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New quantum numbers in collision theory. II. Angular momentum diagrams and interpretation
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Geometrical relationships illustrate the significance of the transformation between new and orbi-

tal quantum numbers. The semiclassical analysis of 6j coefficients by Ponzano and Regge clarifies

the geometrical relationships and identifies a classically forbidden range, which can be singled out

for its small contribution to the summation over the partial waves relevant to observable parameters

(differential cross section and orientation).

I. INTRODUCTION

The analysis of light emitted or absorbed by atoms or
molecules iii collision processes has provided important
data on their polarization and also on their internal
dynamics, for example, through the observation of quan-
tum beats. ' This success rests largely on the circumstance
that light exchanges usually just one unit of angular
momentum with matter. On the other hand, general col-
lision processes involve orbital motions with high angular
momenta which complicate greatly the extraction of the
significant parameters from experimental data.

Collision theory might nevertheless be restructured
more nearly along lines analogous to the analysis of pho-
toprocesses. It is helpful to this end to identify and sim-
plify the role of high orbital momenta in the theory. Note
in this connection that standard theory involves as many
as four orbital moments {/„/b, /,', /b I, each of which runs
from 0 to Oo. An alternative set of quantum numbers

{o,~,g, s/I has been introduced recently to replace the 1's.
Among these only cr runs to Oo. In the special case of the
process

e+He(1'S)~e'+ He(n 'P}

treated in Ref. 3, only four combinations of (g, s/} occur,
namely (0,+1}and (+1,0), because the angular momen-
tum transferred to the target is restricted to j,= 1.

The theoretical cross section and target orientation of
process (1) were resolved by Ref. 3 into two components,
with (=0 or r/=0, upon introduction of {o,r, g, s/J
Their dynamical parameters are then grouped hierarchi-
cally, first according to their values of i/ (or g), then ac-
cording to r and finally according to o. Fuller interpreta-
tion and application of the new quantum numbers were
seen in Ref. 3 to require much further elaboration.

Section II of this paper illustrates the above hierarchi-
cal structure by analyzing the geometry of the tetrahedron
composed of the vector angular momenta {l„lb,l,', lb I
and of their differences (with» added according to
Schwinger )

This illustration may appear semiclassical, but Ponzano
and Reggeb' showed that including a phase term in semi-
classical treatments yields very good approximations even
for small angular momenta. The vertices of this tetrahed-
ron lie on conic sections with parameters {o,~,g, r/I. The
tetrahedron may then be studied through its dependence
on the conic sections (roughly speaking, on its size and
distortion) rather than on the length of each of its Ages.
The geometrical relationships between the orbital and the
neer quantum numbers also illustrate the contrast between
the alternative cases (=0 and s/=0. Consideration of
large and small cr values reveals that the construction of
the tetrahedron is not always possible, with implications
previously discussed by Ponzano and Regge.

Section III will then utilize the work of Ponzano and

Regge, a semiclassical theory of 6j coefficients, showing
how a tetrahedron cannot be constructed when the indices
of a 6j coefficient are in a "classically forbidden" range.
The values of 6j coefficients are oscillating functions in

the allowed range and decay exponentially beyond its

boundaries. Accordingly, a part of the summation ranges

in the cross section and orientation formulas is singled out

by its small contribution. The implication of this result

for the mechanism of orientation will be treated in a later

paper.

,'(/. +/b+1.'+lb), -
r= —,

'
(1, +lb /,

' —/b), —

g= t (1 lb+/» lb)— —

g= —,'(/, —/b —1,'+lb),

(4)

II. GEOMETRICAL RELATION OF SYMMETRICAL
AND ORBITAL QUANTUM NUMBERS

A set of syinmetrical quantum numbers was defined in
Ref. 3 as

k=1 —1 =lt, lb—
j,=lb —1,' =/b —1,

'
(3)

where the I's denote the projectile electron's orbital mo-
menta in the system (1); a and b stand for the initial and
final states and the prime stands for the complex conju-
gate state of the unprimed state.
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The replacement of l by l + —,, fainiliar in semiclassical
treatments, leads to replacing 0 by o=o+1 without
changing the other quantum numbers (r, g, g) .8y a sim-
ple transformation of Eq. (4), we thus get

In (5) l, + —,
'

and l,'+ —,
'

represent the lengths of vectors l,
and 1,', respectively, which form a triangle with k by the
vector equation (2). If we vary l, and l,' in this triangle
keeping k fixed such that the first (5) be satisfied, the
locus of the point P in Fig. 1 will be the ellipse with the
(major) axis o+g and with foci FF' at the distance k+ —,.
The second (5) similarly requires l, and l,' to terminate at
a point Q on the hyperbola with (transverse) axis r+rl.
The points A, intersections of the loci P and Q, represent
positions that fulfill both equations (5). The same con-
struction, with axes cr ga—nd ~—rl, identify the intersec-
tions B that fulfil the conditions (6) on 1& and li .

The separate constructions based on (5) and (6) can now
be combined in Fig. 2, where two half planes a and b
share the vector k on their common edge. The angle be-
tween the half planes is fixed by requiring the distance
AB to equal j,+ ,

'
in acc—ordance with (3). The four

points IF,F', A, BI form the vertices of a tetrahedron
which represents the six vectors I l„lb,l,', lb, k,j, I How-.
ever, the tetrahedron could not be constructed if j,+ —,

'

were shorter than the distance AB when the half planes a
and b coincide, or longer than AB when their angle
reaches 180'.

The restrictions on the eccentricities of the conic sm-
tions imply the previous result in Ref. 3 on the allowed
ranges of the symmetrical quantum numbers

FIG. 2. Tetrahedron, ellipse, and hyperbola in the planes
a and b. F—F'=k, A —P=/,', A —P=/„8—F'=/q,
8—F=ly, A —S=j,; vector lengths are k+ ~, I,'+ 2, 1,+ ~,
l~+ 2, Ib+ 2, and j,+ z, respectively.

The operation P(l„lb)=(l,', lb) of Ref. 3, corresponding
to P(r, rl) =( —~, —rl) shifts the points A and B from the
upper branches of the hyperbolas in Fig. 2 to their lower
branches. The operators Q(l„l,')=(lb, lb), corresponding
to Q(g, rl) =(—g —il), changes the dihedral angle between
planes a and b from 8 to m —e.

The restriction j,=l on the collision (1) restricts the
values of (g, rI) to the alternative pairs (0, + 1) and (+ 1,0).
For ran =0 Fig. 2 shows ellipses with two major axes a+1
but hyperbolas with the single transverse axis r; for /=0
(re&0) it would show hyperbolas with two axes v+1 but
ellipses with a single axis o. Note that the pairs of points
(A,B) lie generally on the same branch of a hyperbola
with the following exceptions: (1) /=0, v=O; (2) (=0,
v=+1, in which case the hyperbola in one of the two half
planes collapses into a single straight line orthogonal to k;
(3) rl =O,v=0 in which case both hyperbolas collapse into
a line and both A and 8 are equidistant from F and F'.

i T'+'g

FIG. 1. Ellipse and hyperbola in the plane a. F—F'=k,
F—P=/„F—P=/,'; the vector lengths are k + 2, I, + 2, and

I,'+ z, respectively.

A. Large values of P

In the limit of very large orbital numbers, o~00, the
ellipses become circles with radius o/2 and their intersec-
tions A and 8 lie on the asymptotes of the hyperbola
with slopes +

I [(k+1/2)/r] —1]' . In this event no
effective restriction to the construction of the tetrahedron
occurs for i)=0. The minimum of the length

~

A —8~
equals unity and its maximum equals
crI1 [/(rk+'

)] J—' =O(o); therefore the actual length

~

A —8 ~, j,+ —, =1.5, lies between the maximum and
minimum of the lengths

~

A —8
~

and the tetrahedron
can be constructed. For /=0 (g&0), on the contrary,
even the minimum of the length

~

A —8
~

becomes of
O(o) as seen in Fig. 3 and the construction of the
tetrahedron is generally impossible within the realm of the
ordinary geometry [the projective geometry called
PG(n, 2) would remove this barrier ].

Let us now examine in greater detail when it is possible
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PIG. 3. /=0, with coincident planes n and b. The arc length
of

~
A —8

~
is approximately given by (82 8~ }o—/2

to construct the tetrahedron, beginning with the r=O
(/=0) case. The length

~
A —8

~

is given here by
o/(k+ —,

'
) (o =k+ l,k+3, . . . ), which already exceeds

j,+-,' for cr =3 (k =1) or tr =4 (k =2). In this case the
tetrahedron can be constructed only for o =2 ( k =1) and
for tr =3 ( k =2); on the other hand, more values of o are
allowed for the construction of the tetrahedron at large k,
e.g., five values of o, i.e., 21, 23, 25, 27, and 29 are al-
lowed for k =20 (this argument is actually independent of
the values of r as discussed in Appendix A). For the pro-
cess (1) at impact energy (80 eV, values of k larger than
20 give a negligible contribution to measurable quantities;
for (=0, therefore, no tetrahedron can be constructed for
most significant values of o.

B. SmaO values of cF

We saw in Sec. IIA that the construction of the
tetrahedron can only be possible for the first few smallest
values of o when (=0 but is always possible for large
values of cr when rI =0. Figure 4 shows that a different

limit to the construction of the tetrahedron operates for
small values of o when i)=0. The minimum distance

~

A —8
~

exceeds j,+ —,
' for small values of o when rI =0

(and small r) owing to the rapid growth of the ellipse
in the neighborhood of the minor axis as tr increases.
When v)=0 and ~ 0, the minimum distance LA —8

~

is
given by —, I [(o+1) —(k +1/2) ]'/~ —[(tr—1)2—(k
+ —,') ]'/ ] and exceeds j,+ —,

' for the single value of
o =k+2 when 10&k &4, and for two values of
cr=k+2, k+4 when 16&k&10. Thus no tetrahedron
can be constructed for the first one or two values of o
when v) =0 and v=0 for a small but physically important
range of k. This occurrence becomes rare for large

~

r
~

and the tetrahedron can be constructed for all values of o
for r=k.

In summary, when rj =0, the tetrahedron can be con-
structed for most values of o, the more so as

~

~
~

be-
comes large. When /=0, instead, the tetrahedron cannot
be constructed for most values of o regardless of v; except
for the first few ones.

Besides the confocal system of conic sections described
above, two other systems of conic sections may be con-
structed starting from linear combinations of (5) and (6),
yielding o+r or o+i) instead of tr+g The. first of these
yields confocal conic sections with focal distance j,+ —,,
but fails to utilize the expansion of observables into
Legendre polynomials Pa (cos8). The other one is even
less convenient because it does not lead to a confocal sys-
tem.

C. The meaning of g and g

In the confocal coordinate system of prolate spheroids
and hyperboloids with focal distance k+ —, implied by
the full three-dimensional version of Fig. 2, let us consider
the pair of points (A,B) in Fig. 2 separated by

~ gJ and
from the reference point with coordinate (o,v, P).

These two points (o+g,~+rj,gi) and (cr—g, r—i),$2) to-
gether with the focal points (FI ') compose the tetrahed-
ron considered above, when {{)iand Pz are chosen so that
the distance between our two points is j,+ —,'. The magni-
tudes (g~ and

~
t)

~

thus denote the allowed rangeof vari-
ation of j, for fixed values of o and ~, respectively. The
tetrahedron cannot be constructed if this constraint on j,
excludes its actual magnitude j,+ —,. The rigidity of this
constraint is measured by the sensitivity of the distance

~
A —8

~

to variations of g and rI, that is, by the pair of
parameters

Bf A —8/
Bg g=0

o

(k+ —')

h, —=
O' —T

(k+ —,
'

) —2

' 1/2

FIG. 4. q=o (can=9, k =7, v =1), with coincident planes a
and b. The length

I
C—D

I
is given by 1, smaller than j,+ I',

but the length
~
A —8~ is larger than j,+ z.

The limiting values of these parameters, as o rises from
its mirumum k + —,

' to 00, are
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J34

288 V =det j24
~2

J23

J34 J24 J23 1

J~4 Ji3
0 Ji2 1

j&3 j&2 0 1

(10)

(x) as 0'~ (x)

Q —+ ~

1
1 as o~k+ —, ,

shying the same structures as in Secs. II A and II B.

1 I 1 1 0

Ijii,ji4,jz4 j»,jl2 j34l d~no~~ IJ +i ib+ 2

I,'+ , ,lb~ ——,,j,+ —,,k+ —, I, respectively P. onzano and

Regge pointed out then that values of ji,k compatible with
the triangular conditions may yield a negative value of
(10), for which no real tetrahedron can be constructed.
For example, at large values of o, V becomes negative
when i)&0:

III. PONZANO AND REGGE'S SEMICLASSICAL
EXTENSION QF THE VECTOR MODEL

We have seen in Sec. II that the construction of ellipses
and hyperbolas in Fig. 2 need not allow the formation of a
tetrahedron, depending on the magnitudes of the angular
momentum vectors. An algebraic treatment of this prob-
lem has been done by Ponzano and Regge ' in terms of
the volume of the tetrahedron as a function of the indices
of a 6j coefficient Th.e square of this volume is
represented by the Cayley determinant (p. 380 of Ref. 7)

144 V —+
cr w—hen iI&0

[(k+ —,
'

) —H][(j,+ —, ) —1]o when ri=O.

(11)
A negative value of the square volume is viewed as

analogous to a negative value of the squared momentuin
of a particle in a classically forbidden region. In this view
the squared volume of the tetrahedron plays the role of
the kinetic energy of an angular motion and Ponzano and
Regge develop a semiclassical expression of 6j coefficients
analogous to a WKB wave function. The Ponzano-Regge
formula, based on an earlier one by Wigner, is

abc

1
cos

&12m V

4

jsk8sk+ —,m when Vi &0
hyk=I

1
cos~'exp' — g Jak™ak2 12ir V h&k

h, k

when V2(0,
(12)

where

~'= g (jii —i )Re8ak
h)k
h, k

and 8i,k is the angle between the outer-normals of the
tetrahedron faces that intersect along jqk, generally com-
plex for V & 0. The occurrence of a classically forbidden
range is illustrated by considering the case of
«.bed e)»(f Ie —a

I Id —b
I » studied by

monds, and by Brussaard and Tolhoek, ' where the 6j
coefficient reduces to the rotational matrix dj'b, ,(8),
an eigenfunction of the symmetric top. Regions near the
poles of 8 are classically forbidden by the centrifugal po-
tential of the azimuthal motion when (d b,e —a)&0. —

The result obtained in Sec. II implies that g =0process-
es are classically favored and /=0 processes are classically
unfavored Note that for r. i=0, both angular momenta of
the projectile increase or decrease [i.e., (l„l,') &(li„li )]
whereas for (=0 either (1 &ls, l' (li, ) or (I (ls, l' &lj, ).

Section II may have implied that the value of the 6j
coefficient is much smaller in the classically forbidden
range than in the allowed range, while the phase factor

cosQ in (12) oscillates between positive and negative
values, probably causing extensive cancellations in the
cross section and orientation formulas. The following
analysis of the values of 6j coefficients as functions of the
symmetrical quantum numbers does not bear out these
surmises. Parity conservation will be shown to play an
important role for this.

When ri=O, and o »1, the limiting values of 8i,i, in
(12) are 8i2 834 +n. and 8——i3 8i4 824 8»~ir/2,
whereby gjsk8ik~(o'+k+j, +1)ir Parity r.estricts
cY+k to even values, whereby cos( gji,k 8i,k +m/4)
~cos(m/4)=1/~2 regardless of any value of r and k.
This value coincides with the root mean square of the
cosine and therefore with the result of signer's classical
vector model. A numerical study shows that the Airy
function representation, which replaces (12) near the clas-
sical turning point, approximates the values of the 6j coef-
ficient very well at large values of o, for reasons that
remain unclear. If a 6j coefficient lies close to a classical
turning point, then its phase 0= gjl,k8i,k+m/4 mea-
sured from a turning point is given by

, Ai, which goes to zero for
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TABLE I. The values of 6j coefficients when (=0 and clas-

sically forbidden and when g =0 and classically allured.

6j

6
8

10
12
14
16
18
20
22

0.3333[—01]
0.9524[ —02]
0.3968[—02]
0.2020[ —02]
0.1166[—02]
0.7326[—03]
0.4902[ —03]
0.3440[ —03]
0.2506[ —03]
0.1882[—03]

FIG. 5. The tetrahedron collapsed into the plane diagrams M
and N corresponding to rl =0 and (=0, respectively, for V~=0.
The topological difference between M and X disappears as soon
as V~ takes nonzero values.

3
5

7
9

11
13
15
17
19

0.3333
0.2000
0.1429
0.1111
0.9091[—01]
0.7692[—01]
0.6667[—01]
0.5882[ —01]
0.5263[ —01]

rl =0 as cr increases. But note that this is a necessary con-
dition for a 6j coefficient to lie close to a turning point,
nat a sufficient one. The amplitude factor 1/&12m V of
(12) appraaches o 'Ie[(k+ —, ) —r ][(j,+ —, ) —1]I
[Eq. (11)]as o becomes large, i.e., the 6j coefficients vary
inversely to cr and k for (cr,k) »1, and to
[(k+—,

'
) —2] '/ as functions of r The large. r is ~, i.e.,

the thinner is the tetrahedron, the larger is the 6j coeffi-
t:ient.

When (=0, at large values of cr, ReHi2 ——Re834~m,
ReHis ——ReHz4~0 (n) and Re8i4 Re823——~n (0) for vi =1
(rl = —1), resulting in cos@=cos[(o+vl+j,+k}rr] which
is 1 again due to parity. ImHis and Im834 approach a con-
stant value but

rl ImHi3 ———rl ImHi4 ——v) Im824 ———rllmHq3~lno

exp —gjskImHsq ~exp( —2 incr )

which becomes much smaller than I/O 2 as cr increases.
A numerical study shows that the value (12) approximates
the 6j coefficient very well, me;ming that it lies far from
the classical turning point at large values of o. The phase
measured from the turning point, in this case, goes to in-
finity as cr increases, as expected. The amplitude factor of
(12) varies inversely to the square of o, decreasing faster
by one power for /=0 than for rl =0. Therefore the mag-

nitude of the 6j coefficient is quite different at large cr for
rl =0 and g=O, in cantrast to its variation in cr, w, and k.

At small values of o, the angles Hsk of the tetrahedron
in (12) do not differ greatly from their values for V2=0
(for the physically significant range of k as discussed in
Secs. II A and IIB). When V =0, the tetrahedran col-
lapses into a plane, and is represented by two topologically
different diagrams M and N in Fig. 5, depending on
whether the fourth vertex lies inside (M) or outside (N)
the triangle composed of three other vertices. Diagram M
corresponds to rl =0 since two hyperbolas coincide in Fig.
4 and N to /=0 as seen in Fig. 3.

When vi =0, the tetrahedron shape elongates from dia-
gram M, as cr increases, without major distortion. The
phase Q= gjskHsk+rr/4 amounts to (k+cr+g)n.
+7rr/4 for diagram M (at V~=0} so that cosQ=1/v 2,
as it does at large values of cr since o+k is even. The
change of the phase as a function of cr is given by
c}Q/c}o=(Hi3+Hi4+Hs4+Hi3)/2 which equals n regard-
less of k both for diagram M and for large o. But the
value of cosQ remains close to 1/V 2 with same sign re-
gardless of k and ~ for both small and large values of o
because cr changes in steps of 2. Therefore, cosQ is ex-
pected ta remain clcxie to I/W2 over the whole range of cr.

When /=0, as we saw in Sec. II A, the tetrahedron be-
longs to a classically allowed range for only a few values
of o, where it takes an N-like shape with 6j values com-
parable to those for sl =0. Except for these few cases, the
magnitude of the 6j coefficients is much larger for rl =0
than for /=0 and remains uniform in its sign and magni-
tude as sho~n in Table I.

IV. DISCUSSION

Our discussion of the classically forbidden and allowed
ranges in the framework of the symmetrical quantum
numbers pertains to the system (1) and rests on the formu-
la"

I Ia b Jf
[l~(l~+ 1)—ls(is+1) —1~(lg+ 1)+lb(lb+1)]

l,' lb j, =(—1)'
k k 1

2[k (k +1)(2k +1j),(j,+ 1)(2j,+ I )]'r
lb ji

Ij 1,
' k (14}
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The 6j coefficient appearing on the right-hand side of (14)
implies the vector relations (2) and (3}, more restrictive
than would be imphed by the 9j coefficient on the Ieft-
hand side. The special case (14) allows [l,(l, + 1)

lb—(lb+1)—I;(I,'+1)+lb(lb+1)]/2 to be interpreted as

j, k (Appendix A). This does not mean that vector rela-
tions (2) and (3) are true physical relations. The classical-
ly forbidden and allowed properties, though discussed
under this assumption, can be accepted as real since this
property has direct consequences on the magnitudes of 9j
coefficients. The general case of a 9j coefficient

I. Ib j~

lb jt'

ke kb K

with j,+j,' and/or k, +kb and/or K+1 remains to be
studied.
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In terms of symmetrical quantum numbers

rl =0
j k=

crri, rl+0 .

(A3)

(A4)

Here let us derive the following relation:

j, k= —,[ I,(l, +1) Ib(l, +1—)
—I,'(I,'+1)+lb(lb+1)] .

For rl+0, j, k can be larger than unity because of the
reason considered in Secs. II and III. Notice that the

A A
value of tr from which j, k becomes larger than unity
does not depend on that of r for rl&0.
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