

—[(v+1)( v+ u+1)]' /L„+i(x)+(2v+u+1)L„(x)

[v(v—+u)]' L„ i(x)=xL„(x) . (A12b)

These polynomials are then orthonormal with normalized
weight

L „(x)= iEi( —v;u+1;x)I (v+u+1)
I v+1 I u+1

are orthogonal over the interval 0&x & oo with (unnor-
malized) weight

lim Wt (x/e;eP) = ~

a~0 2

0 forx&0

WL '( —2(()x) for x &0 .
(A16)

W L(x)=e "x

They may also be defined by the initial condition

L i(x)=0, Lo(x)=1,

This result follows from Eq. (6.1.45) of Ref. 14. The rela-
tion

limI„„,(e)= f d (2/x) Wt (2/x)

and the recurrence relation
X [L„, '(2t))x)]'L„, '(2(()x), (A17)

—(v+1)L „+i(x)+(2v+u+1)L „(x)

(v+u)L „ i(x)—=xL,(x) . (A10b)

is just the normalization integral for I.aguerre polynomi-
als. Similarly, the limiting form of (A7) gives the com-
pleteness relation for I.aguerre polynomials.
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